Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
1.
Viruses ; 16(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38932113

RESUMO

Tick-borne flaviviruses (TBFV) can cause severe neuroinvasive disease which may result in death or long-term neurological deficit in over 50% of survivors. Multiple mechanisms for invasion of the central nervous system (CNS) by flaviviruses have been proposed including axonal transport, transcytosis, endothelial infection, and Trojan horse routes. Flaviviruses may utilize different or multiple mechanisms of neuroinvasion depending on the specific virus, infection site, and host variability. In this work we have shown that the infection of BALB/cJ mice with either Powassan virus lineage I (Powassan virus) or lineage II (deer tick virus) results in distinct spatial tropism of infection in the CNS which correlates with unique clinical presentations for each lineage. Comparative transcriptomics of infected brains demonstrates the activation of different immune pathways and downstream host responses. Ultimately, the comparative pathology and transcriptomics are congruent with different clinical signs in a murine model. These results suggest that the different disease presentations occur in clinical cases due to the inherent differences in the two lineages of Powassan virus.


Assuntos
Encéfalo , Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Camundongos Endogâmicos BALB C , Animais , Camundongos , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/virologia , Encefalite Transmitida por Carrapatos/patologia , Encéfalo/virologia , Encéfalo/patologia , Inflamação/virologia , Modelos Animais de Doenças , Feminino , Transcriptoma
2.
PLoS Pathog ; 17(12): e1009678, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34855915

RESUMO

Kyasanur Forest disease virus (KFDV) and the closely related Alkhurma hemorrhagic disease virus (AHFV) are emerging flaviviruses that cause severe viral hemorrhagic fevers in humans. Increasing geographical expansion and case numbers, particularly of KFDV in southwest India, class these viruses as a public health threat. Viral pathogenesis is not well understood and additional vaccines and antivirals are needed to effectively counter the impact of these viruses. However, current animal models of KFDV pathogenesis do not accurately reproduce viral tissue tropism or clinical outcomes observed in humans. Here, we show that pigtailed macaques (Macaca nemestrina) infected with KFDV or AHFV develop viremia that peaks 2 to 4 days following inoculation. Over the course of infection, animals developed lymphocytopenia, thrombocytopenia, and elevated liver enzymes. Infected animals exhibited hallmark signs of human disease characterized by a flushed appearance, piloerection, dehydration, loss of appetite, weakness, and hemorrhagic signs including epistaxis. Virus was commonly present in the gastrointestinal tract, consistent with human disease caused by KFDV and AHFV where gastrointestinal symptoms (hemorrhage, vomiting, diarrhea) are common. Importantly, RNAseq of whole blood revealed that KFDV downregulated gene expression of key clotting factors that was not observed during AHFV infection, consistent with increased severity of KFDV disease observed in this model. This work characterizes a nonhuman primate model for KFDV and AHFV that closely resembles human disease for further utilization in understanding host immunity and development of antiviral countermeasures.


Assuntos
Modelos Animais de Doenças , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Encefalite Transmitida por Carrapatos/virologia , Febres Hemorrágicas Virais/virologia , Macaca nemestrina , Animais , Chlorocebus aethiops , Citocinas/sangue , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/patologia , Feminino , Células HEK293 , Febres Hemorrágicas Virais/imunologia , Febres Hemorrágicas Virais/patologia , Humanos , Linfonodos/virologia , Células Vero , Viremia
3.
Viruses ; 13(11)2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34835061

RESUMO

Tick-borne encephalitis virus (TBEV), a member of the Flaviviridae family, Flavivirus genus, is responsible for neurological symptoms that may cause permanent disability or death. With an incidence on the rise, it is the major arbovirus affecting humans in Central/Northern Europe and North-Eastern Asia. Neuronal death is a critical feature of TBEV infection, yet little is known about the type of death and the molecular mechanisms involved. In this study, we used a recently established pathological model of TBEV infection based on human neuronal/glial cells differentiated from fetal neural progenitors and transcriptomic approaches to tackle this question. We confirmed the occurrence of apoptotic death in these cultures and further showed that genes involved in pyroptotic death were up-regulated, suggesting that this type of death also occurs in TBEV-infected human brain cells. On the contrary, no up-regulation of major autophagic genes was found. Furthermore, we demonstrated an up-regulation of a cluster of genes belonging to the extrinsic apoptotic pathway and revealed the cellular types expressing them. Our results suggest that neuronal death occurs by multiple mechanisms in TBEV-infected human neuronal/glial cells, thus providing a first insight into the molecular pathways that may be involved in neuronal death when the human brain is infected by TBEV.


