Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.370
Filtrar
1.
PLoS One ; 19(5): e0300862, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38739614

RESUMO

Influenza A viruses of the H2 subtype represent a zoonotic and pandemic threat to humans due to a lack of widespread specific immunity. Although A(H2) viruses that circulate in wild bird reservoirs are distinct from the 1957 pandemic A(H2N2) viruses, there is concern that they could impact animal and public health. There is limited information on AIVs in Latin America, and next to nothing about H2 subtypes in Brazil. In the present study, we report the occurrence and genomic sequences of two influenza A viruses isolated from wild-caught white-rumped sandpipers (Calidris fuscicollis). One virus, identified as A(H2N1), was isolated from a bird captured in Restinga de Jurubatiba National Park (PNRJ, Rio de Janeiro), while the other, identified as A(H2N2), was isolated from a bird captured in Lagoa do Peixe National Park (PNLP, Rio Grande do Sul). DNA sequencing and phylogenetic analysis of the obtained sequences revealed that each virus belonged to distinct subtypes. Furthermore, the phylogenetic analysis indicated that the genomic sequence of the A(H2N1) virus isolated from PNRJ was most closely related to other A(H2N1) viruses isolated from North American birds. On the other hand, the A(H2N2) virus genome recovered from the PNLP-captured bird exhibited a more diverse origin, with some sequences closely related to viruses from Iceland and North America, and others showing similarity to virus sequences recovered from birds in South America. Viral genes of diverse origins were identified in one of the viruses, indicating local reassortment. This suggests that the extreme South of Brazil may serve as an environment conducive to reassortment between avian influenza virus lineages from North and South America, potentially contributing to an increase in overall viral diversity.


Assuntos
Charadriiformes , Vírus da Influenza A , Influenza Aviária , Filogenia , Vírus Reordenados , Animais , Brasil , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Vírus Reordenados/genética , Vírus Reordenados/isolamento & purificação , Charadriiformes/virologia , Genoma Viral , Aves/virologia
2.
Sci Data ; 11(1): 510, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760422

RESUMO

Data from influenza A virus (IAV) infected ferrets provides invaluable information towards the study of novel and emerging viruses that pose a threat to human health. This gold standard model can recapitulate many clinical signs of infection present in IAV-infected humans, support virus replication of human, avian, swine, and other zoonotic strains without prior adaptation, and permit evaluation of virus transmissibility by multiple modes. While ferrets have been employed in risk assessment settings for >20 years, results from this work are typically reported in discrete stand-alone publications, making aggregation of raw data from this work over time nearly impossible. Here, we describe a dataset of 728 ferrets inoculated with 126 unique IAV, conducted by a single research group under a uniform experimental protocol. This collection of morbidity, mortality, and viral titer data represents the largest publicly available dataset to date of in vivo-generated IAV infection outcomes on a per-ferret level.


Assuntos
Furões , Vírus da Influenza A , Infecções por Orthomyxoviridae , Animais , Infecções por Orthomyxoviridae/virologia , Modelos Animais de Doenças , Humanos , Carga Viral
3.
Hum Genomics ; 18(1): 48, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769549

RESUMO

BACKGROUND: After the occurrence of the COVID-19 pandemic, detection of other disseminated respiratory viruses using highly sensitive molecular methods was declared essential for monitoring the spread of health-threatening viruses in communities. The development of multiplex molecular assays are essential for the simultaneous detection of such viruses even at low concentrations. In the present study, a highly sensitive and specific multiplex one-step droplet digital PCR (RT-ddPCR) assay was developed for the simultaneous detection and absolute quantification of influenza A (IAV), influenza B (IBV), respiratory syncytial virus (RSV), and beta-2-microglobulin transcript as an endogenous internal control (IC B2M). RESULTS: The assay was first evaluated for analytical sensitivity and specificity, linearity, reproducibility, and recovery rates with excellent performance characteristics and then applied to 37 wastewater samples previously evaluated with commercially available and in-house quantitative real-time reverse transcription PCR (RT-qPCR) assays. IAV was detected in 16/37 (43%), IBV in 19/37 (51%), and RSV in 10/37 (27%) of the wastewater samples. Direct comparison of the developed assay with real-time RT-qPCR assays showed statistically significant high agreement in the detection of IAV (kappa Cohen's correlation coefficient: 0.834, p = 0.001) and RSV (kappa: 0.773, p = 0.001) viruses between the two assays, while the results for the detection of IBV (kappa: 0.355, p = 0.27) showed good agreement without statistical significance. CONCLUSIONS: Overall, the developed one-step multiplex ddPCR assay is cost-effective, highly sensitive and specific, and can simultaneously detect three common respiratory viruses in the complex matrix of wastewater samples even at low concentrations. Due to its high sensitivity and resistance to PCR inhibitors, the developed assay could be further used as an early warning system for wastewater monitoring.