Assuntos
Apoptose , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Neuroglia/virologia , Neurônios/virologia , Piroptose , Apoptose/genética , Astrócitos/metabolismo , Humanos , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Piroptose/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/genética , Transcriptoma
4.
Sci Rep ; 11(1): 20873, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686683

RESUMO

Powassan virus (POWV) is a neuroinvasive flavivirus transmitted to mammals by the bite of ixodid ticks. In this study, we sought to investigate the impact of tick salivary gland extract (SGE) on POWV neuroinvasion. BALB/c mice were footpad inoculated with either a high dose or a low dose of POWV, with and without Ixodes scapularis salivary gland extract. Brain and spinal cord were extracted daily, and immunohistochemical techniques were used for temporal tracking of POWV antigen. The temporal pattern of POWV staining showed a caudal to rostral spread of POWV in the brains of mice from both high dose infection groups. For the high dose infection groups, the presence of tick SGE did not influence the spread of POWV in the brain. Mice infected with the low dose of virus alone did not present POWV staining in the brain; however, in the presence of SGE, low dose infected mice presented scattered foci of POWV-infected cells throughout the brain. This study shows that tick SGE facilitates POWV neuroinvasion when mice are infected with the lower dose of POWV. We also found two patterns of central nervous system invasion that were directly influenced by the dose of POWV administered.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Encefalite Transmitida por Carrapatos/virologia , Ixodes/metabolismo , Ixodes/virologia , Glândulas Salivares/metabolismo , Glândulas Salivares/virologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C
5.
J Gen Virol ; 102(9)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34546870

RESUMO

Tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus, is common in Europe and Asia and causes a severe disease of the central nervous system. A promising approach in the development of therapy for TBEV infection is the search for small molecule antivirals targeting the flavivirus envelope protein E, particularly its ß-n-octyl-d-glucoside binding pocket (ß-OG pocket). However, experimental studies of candidate antivirals may be complicated by varying amounts and different forms of the protein E in the virus samples. Viral particles with different conformations and arrangements of the protein E are produced during the replication cycle of flaviviruses, including mature, partially mature, and immature forms, as well as subviral particles lacking genomic RNA. The immature forms are known to be abundant in the viral population. We obtained immature virion preparations of TBEV, characterized them by RT-qPCR, and assessed in vivo and in vitro infectivity of the residual mature virions in the immature virus samples. Analysis of the ß-OG pocket structure on the immature virions confirmed the possibility of binding of adamantylmethyl esters of 5-aminoisoxazole-3-carboxylic acid in the pocket. We demonstrated that the antiviral activity of these compounds in plaque reduction assay is significantly reduced in the presence of immature TBEV particles.


Assuntos
Adamantano/farmacologia , Antivirais/farmacologia , Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/virologia , Isoxazóis/farmacologia , Vírion/fisiologia , Adamantano/metabolismo , Animais , Antivirais/metabolismo , Linhagem Celular , Vírus da Encefalite Transmitidos por Carrapatos/crescimento & desenvolvimento , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Glucosídeos/metabolismo , Isoxazóis/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Suínos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Ensaio de Placa Viral , Vírion/imunologia , Vírion/patogenicidade , Vírion/ultraestrutura
6.
Virus Genes ; 57(4): 395-399, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34086153

RESUMO

According to modern classification, tick-borne flaviviruses have been divided into a mammalian tick-borne virus group and a seabird tick-borne virus group (STBVG). The STBVG includes the Tyuleniy virus, Meaban virus, Saumarez Reef virus, and the recently discovered Kama virus (KAMV). The latter was isolated from Ixodes lividus, an obligate parasitic tick of the sand martin (Riparia riparia), in 1989 in the central part of the Russian Plain. In 2014, based on molecular genetic analysis, it was shown that KAMV is a new virus belonging to STBVG, genus Flavivirus, fam. Flaviviridae. Very little is known about the Kama virus concerning its range, vectors, and reservoir hosts. GenBank contains a single sequence of the complete genome of this virus. In the present study, the complete genome sequences of two strains, isolated in 1983 in the Omsk region (Western Siberia) from gamasid mites in the nests of rooks (Corvus frugilegus), have been determined. Phylogenetic analyses of their genomes showed a close relationship both with each other (approx. 98.9% nucleotide identity) and with KAMV isolated in European Russia (approx. 98.4% nucleotide identity). The ecological features of KAMV that are due to the species of the vector (gamasid mites) and its hosts (colonial birds of the mainland of Eurasia) indicate that KAMV is an atypical representative STBVG.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/genética , Infecções por Flavivirus/genética , Flavivirus/genética , Genoma Viral/genética , Animais , Antígenos Virais/genética , Aves , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Flavivirus/patogenicidade , Infecções por Flavivirus/patologia , Infecções por Flavivirus/virologia , Humanos , Ixodes/genética , Ixodes/virologia , Conformação de Ácido Nucleico
7.
Emerg Microbes Infect ; 10(1): 1077-1087, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34013842

RESUMO

ABSTRACTAlkhurma haemorrhagic fever virus (AHFV), a tick-borne flavivirus closely related to Kyasanur Forest disease virus, is the causative agent of a severe, sometimes fatal haemorrhagic/encephalitic disease in humans. To date, there are no specific treatments or vaccines available to combat AHFV infections. A challenge for the development of countermeasures is the absence of a reliable AHFV animal disease model for efficacy testing. Here, we used mice lacking the type I interferon (IFN) receptor (IFNAR-/-). AHFV strains Zaki-2 and 2003 both caused uniform lethality in these mice after intraperitoneal injection, but strain 2003 seemed more virulent with a median lethal dose of 0.4 median tissue culture infectious doses (TCID50). Disease manifestation in this animal model was similar to case reports of severe human AHFV infections with early generalized signs leading to haemorrhagic and neurologic complications. AHFV infection resulted in early high viremia followed by high viral loads (<108 TCID50/g tissue) in all analyzed organs. Despite systemic viral replication, virus-induced pathology was mainly found in the spleen, lymph nodes, liver and heart. This uniformly lethal AHFV disease model will be instrumental for pathogenesis studies and countermeasure development against this neglected zoonotic pathogen.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Encefalite Transmitida por Carrapatos/mortalidade , Receptor de Interferon alfa e beta/genética , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Encefalite Transmitida por Carrapatos/genética , Encefalite Transmitida por Carrapatos/patologia , Encefalite Transmitida por Carrapatos/virologia , Feminino , Técnicas de Inativação de Genes , Humanos , Masculino , Camundongos , Células Vero , Carga Viral
8.
Bull Exp Biol Med ; 169(5): 657-660, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32986207

RESUMO

The protective mechanisms of specific antibodies against tick-borne encephalitis virus were demonstrated on in vitro model. The effect of specific IgG on tick-borne encephalitis virus was comprehensively assessed in virucidal, preventive, direct antiviral, and intracellular actions by ELISA and virus titration results. The IC50 values were obtained for virucidal (3.8±0.7 U/ml), preventive (42.8±9.9 U/ml), direct antiviral (7.2±0.9 U/ml), and intracellular action (1.7±0.4 U/ml). During titration of the samples, complete elimination of the virus was observed at IgG concentration of 16 U/ml (virucidal), 320 U/ml (preventive), 32 U/ml (direct antiviral), and 8 U/ml (intracellular action). It was demonstrated that specific IgG produces a complex inhibitory effect on tick-borne encephalitis virus: it possesses both direct neutralizing activity on the virus and reduces its adsorption and intracellular replication.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Animais , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G/imunologia
9.
Viruses ; 12(8)2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32824843