Assuntos
Vírus da Influenza A , Vírus da Influenza B , Reação em Cadeia da Polimerase Multiplex , Águas Residuárias , Águas Residuárias/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Humanos , Vírus da Influenza B/genética , Vírus da Influenza B/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/métodos , Sensibilidade e Especificidade , Vírus Sinciciais Respiratórios/genética , Vírus Sinciciais Respiratórios/isolamento & purificação , Reprodutibilidade dos Testes , Influenza Humana/diagnóstico , Influenza Humana/virologia , Influenza Humana/genética , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real/métodos , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação
4.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732151

RESUMO

The influenza A virus nonstructural protein 1 (NS1), which is crucial for viral replication and immune evasion, has been identified as a significant drug target with substantial potential to contribute to the fight against influenza. The emergence of drug-resistant influenza A virus strains highlights the urgent need for novel therapeutics. This study proposes a combined theoretical criterion for the virtual screening of molecular libraries to identify candidate NS1 inhibitors. By applying the criterion to the ZINC Natural Product database, followed by ligand-based virtual screening and molecular docking, we proposed the most promising candidate as a potential NS1 inhibitor. Subsequently, the selected natural compound was experimentally evaluated, revealing measurable virus replication inhibition activity in cell culture. This approach offers a promising avenue for developing novel anti-influenza agents targeting the NS1 protein.


Assuntos
Antivirais , Produtos Biológicos , Simulação de Acoplamento Molecular , Proteínas não Estruturais Virais , Replicação Viral , Antivirais/farmacologia , Antivirais/química , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Vírus da Influenza A/efeitos dos fármacos , Animais , Células Madin Darby de Rim Canino , Cães
5.
Mol Biol Rep ; 51(1): 642, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727866

RESUMO

BACKGROUND: The mitochondrial carrier homolog 2 (MTCH2) is a mitochondrial outer membrane protein regulating mitochondrial metabolism and functions in lipid homeostasis and apoptosis. Experimental data on the interaction of MTCH2 with viral proteins in virus-infected cells are very limited. Here, the interaction of MTCH2 with PA subunit of influenza A virus RdRp and its effects on viral replication was investigated. METHODS: The human MTCH2 protein was identified as the influenza A virus PA-related cellular factor with the Y2H assay. The interaction between GST.MTCH2 and PA protein co-expressed in transfected HEK293 cells was evaluated by GST-pull down. The effect of MTCH2 on virus replication was determined by quantification of viral transcript and/or viral proteins in the cells transfected with MTCH2-encoding plasmid or MTCH2-siRNA. An interaction model of MTCH2 and PA was predicted with protein modeling/docking algorithms. RESULTS: It was observed that PA and GST.MTCH2 proteins expressed in HEK293 cells were co-precipitated by glutathione-agarose beads. The influenza A virus replication was stimulated in HeLa cells whose MTCH2 expression was suppressed with specific siRNA, whereas the increase of MTCH2 in transiently transfected HEK293 cells inhibited viral RdRp activity. The results of a Y2H assay and protein-protein docking analysis suggested that the amino terminal part of the viral PA (nPA) can bind to the cytoplasmic domain comprising amino acid residues 253 to 282 of the MTCH2. CONCLUSION: It is suggested that the host mitochondrial MTCH2 protein is probably involved in the interaction with the viral polymerase protein PA to cause negative regulatory effect on influenza A virus replication in infected cells.


Assuntos
Vírus da Influenza A , Replicação Viral , Humanos , Replicação Viral/genética , Células HEK293 , Vírus da Influenza A/fisiologia , Vírus da Influenza A/genética , Células HeLa , Regulação para Baixo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Ligação Proteica , Mitocôndrias/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , RNA Polimerase Dependente de RNA/genética
6.
Biochem Biophys Res Commun ; 715: 149994, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38692139