RESUMO

A highly virulent strain (Hypr) of tick-borne encephalitis virus (TBEV) was serially subcultured in the mammalian porcine kidney stable (PS) and Ixodes ricinus tick (IRE/CTVM19) cell lines, producing three viral variants. These variants exhibited distinct plaque sizes and virulence in a mouse model. Comparing the full-genome sequences of all variants, several nucleotide changes were identified in different genomic regions. Furthermore, different sequential variants were revealed to co-exist within one sample as quasispecies. Interestingly, the above-mentioned nucleotide changes found within the whole genome sequences of the new variants were present alongside the nucleotide sequence of the parental strain, which was represented as a minority quasispecies. These observations further imply that TBEV exists as a heterogeneous population that contains virus variants pre-adapted to reproduction in different environments, probably enabling virus survival in ticks and mammals.


Assuntos
Adaptação Fisiológica/genética , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Ixodes/virologia , Quase-Espécies , Animais , Linhagem Celular , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Encefalite Transmitida por Carrapatos/virologia , Feminino , Variação Genética , Genoma Viral , Ixodes/citologia , Rim/citologia , Rim/virologia , Camundongos , Mutação , Suínos , Virulência
10.
J Neurovirol ; 26(4): 565-571, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32524423

RESUMO

The aim of our study was to compare the course of TBE in children and adults. A retrospective analysis of the medical records of 669 patients was performed. The patients were categorized into 2 groups: Group I with 68 children and group II with 601 adults. TBE symptoms in children were milder compared with adults, with meningitis in 97% of cases. In adults, meningoencephalitis and meningoencephalomyelitis made up 49.26% of cases. Nausea and vomiting are more frequent in children, while neurological manifestations are more frequent in adults. There were no differences in CSF pleocytosis at the onset of disease in both groups, while CSF protein concentration was higher in adults. Children treated with corticosteroids over 7 days had higher checkup pleocytosis than pleocytosis at the onset of disease compared with adults. Corticosteroid use prolongs the disease duration but does not influence the development of TBE sequelae. Children had more favourable outcomes than adult patients.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Encefalite Transmitida por Carrapatos/patologia , Encefalite Viral/patologia , Leucocitose/patologia , Meningite Viral/patologia , Meningoencefalite/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Criança , Pré-Escolar , Dexametasona/uso terapêutico , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/diagnóstico , Encefalite Transmitida por Carrapatos/tratamento farmacológico , Encefalite Transmitida por Carrapatos/virologia , Encefalite Viral/diagnóstico , Encefalite Viral/tratamento farmacológico , Encefalite Viral/virologia , Feminino , Humanos , Leucocitose/diagnóstico , Leucocitose/tratamento farmacológico , Leucocitose/virologia , Masculino , Manitol/uso terapêutico , Meningite Viral/diagnóstico , Meningite Viral/tratamento farmacológico , Meningite Viral/virologia , Meningoencefalite/diagnóstico , Meningoencefalite/tratamento farmacológico , Meningoencefalite/virologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Índice de Gravidade de Doença , Resultado do Tratamento
11.
Parasit Vectors ; 13(1): 303, 2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527288

RESUMO

BACKGROUND: Tick-borne encephalitis (TBE) is the most common viral CNS infection with incidences much higher than all other virus infections together in many risk areas of central and eastern Europe. The Odenwald Hill region (OWH) in southwestern Germany is classified as a TBE risk region and frequent case numbers but also more severe infections have been reported within the past decade. The objective of the present study was to survey the prevalence of tick-borne encephalitis virus (TBEV) in Ixodes ricinus and to associate TBEV genetic findings with TBE infections in the OWH. METHODS: Ticks were collected by the flagging methods supported by a crowdsourcing project implementing the interested public as collectors to cover completely and collect randomly a 3532 km2 area of the OWH TBE risk region. Prevalence of TBEV in I. ricinus was analysed by reversed transcription quantitative real-time PCR. Phylogeographic analysis was performed to classify OWH TBEV isolates within a European network of known TBEV strains. Mutational sequence analysis including 3D modelling of envelope protein pE was performed and based on a clinical database, a spatial association of TBE case frequency and severity was undertaken. RESULTS: Using the crowd sourcing approach we could analyse a total of 17,893 ticks. The prevalence of TBEV in I. ricinus in the OWH varied, depending on analysed districts from 0.12% to 0% (mean 0.04%). Calculated minimum infection rate (MIR) was one decimal power higher. All TBEV isolates belonged to the European subtype. Sequence analysis revealed a discontinuous segregation pattern of OWH isolates with two putative different lineages and a spatial association of two isolates with increased TBE case numbers as well as exceptional severe to fatal infection courses. CONCLUSIONS: TBEV prevalence within the OWH risk regions is comparatively low which is probably due to our methodological approach and may more likely reflect prevalence of natural TBEV foci. As for other European regions, TBEV genetics show a discontinuous phylogeny indicating among others an association with bird migration. Mutations within the pE gene are associated with more frequent, severe and fatal TBE infections in the OWH risk region.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Encefalite Transmitida por Carrapatos/epidemiologia , Ixodes/virologia , Proteínas do Envelope Viral , Animais , Vírus da Encefalite Transmitidos por Carrapatos/classificação , Doenças Endêmicas , Feminino , Alemanha/epidemiologia , Incidência , Masculino , Mutação , Filogenia , Filogeografia , Prevalência , RNA Viral/genética , Proteínas do Envelope Viral/química , Virulência
13.
J Vector Borne Dis ; 57(1): 14-22, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33818450

RESUMO

A comprehensive understanding of the geographic distribution of the tick-borne encephalitis virus (TBEV) complex is necessary due to increasing transboundary movement and cross-reactivity of serological tests. This review was conducted to identify the geographic distribution of the TBEV complex, including TBE virus, Alkhurma haemorrhagic fever virus, Kyasanur forest disease virus, louping-ill virus, Omsk haemorrhagic fever virus, and Powassan virus. Published reports were identified using PubMed, EMBASE, and the Cochrane library. In addition to TBEV complex case-related studies, seroprevalence studies were also retrieved to assess the risk of TBEV complex infection. Among 1406 search results, 314 articles met the inclusion criteria. The following countries, which are known to TBEV epidemic region, had conducted national surveillance studies: Austria, China, Czech, Denmark, Estonia, Finland, Germany, Hungary, Italy, Latvia, Norway, Poland, Romania, Russia, Switzerland, Sweden, Slovenia, and Slovakia. There were also studies/reports on human TBEV infection from Belarus, Bulgaria, Croatia, France, Japan, Kyrgyzstan, Netherland, and Turkey. Seroprevalence studies were found in some areas far from the TBEV belt, specifically Malaysia, Comoros, Djibouti, and Kenya. Kyasanur forest disease virus was reported in southwestern India and Yunnan of China, the Powassan virus in the United States, Canada, and east Siberia, Alkhurma haemorrhagic fever virus in Saudi Arabia and east Egypt, and Louping-ill virus in the United Kingdom, Ireland, and east Siberia. In some areas, the distribution of the TBEV complex overlaps with that of other viruses, and caution is recommended during serologic diagnosis. The geographic distribution of the TBEV complex appears to be wide and overlap of the TBE virus complex with other viruses was observed in some areas. Knowledge of the geographical distribution of the TBEV complex could help avoid cross-reactivity during the serologic diagnosis of these viruses. Surveillance studies can implement effective control measures according to the distribution pattern of these viruses.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/epidemiologia , Doenças Endêmicas/prevenção & controle , Animais , Reações Cruzadas , Vírus da Encefalite Transmitidos por Carrapatos/classificação , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Encefalite Transmitida por Carrapatos/imunologia , Geografia , Humanos , Estudos Soroepidemiológicos , Testes Sorológicos/normas
14.
PLoS One ; 14(12): e0226836, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31856227