RESUMO

Many virus lysis/transport buffers used in molecular diagnostics, including the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, contain guanidine-based chaotropic salts, primarily guanidine hydrochloride (GuHCl) or guanidine isothiocyanate (GITC). Although the virucidal effects of GuHCl and GITC alone against some enveloped viruses have been established, standardized data on their optimum virucidal concentrations against SARS-CoV-2 and effects on viral RNA stability are scarce. Thus, we aimed to determine the optimum virucidal concentrations of GuHCl and GITC against SARS-CoV-2 compared to influenza A virus (IAV), another enveloped respiratory virus. We also evaluated the effectiveness of viral RNA stabilization at the determined optimum virucidal concentrations under high-temperature conditions (35°C) using virus-specific real-time reverse transcription polymerase chain reaction. Both viruses were potently inactivated by 1.0 M GITC and 2.5 M GuHCl, but the GuHCl concentration for efficient SARS-CoV-2 inactivation was slightly higher than that for IAV inactivation. GITC showed better viral RNA stability than GuHCl at the optimum virucidal concentrations. An increased concentration of GuHCl or GITC increased viral RNA degradation at 35°C. Our findings highlight the need to standardize GuHCl and GITC concentrations in virus lysis/transport buffers and the potential application of these guanidine-based salts alone as virus inactivation solutions in SARS-CoV-2 and IAV molecular diagnostics.


Assuntos
Guanidina , Vírus da Influenza A , RNA Viral , SARS-CoV-2 , Manejo de Espécimes , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Guanidina/farmacologia , Guanidina/química , RNA Viral/genética , Humanos , Manejo de Espécimes/métodos , Genoma Viral , COVID-19/virologia , COVID-19/diagnóstico , Chlorocebus aethiops , Células Vero , Inativação de Vírus/efeitos dos fármacos , Animais , Estabilidade de RNA/efeitos dos fármacos , Contenção de Riscos Biológicos , Guanidinas/farmacologia , Guanidinas/química , Sais/farmacologia , Sais/química
7.
BMC Vet Res ; 20(1): 216, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773480

RESUMO

BACKGROUND: In this study, we investigated the prevalence of respiratory viruses in four Hybrid Converter Turkey (Meleagris gallopavo) farms in Egypt. The infected birds displayed severe respiratory signs, accompanied by high mortality rates, suggesting viral infections. Five representative samples from each farm were pooled and tested for H5 & H9 subtypes of avian influenza viruses (AIVs), Avian Orthoavulavirus-1 (AOAV-1), and turkey rhinotracheitis (TRT) using real-time RT-PCR and conventional RT-PCR. Representative tissue samples from positive cases were subjected to histopathology and immunohistochemistry (IHC). RESULTS: The PCR techniques confirmed the presence of AOAV-1 and H5 AIV genes, while none of the tested samples were positive for H9 or TRT. Microscopic examination of tissue samples revealed congestion and hemorrhage in the lungs, liver, and intestines with leukocytic infiltration. IHC revealed viral antigens in the lungs, liver, and intestines. Phylogenetic analysis revealed that H5 HA belonged to 2.3.4.4b H5 sublineage and AOAV-1 belonged to VII 1.1 genotype. CONCLUSIONS: The study highlights the need for proper monitoring of hybrid converter breeds for viral diseases, and the importance of vaccination programs to prevent unnecessary losses. To our knowledge, this is the first study that reports the isolation of AOAV-1 and H5Nx viruses from Hybrid Converter Turkeys in Egypt.


Assuntos
Influenza Aviária , Filogenia , Doenças das Aves Domésticas , Animais , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/patologia , Influenza Aviária/virologia , Influenza Aviária/patologia , Influenza Aviária/epidemiologia , Egito/epidemiologia , Perus/virologia , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/genética , Vírus da Influenza A/classificação
8.
Proc Natl Acad Sci U S A ; 121(22): e2310677121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38753503

RESUMO

Seasonal and pandemic-associated influenza strains cause highly contagious viral respiratory infections that can lead to severe illness and excess mortality. Here, we report on the optimization of our small-molecule inhibitor F0045(S) targeting the influenza hemagglutinin (HA) stem with our Sulfur-Fluoride Exchange (SuFEx) click chemistry-based high-throughput medicinal chemistry (HTMC) strategy. A combination of SuFEx- and amide-based lead molecule diversification and structure-guided design led to identification and validation of ultrapotent influenza fusion inhibitors with subnanomolar EC50 cellular antiviral activity against several influenza A group 1 strains. X-ray structures of six of these compounds with HA indicate that the appended moieties occupy additional pockets on the HA surface and increase the binding interaction, where the accumulation of several polar interactions also contributes to the improved affinity. The compounds here represent the most potent HA small-molecule inhibitors to date. Our divergent HTMC platform is therefore a powerful, rapid, and cost-effective approach to develop bioactive chemical probes and drug-like candidates against viral targets.