RESUMO

Tick-borne encephalitis virus (TBEV) is a zoonotic pathogen which may cause tick-borne encephalitis (TBE) in humans and animals. More than 10,000 cases of TBE are reported annually in Europe and Asia. However, the knowledge on TBE in animals is limited. Co-infection with Anaplasma phagocytophilum and louping ill virus (LIV), a close relative to TBEV, in sheep has been found to cause more severe disease than single LIV or A. phagocytophilum infection. The aim of this study was to investigate TBEV infection and co-infection of TBEV and A. phagocytophilum in lambs. A total of 30 lambs, aged five to six months, were used. The experiment was divided into two. In part one, pre- and post-infection of TBEV and A. phagocytophilum was investigated (group 1 to 4), while in part two, co-infection of TBEV and A. phagocytophilum was investigated (group 5 and 6). Blood samples were drawn, and rectal temperature was measured daily. Lambs inoculated with TBEV displayed no clinical symptoms, but had a short or non-detectable viremia by reverse transcription real-time PCR. All lambs inoculated with TBEV developed neutralizing TBEV antibodies. Our study is in accordance with previous studies, and indicates that TBEV rarely causes symptomatic disease in ruminants. All lambs inoculated with A. phagocytophilum developed fever and clinical symptoms of tick-borne fever, and A. phagocytophilum was present in the blood samples of all infected lambs, shown by qPCR. Significantly higher mean TBEV titer was detected in the group co-infected with TBEV and A. phagocytophilum, compared to the groups pre- or post-infected with A. phagocytophilum. These results indicate that co-infection with TBEV and A. phagocytophilum in sheep stimulates an increased TBEV antibody response.


Assuntos
Anaplasmose/patologia , Coinfecção/patologia , Encefalite Transmitida por Carrapatos/patologia , Doenças dos Ovinos/patologia , Anaplasma phagocytophilum/patogenicidade , Anaplasmose/complicações , Anaplasmose/microbiologia , Anaplasmose/virologia , Animais , Coinfecção/microbiologia , Coinfecção/virologia , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Encefalite Transmitida por Carrapatos/complicações , Encefalite Transmitida por Carrapatos/microbiologia , Encefalite Transmitida por Carrapatos/virologia , Feminino , Masculino , Ovinos , Doenças dos Ovinos/microbiologia , Doenças dos Ovinos/virologia
15.
Klin Lab Diagn ; 64(11): 686-689, 2019.
Artigo em Russo | MEDLINE | ID: mdl-31747499

RESUMO

Based on experimental studies with 10-fold dilutions of two the strains TBEV of the Far Eastern subtype, different in moleculargenetic characteristic complex data of simultaneously taking into account three indicators of their verification (virus titer, ELISA and PCR-RT) were obtained. The efficiency of detecting a genetic marker in PCR compared with ELISA for a weakly pathogenic strain with defects in the genetic structure was higher by a factor of 10, and for a highly pathogenic strain by a factor of 5,000. At the same time, positive results in both reactions with respect to two strains were detected with a virus titer of not less than 1-1.5 log TCID50, i.e. this level of virus in the sample is defined as epidemically significant. An algorithm for conducting research on the verification of TBEV is proposed: 1) Ticks collected from vegetation can be examined by ELISA or by PCR. All positive results can be summarized and considered viral ticks; 2) All samples with positive results only in PCR or ELISA must be investigated in two reactions in order to obtain confirmation of the possible infectivity of the pathogen; 3) To obtain a fast complex result of infection of the removed ticks from patients or blood after a tick bite, studies should be carried out simultaneously in two reactions simultaneously in ELISA and PCR; 4) Isolation virus should be carried out in biological samples (ticks collected from vegetation, ticks removed from patients, the blood of patients with suspected TBE, mammals) only with the same results in PCR and ELISA. Thus, such an approach to verifying TBEV in a tick or in the blood of patients will improve the reliability of laboratory diagnostics, identifying not only markers of TBEV, but also determining the infectivity of the pathogen, which may be the basis for the appointment of early intensive antiviral therapy.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/diagnóstico , Ixodes/virologia , Animais , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Ensaio de Imunoadsorção Enzimática , Humanos , RNA Viral , Reprodutibilidade dos Testes
16.
Indian J Med Res ; 150(2): 186-193, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31670274

RESUMO

Background & objectives: Kyasanur forest disease (KFD) is an infectious disease discovered in Karnataka State of India in 1957; since then, the State has been known to be enzootic for KFD. In the last few years, its presence was observed in the adjoining five States of the Western Ghats of India. The present study was conducted to understand the kinetics of viral RNA, immunoglobulin M (IgM) and IgG antibody in KFD-infected humans for developing a diagnostic algorithm for KFD. Methods: A prospective follow up study was performed among KFD patients in Sindhudurg district of Maharashtra State, India. A total of 1046 suspected patients were tested, and 72 KFD patients were enrolled and followed for 17 months (January 2016 to May 2017). Serum samples of KFD patients were screened for viral RNA, and IgM and IgG antibodies. Results: KFD viral positivity was observed from 1st to 18th post-onset day (POD). Positivity of anti-KFD virus (KFDV) IgM antibodies was detected from 4th till 122nd POD and anti-KFDV IgG antibodies detected from 5th till 474th POD. A prediction probability was determined from statistical analysis using the generalized additive model in R-software to support the laboratory findings regarding viral kinetics. Interpretation & conclusions: This study demonstrated the presence of KFD viral RNA till 18th POD, IgM antibodies till 122nd POD and IgG till the last sample collected. Based on our study an algorithm was recommended for accurate laboratory diagnosis of KFDV infection. A sample collected between 1 and 3 POD can be tested using KFDV real-time reverse transcriptase polymerase chain reaction (RT-PCR); between 4 and 24 POD, the combination of real-time RT-PCR and anti-KFDV IgM enzyme-linked immunosorbent assay (ELISA) tests can be used; between POD 25 and 132, anti-KFDV IgM and IgG ELISA are recommended.


Assuntos
Anticorpos Antivirais/sangue , Ensaio de Imunoadsorção Enzimática , Doença da Floresta de Kyasanur/sangue , RNA Viral/química , Anticorpos/sangue , Anticorpos Antivirais/química , Surtos de Doenças , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Feminino , Humanos , Imunoglobulina G/química , Imunoglobulina G/genética , Imunoglobulina M/química , Imunoglobulina M/genética , Cinética , Doença da Floresta de Kyasanur/genética , Doença da Floresta de Kyasanur/virologia , Masculino , RNA Viral/genética
17.
Bull Exp Biol Med ; 167(4): 482-485, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31493254

RESUMO

We studied the effect of sulfated glycosaminoglycan on the infection properties of high-virulence Dal'negorsk strain and low-virulence Primorye-437 of tick-borne encephalitis virus. Differences in reproductive activity of these strains and their tropism to the target cells were revealed. Glycosaminoglycan reduced pathogenetic activity of high-virulence strain in vitro, but had no effect on low-virulence strain. The interaction of imperfect virus particles of non-pathogen strain with the glycosaminoglycan led to their accumulation in cell, but in the culture medium of SPEV cells infected with experimental and control samples, accumulation of virus particles did not differ. The results on activity of glycosaminoglycan binding with strains differing by their biological and molecular genetic characteristics can be used to assess their pathogenic potential.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Glicosaminoglicanos/farmacologia , Animais , Linhagem Celular , Suínos , Vírion/efeitos dos fármacos , Virulência
18.
Sci Rep ; 9(1): 12066, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427609