Assuntos
Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Antivirais/farmacologia , Antivirais/química , Química Farmacêutica/métodos , Ensaios de Triagem em Larga Escala/métodos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Cristalografia por Raios X/métodos , Química Click/métodos , Animais , Vírus da Influenza A/efeitos dos fármacos , Células Madin Darby de Rim Canino , Inibidores de Proteínas Virais de Fusão/farmacologia , Inibidores de Proteínas Virais de Fusão/química , Cães
9.
J Infect ; 88(6): 106164, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692359

RESUMO

OBJECTIVES: We evaluated Nanopore sequencing for influenza surveillance. METHODS: Influenza A and B PCR-positive samples from hospital patients in Oxfordshire, UK, and a UK-wide population survey from winter 2022-23 underwent Nanopore sequencing following targeted rt-PCR amplification. RESULTS: From 941 infections, successful sequencing was achieved in 292/388 (75 %) available Oxfordshire samples: 231 (79 %) A/H3N2, 53 (18 %) A/H1N1, and 8 (3 %) B/Victoria and in 53/113 (47 %) UK-wide samples. Sequencing was more successful at lower Ct values. Most same-sample replicate sequences had identical haemagglutinin segments (124/141, 88 %); 36/39 (92 %) Illumina vs. Nanopore comparisons were identical, and 3 (8 %) differed by 1 variant. Comparison of Oxfordshire and UK-wide sequences showed frequent inter-regional transmission. Infections were closely-related to 2022-23 vaccine strains. Only one sample had a neuraminidase inhibitor resistance mutation. 849/941 (90 %) Oxfordshire infections were community-acquired. 63/88 (72 %) potentially healthcare-associated cases shared a hospital ward with ≥ 1 known infectious case. 33 epidemiologically-plausible transmission links had sequencing data for both source and recipient: 8 were within ≤ 5 SNPs, of these, 5 (63 %) involved potential sources that were also hospital-acquired. CONCLUSIONS: Nanopore influenza sequencing was reproducible and antiviral resistance rare. Inter-regional transmission was common; most infections were genomically similar. Hospital-acquired infections are likely an important source of nosocomial transmission and should be prioritised for infection prevention and control.


Assuntos
Vírus da Influenza B , Influenza Humana , Sequenciamento por Nanoporos , Humanos , Influenza Humana/epidemiologia , Influenza Humana/virologia , Reino Unido/epidemiologia , Sequenciamento por Nanoporos/métodos , Vírus da Influenza B/genética , Vírus da Influenza B/isolamento & purificação , Vírus da Influenza B/classificação , Feminino , Masculino , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Adulto , Pessoa de Meia-Idade , Adolescente , Idoso , Adulto Jovem , Criança , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/classificação
10.
Rev Med Virol ; 34(3): e2542, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38747622

RESUMO

Influenza in dogs holds considerable public health significance due to their close companionship with humans, yet several facets of this phenomenon remain largely unexplored. This study undertook a systematic review and meta-analysis of observational studies to gauge the global seroprevalence of influenza in dogs. We also assessed whether pet dogs exhibited a higher seroprevalence of influenza compared to non-pet dogs, explored seasonal variations in seroprevalence, scrutinised the design and reporting standards of existing studies, and elucidated the geographical distribution of canine influenza virus (cIV). A comprehensive analysis of 97 studies spanning 27 countries revealed that seroprevalence of various influenza strains in dogs consistently registered below 10% and exhibited relative stability over the past decade. Significantly, we noted that seroprevalence of human influenza virus was notably higher in pet dogs compared to their non-pet counterparts, whereas seroprevalence of other influenza strains remained relatively uniform among both categories of dogs. Seasonal variations in seroprevalence of cIV were not observed. In summary, our findings indicated the global circulation of cIV strains H3N2 and H3N8, with other strains primarily confined to China. Given the lack of reported cases of the transmission of cIV from dogs to humans, our findings suggest a higher risk of reverse zoonosis than zoonosis. Finally, we strongly advocate for standardised reporting guidelines to underpin future canine influenza research endeavours.


Assuntos
Doenças do Cão , Infecções por Orthomyxoviridae , Animais , Cães , Humanos , Doenças do Cão/epidemiologia , Doenças do Cão/virologia , Saúde Global , Vírus da Influenza A/imunologia , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/imunologia , Prevalência , Estações do Ano , Estudos Soroepidemiológicos
11.
J Gen Virol ; 105(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695722

RESUMO

High-pathogenicity avian influenza viruses (HPAIVs) of the goose/Guangdong lineage are enzootically circulating in wild bird populations worldwide. This increases the risk of entry into poultry production and spill-over to mammalian species, including humans. Better understanding of the ecological and epizootiological networks of these viruses is essential to optimize mitigation measures. Based on full genome sequences of 26 HPAIV samples from Iceland, which were collected between spring and autumn 2022, as well as 1 sample from the 2023 summer period, we show that 3 different genotypes of HPAIV H5N1 clade 2.3.4.4b were circulating within the wild bird population in Iceland in 2022. Furthermore, in 2023 we observed a novel introduction of HPAIV H5N5 of the same clade to Iceland. The data support the role of Iceland as an utmost northwestern distribution area in Europe that might act also as a potential bridging point for intercontinental spread of HPAIV across the North Atlantic.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Filogenia , Islândia/epidemiologia , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Genótipo , Animais Selvagens/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Genoma Viral , Aves/virologia
12.
Respir Res ; 25(1): 193, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702733

RESUMO

BACKGROUND: Influenza A virus (IAV) infection is a significant risk factor for respiratory diseases, but the host defense mechanisms against IAV remain to be defined. Immune regulators such as surfactant protein A (SP-A) and Toll-interacting protein (Tollip) have been shown to be involved in IAV infection, but whether SP-A and Tollip cooperate in more effective host defense against IAV infection has not been investigated. METHODS: Wild-type (WT), Tollip knockout (KO), SP-A KO, and Tollip/SP-A double KO (dKO) mice were infected with IAV for four days. Lung macrophages were isolated for bulk RNA sequencing. Precision-cut lung slices (PCLS) from WT and dKO mice were pre-treated with SP-A and then infected with IAV for 48 h. RESULTS: Viral load was significantly increased in bronchoalveolar lavage (BAL) fluid of dKO mice compared to all other strains of mice. dKO mice had significantly less recruitment of neutrophils into the lung compared to Tollip KO mice. SP-A treatment of PCLS enhanced expression of TNF and reduced viral load in dKO mouse lung tissue. Pathway analysis of bulk RNA sequencing data suggests that macrophages from IAV-infected dKO mice reduced expression of genes involved in neutrophil recruitment, IL-17 signaling, and Toll-like receptor signaling. CONCLUSIONS: Our data suggests that both Tollip and SP-A are essential for the lung to exert more effective innate defense against IAV infection.


Assuntos
Vírus da Influenza A , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae , Proteína A Associada a Surfactante Pulmonar , Animais , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína A Associada a Surfactante Pulmonar/genética , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/metabolismo , Vírus da Influenza A/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/virologia
13.
BMC Vet Res ; 20(1): 203, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755641

RESUMO

BACKGROUND: Avian influenza virus (AIV) not only causes huge economic losses to the poultry industry, but also threatens human health. Reverse transcription recombinase-aided amplification (RT-RAA) is a novel isothermal nucleic acid amplification technology. This study aimed to improve the detection efficiency of H5, H7, and H9 subtypes of AIV and detect the disease in time. This study established RT-RAA-LFD and real-time fluorescence RT-RAA (RF-RT-RAA) detection methods, which combined RT-RAA with lateral flow dipstick (LFD) and exo probe respectively, while primers and probes were designed based on the reaction principle of RT-RAA. RESULTS: The results showed that RT-RAA-LFD could specifically amplify H5, H7, and H9 subtypes of AIV at 37 °C, 18 min, 39 °C, 20 min, and 38 °C, 18 min, respectively. The sensitivity of all three subtypes for RT-RAA-LFD was 102 copies/µL, which was 10 ∼100 times higher than that of reverse transcription polymerase chain reaction (RT-PCR) agarose electrophoresis method. RF-RT-RAA could specifically amplify H5, H7, and H9 subtypes of AIV at 40 °C, 20 min, 38 °C, 16 min, and 39 °C, 17 min, respectively. The sensitivity of all three subtypes for RF-RT-RAA was 101 copies/µL, which was consistent with the results of real-time fluorescence quantification RT-PCR, and 100 ∼1000 times higher than that of RT-PCR-agarose electrophoresis method. The total coincidence rate of the two methods and RT-PCR-agarose electrophoresis in the detection of clinical samples was higher than 95%. CONCLUSIONS: RT-RAA-LFD and RF-RT-RAA were successfully established in this experiment, with quick response, simple operation, strong specificity, high sensitivity, good repeatability, and stability. They are suitable for the early and rapid diagnosis of Avian influenza and they have positive significance for the prevention, control of the disease, and public health safety.