RESUMO

Humic substances (HS) are complex natural mixtures comprising a large variety of compounds produced during decomposition of decaying biomass. The molecular composition of HS is extremely diverse as it was demonstrated with the use of high resolution mass spectrometry. The building blocks of HS are mostly represented by plant-derived biomolecules (lignins, lipids, tannins, carbohydrates, etc.). As a result, HS show a wide spectrum of biological activity. Despite that, HS remain a 'biological activity black-box' due to unknown structures of constituents responsible for the interaction with molecular targets. In this study, we investigated the antiviral activity of eight HS fractions isolated from peat and coal, as well as of two synthetic humic-like materials. We determined molecular compositions of the corresponding samples using ultra-high resolution Fourier-transform ion cyclotron resonance mass-spectrometry (FTICR MS). Inhibitory activity of HS was studied with respect to reproduction of tick-borne encephalitis virus (TBEV), which is a representative of Flavivirus genus, and to a panel of enteroviruses (EVs). The samples of natural HS inhibited TBEV reproduction already at a concentration of 1 µg/mL, but they did not inhibit reproduction of EVs. We found that the total relative intensity of FTICR MS formulae within elemental composition range commonly attributed to flavonoid-like structures is correlating with the activity of the samples. In order to surmise on possible active structural components of HS, we mined formulae within FTICR MS assignments in the ChEMBL database. Out of 6502 formulae within FTICR MS assignments, 3852 were found in ChEMBL. There were more than 71 thousand compounds related to these formulae in ChEMBL. To support chemical relevance of these compounds to natural HS we applied the previously developed approach of selective isotopic exchange coupled to FTICR MS to obtain structural information on the individual components of HS. This enabled to propose compounds from ChEMBL, which corroborated the labeling data. The obtained results provide the first insight onto the possible structures, which comprise antiviral components of HS and, respectively, can be used for further disclosure of antiviral activity mechanism of HS.


Assuntos
Antivirais/química , Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Substâncias Húmicas/análise , Solo/química , Antivirais/análise , Antivirais/farmacologia , Biomassa , Carvão Mineral , Mineração de Dados , Bases de Dados de Compostos Químicos , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Humanos , Reprodução/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Crit Rev Microbiol ; 45(4): 472-493, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31267816

RESUMO

Tick-borne encephalitis virus (TBEV) is a zoonotic agent causing severe encephalitis. The transmission cycle involves the virus, the Ixodes tick vector, and a vertebrate reservoir, such as small mammals (rodents, or shrews). Humans are accidentally involved in this transmission cycle. Tick-borne encephalitis (TBE) has been a growing public health problem in Europe and Asia over the past 30 years. The mechanisms involved in the development of TBE are very complex and likely multifactorial, involving both host and viral factors. The purpose of this review is to provide an overview of the current literature on TBE neuropathogenesis in the human host and to demonstrate the emergence of common themes in the molecular pathogenesis of TBE in humans. We discuss and review data on experimental study models and on both viral (molecular genetics of TBEV) and host (immune response, and genetic background) factors involved in TBE neuropathogenesis in the context of human infection.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Encefalite Transmitida por Carrapatos/patologia , Encefalite Transmitida por Carrapatos/virologia , Interações Hospedeiro-Patógeno , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Animais , Modelos Animais de Doenças , Humanos
20.
FASEB J ; 33(10): 10607-10617, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31336050

RESUMO

PDZ proteins are highly conserved through evolution; the principal function of this large family of proteins is to assemble protein complexes that are involved in many cellular processes, such as cell-cell junctions, cell polarity, recycling, or trafficking. Many PDZ proteins that have been identified as targets of viral pathogens by promoting viral replication and spread are also involved in epithelial cell polarity. Here, we briefly review the PDZ polarity proteins in cells of the immune system to subsequently focus on our hypothesis that the viral PDZ-dependent targeting of PDZ polarity proteins in these cells may alter the cellular fitness of the host to favor that of the virus; we further hypothesize that this modification of the cellular fitness landscape occurs as a common and widespread mechanism for immune evasion by viruses and possibly other pathogens.-Gutiérrez-González, L. H., Santos-Mendoza, T. Viral targeting of PDZ polarity proteins in the immune system as a potential evasion mechanism.


Assuntos
Polaridade Celular/imunologia , Interações entre Hospedeiro e Microrganismos/imunologia , Domínios PDZ/imunologia , Animais , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Vírus Linfotrópico T Tipo 1 Humano/imunologia , Vírus Linfotrópico T Tipo 1 Humano/patogenicidade , Humanos , Evasão da Resposta Imune , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Modelos Imunológicos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Vaccinia virus/imunologia , Vaccinia virus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...