Assuntos
Galinhas , Vírus da Influenza A , Influenza Aviária , Técnicas de Amplificação de Ácido Nucleico , Recombinases , Transcrição Reversa , Animais , Influenza Aviária/virologia , Influenza Aviária/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/veterinária , Técnicas de Amplificação de Ácido Nucleico/métodos , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Recombinases/metabolismo , Sensibilidade e Especificidade , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/diagnóstico
14.
Front Immunol ; 15: 1352022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698856

RESUMO

The complement system is an innate immune mechanism against microbial infections. It involves a cascade of effector molecules that is activated via classical, lectin and alternative pathways. Consequently, many pathogens bind to or incorporate in their structures host negative regulators of the complement pathways as an evasion mechanism. Factor H (FH) is a negative regulator of the complement alternative pathway that protects "self" cells of the host from non-specific complement attack. FH has been shown to bind viruses including human influenza A viruses (IAVs). In addition to its involvement in the regulation of complement activation, FH has also been shown to perform a range of functions on its own including its direct interaction with pathogens. Here, we show that human FH can bind directly to IAVs of both human and avian origin, and the interaction is mediated via the IAV surface glycoprotein haemagglutinin (HA). HA bound to common pathogen binding footprints on the FH structure, complement control protein modules, CCP 5-7 and CCP 15-20. The FH binding to H1 and H3 showed that the interaction overlapped with the receptor binding site of both HAs, but the footprint was more extensive for the H3 HA than the H1 HA. The HA - FH interaction impeded the initial entry of H1N1 and H3N2 IAV strains but its impact on viral multicycle replication in human lung cells was strain-specific. The H3N2 virus binding to cells was significantly inhibited by preincubation with FH, whereas there was no alteration in replicative rate and progeny virus release for human H1N1, or avian H9N2 and H5N3 IAV strains. We have mapped the interaction between FH and IAV, the in vivo significance of which for the virus or host is yet to be elucidated.


Assuntos
Fator H do Complemento , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A , Influenza Humana , Ligação Proteica , Humanos , Fator H do Complemento/metabolismo , Fator H do Complemento/imunologia , Animais , Influenza Humana/imunologia , Influenza Humana/virologia , Influenza Humana/metabolismo , Vírus da Influenza A/imunologia , Vírus da Influenza A/fisiologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Sítios de Ligação , Influenza Aviária/virologia , Influenza Aviária/imunologia , Influenza Aviária/metabolismo , Aves/virologia , Interações Hospedeiro-Patógeno/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H9N2/imunologia
15.
Virology ; 595: 110094, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692133

RESUMO

Stress-induced immunosuppression (SIIS) is one of common problems in the intensive poultry industry, affecting the effect of vaccine immunization and leading to high incidences of diseases. In this study, the expression characteristics and regulatory mechanisms of miR-214 in the processes of SIIS and its influence on the immune response to avian influenza virus (AIV) vaccine in chicken were explored. The qRT-PCR results showed that serum circulating miR-214 was significantly differentially expressed (especially on 2, 5, and 28 days post immunization (dpi)) in the processes, so had the potential as a molecular marker. MiR-214 expressions from multiple tissues were closely associated with the changes in circulating miR-214 expression levels. MiR-214-PTEN regulatory network was a potential key regulatory mechanism for the heart, bursa of Fabricius, and glandular stomach to participate in the process of SIIS affecting AIV immune response. This study can provide references for further understanding of stress affecting immune response.


Assuntos
Galinhas , Vacinas contra Influenza , Influenza Aviária , MicroRNAs , PTEN Fosfo-Hidrolase , Estresse Fisiológico , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Galinhas/virologia , Vacinas contra Influenza/imunologia , Influenza Aviária/virologia , Influenza Aviária/imunologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Tolerância Imunológica , Transdução de Sinais , Vírus da Influenza A/imunologia
16.
J Med Virol ; 96(5): e29678, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38751128

RESUMO

Death due to severe influenza is usually a fatal complication of a dysregulated immune response more than the acute virulence of an infectious agent. Although spleen tyrosine kinase (SYK) as a critical immune signaling molecule and therapeutic target plays roles in airway inflammation and acute lung injury, the role of SYK in influenza virus infection is not clear. Here, we investigated the antiviral and anti-inflammatory effects of SYK inhibitor R406 on influenza infection through a coculture model of human alveolar epithelial (A549) and macrophage (THP-1) cell lines and mouse model. The results showed that R406 treatment increased the viability of A549 and decreased the pathogenicity and mortality of lethal influenza virus in mice with influenza A infection, decreased levels of intracellular signaling molecules under the condition of inflammation during influenza virus infection. Combination therapy with oseltamivir further ameliorated histopathological damage in the lungs of mice and further delayed the initial time to death compared with R406 treatment alone. This study demonstrated that phosphorylation of SYK is involved in the pathogenesis of influenza, and R406 has antiviral and anti-inflammatory effects on the treatment of the disease, which may be realized through multiple pathways, including the already reported SYK/STAT/IFNs-mediated antiviral pathway, as well as TNF-α/SYK- and SYK/Akt-based immunomodulation pathway.


Assuntos
Anti-Inflamatórios , Antivirais , Modelos Animais de Doenças , Infecções por Orthomyxoviridae , Oxazinas , Quinase Syk , Animais , Humanos , Quinase Syk/antagonistas & inibidores , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/imunologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Oxazinas/farmacologia , Oxazinas/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Pulmão/patologia , Pulmão/virologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Células A549 , Vírus da Influenza A/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Influenza Humana/tratamento farmacológico , Influenza Humana/imunologia , Células THP-1 , Feminino , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
17.
Front Cell Infect Microbiol ; 14: 1363407, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590437

RESUMO

Introduction: Influenza A virus (IAV) infection can cause the often-lethal acute respiratory distress syndrome (ARDS) of the lung. Concomitantly, acute kidney injury (AKI) is frequently noticed during IAV infection, correlating with an increased mortality. The aim of this study was to elucidate the interaction of IAV with human kidney cells and, thereby, to assess the mechanisms underlying IAV-mediated AKI. Methods: To investigate IAV effects on nephron cells we performed infectivity assays with human IAV, as well as with human isolates of either low or highly pathogenic avian IAV. Also, transcriptome and proteome analysis of IAV-infected primary human distal tubular kidney cells (DTC) was performed. Furthermore, the DTC transcriptome was compared to existing transcriptomic data from IAV-infected lung and trachea cells. Results: We demonstrate productive replication of all tested IAV strains on primary and immortalized nephron cells. Comparison of our transcriptome and proteome analysis of H1N1-type IAV-infected human primary distal tubular cells (DTC) with existing data from H1N1-type IAV-infected lung and primary trachea cells revealed enrichment of specific factors responsible for regulated cell death in primary DTC, which could be targeted by specific inhibitors. Discussion: IAV not only infects, but also productively replicates on different human nephron cells. Importantly, multi-omics analysis revealed regulated cell death as potential contributing factor for the clinically observed kidney pathology in influenza.


Assuntos
Injúria Renal Aguda , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Morte Celular Regulada , Humanos , Proteoma/metabolismo , Vírus da Influenza A Subtipo H3N2/fisiologia , Replicação Viral/fisiologia , Rim/patologia , Infecções por Orthomyxoviridae/patologia
18.
Sci Rep ; 14(1): 8472, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605110

RESUMO

With the lifting of COVID-19 non-pharmaceutical interventions, the resurgence of common viral respiratory infections was recorded in several countries worldwide. It facilitates viral co-infection, further burdens the already over-stretched healthcare systems. Racing to find co-infection-associated efficacy therapeutic agents need to be rapidly established. However, it has encountered numerous challenges that necessitate careful investigation. Here, we introduce a potential recombinant minibody-associated treatment, 3D8 single chain variable fragment (scFv), which has been developed as a broad-spectrum antiviral drug that acts via its nucleic acid catalytic and cell penetration abilities. In this research, we demonstrated that 3D8 scFv exerted antiviral activity simultaneously against both influenza A viruses (IAVs) and coronaviruses in three established co-infection models comprising two types of coronaviruses [beta coronavirus-human coronavirus OC43 (hCoV-OC43) and alpha coronavirus-porcine epidemic diarrhea virus (PEDV)] in Vero E6 cells, two IAVs [A/Puerto Rico/8/1934 H1N1 (H1N1/PR8) and A/X-31 (H3N2/X-31)] in MDCK cells, and a combination of coronavirus and IAV (hCoV-OC43 and adapted-H1N1) in Vero E6 cells by a statistically significant reduction in viral gene expression, proteins level, and approximately around 85%, 65%, and 80% of the progeny of 'hCoV-OC43-PEDV', 'H1N1/PR8-H3N2/X-31', and 'hCoV-OC43-adapted-H1N1', respectively, were decimated in the presence of 3D8 scFv. Taken together, we propose that 3D8 scFv is a promising broad-spectrum drug for treatment against RNA viruses in co-infection.


Assuntos
Coinfecção , Coronavirus Humano OC43 , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Anticorpos de Cadeia Única , Humanos , RNA/metabolismo , Vírus da Influenza A Subtipo H3N2 , Anticorpos de Cadeia Única/farmacologia , Anticorpos de Cadeia Única/metabolismo
19.
Biosens Bioelectron ; 256: 116262, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621340

RESUMO

Lateral flow immunoassays (LFIAs) are an essential and widely used point-of-care test for medical diagnoses. However, commercial LFIAs still have low sensitivity and specificity. Therefore, we developed an automatic ultrasensitive dual-color enhanced LFIA (DCE-LFIA) by applying an enzyme-induced tyramide signal amplification method to a double-antibody sandwich LFIA for antigen detection. The DCE-LFIA first specifically captured horseradish peroxidase (HRP)-labeled colored microspheres at the Test line, and then deposited a large amount of tyramide-modified signals under the catalytic action of HRP to achieve the color superposition. A limit of detection (LOD) of 3.9 pg/mL and a naked-eye cut-off limit of 7.8 pg/mL were achieved for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleoprotein. Additionally, in the inactivated virus detections, LOD equivalent to chemiluminescence (0.018 TCID50/mL) was obtained, and it had excellent specificity under the interference of other respiratory viruses. High sensitivity has also been achieved for detection of influenza A, influenza B, cardiac troponin I, and human chorionic gonadotrophin using this DCE-LFIA, suggesting the assay is universally applicable. To ensure the convenience and stability in practical applications, we created an automatic device. It provides a new practical option for point-of-care test immunoassays, especially ultra trace detection and at-home testing.


Assuntos
Técnicas Biossensoriais , COVID-19 , Limite de Detecção , SARS-CoV-2 , Imunoensaio/instrumentação , Imunoensaio/métodos , Humanos , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/imunologia , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , COVID-19/virologia , Peroxidase do Rábano Silvestre/química , Troponina I/sangue , Troponina I/análise , Testes Imediatos , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Proteínas do Nucleocapsídeo de Coronavírus/análise , Gonadotropina Coriônica/análise , Gonadotropina Coriônica/sangue , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/imunologia , Fosfoproteínas
20.
Eur J Med Res ; 29(1): 234, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622728

RESUMO

BACKGROUND: Influenza is an acute respiratory infection caused by influenza virus. Maxing Shigan Decoction (MXSGD) is a commonly used traditional Chinese medicine prescription for the prevention and treatment of influenza. However, its mechanism remains unclear. METHOD: The mice model of influenza A virus pneumonia was established by nasal inoculation. After 3 days of intervention, the lung index was calculated, and the pathological changes of lung tissue were detected by HE staining. Firstly, transcriptomics technology was used to analyze the differential genes and important pathways in mouse lung tissue regulated by MXSGD. Then, real-time fluorescent quantitative PCR (RT-PCR) was used to verify the changes in mRNA expression in lung tissues. Finally, intestinal microbiome and intestinal metabolomics were performed to explore the effect of MXSGD on gut microbiota. RESULTS: The lung inflammatory cell infiltration in the MXSGD group was significantly reduced (p < 0.05). The results of bioinformatics analysis for transcriptomics results show that these genes are mainly involved in inflammatory factors and inflammation-related signal pathways mediated inflammation biological modules, etc. Intestinal microbiome showed that the intestinal flora Actinobacteriota level and Desulfobacterota level increased in MXSGD group, while Planctomycetota in MXSGD group decreased. Metabolites were mainly involved in primary bile acid biosynthesis, thiamine metabolism, etc. This suggests that MXSGD has a microbial-gut-lung axis regulation effect on mice with influenza A virus pneumonia. CONCLUSION: MXSGD may play an anti-inflammatory and immunoregulatory role by regulating intestinal microbiome and intestinal metabolic small molecules, and ultimately play a role in the treatment of influenza A virus pneumonia.


Assuntos
Alphainfluenzavirus , Medicamentos de Ervas Chinesas , Vírus da Influenza A , Influenza Humana , Orthomyxoviridae , Pneumonia , Camundongos , Animais , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Influenza Humana/tratamento farmacológico , Influenza Humana/genética , Pneumonia/tratamento farmacológico , Pneumonia/genética , Inflamação , Biologia de Sistemas , Perfilação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA