Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.063
Filtrar
1.
Hum Vaccin Immunother ; 20(1): 2318814, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38961639

RESUMO

The present study aimed at investigating whether the hydroxychloroquine (HCQ) treatment would impact the neutralizing antibody production, viremia levels and the kinetics of serum soluble mediators upon planned 17DD-Yellow Fever (YF) primovaccination (Bio-Manguinhos-FIOCRUZ) of primary Sjögren's syndrome (pSS). A total of 34 pSS patients and 23 healthy controls (HC) were enrolled. The pSS group was further categorized according to the use of HCQ (HCQ and Non-HCQ). The YF-plaque reduction neutralization test (PRNT ≥1:50), YF viremia (RNAnemia) and serum biomarkers analyses were performed at baseline and subsequent time-points (Day0/Day3-4/Day5-6/Day7/Day14-D28). The pSS group showed PRNT titers and seropositivity rates similar to those observed for HC (GeoMean = 238 vs 440, p = .11; 82% vs 96%, p = .13). However, the HCQ subgroup exhibited lower seroconversion rates as compared to HC (GeoMean = 161 vs 440, p = .04; 69% vs 96%, p = .02) and Non-HQC (GeoMean = 161 vs 337, p = .582; 69% vs 94%, p = .049). No differences in YF viremia were observed amongst subgroups. Serum biomarkers analyses demonstrated that HCQ subgroup exhibited increased levels of CCL2, CXL10, IL-6, IFN-γ, IL1-Ra, IL-9, IL-10, and IL-2 at baseline and displayed a consistent increase of several biomarkers along the kinetics timeline up to D14-28. These results indicated that HCQ subgroup exhibited a deficiency in assembling YF-specific immune response elicited by 17DD-YF primovaccination as compared to Non-HCQ subgroup. Our findings suggested that hydroxychloroquine is associated with a decrease in the humoral immune response after 17DD-YF primovaccination.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Hidroxicloroquina , Soroconversão , Síndrome de Sjogren , Febre Amarela , Humanos , Hidroxicloroquina/uso terapêutico , Síndrome de Sjogren/tratamento farmacológico , Síndrome de Sjogren/imunologia , Feminino , Pessoa de Meia-Idade , Masculino , Adulto , Febre Amarela/imunologia , Febre Amarela/prevenção & controle , Anticorpos Antivirais/sangue , Anticorpos Neutralizantes/sangue , Vacina contra Febre Amarela/imunologia , Idoso , Viremia/tratamento farmacológico , Viremia/imunologia , Vírus da Febre Amarela/imunologia , Citocinas/sangue , Biomarcadores/sangue
2.
Recurso na Internet em Português | LIS | ID: lis-49605

RESUMO

Diante do recente registro de dois casos isolados de febre amarela na região da divisa de São Paulo com Minas Gerais, o Ministério da Saúde emitiu neste domingo (28) um alerta para intensificação das ações de vigilância e imunização nas áreas com transmissão ativa do vírus da febre.


Assuntos
Vigilância em Saúde Pública , Vacina contra Febre Amarela
3.
EMBO Mol Med ; 16(6): 1310-1323, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38745062

RESUMO

Vaccination has successfully controlled several infectious diseases although better vaccines remain desirable. Host response to vaccination studies have identified correlates of vaccine immunogenicity that could be useful to guide development and selection of future vaccines. However, it remains unclear whether these findings represent mere statistical correlations or reflect functional associations with vaccine immunogenicity. Functional associations, rather than statistical correlates, would offer mechanistic insights into vaccine-induced adaptive immunity. Through a human experimental study to test the immunomodulatory properties of metformin, an anti-diabetic drug, we chanced upon a functional determinant of neutralizing antibodies. Although vaccine viremia is a known correlate of antibody response, we found that in healthy volunteers with no detectable or low yellow fever 17D viremia, metformin-treated volunteers elicited higher neutralizing antibody titers than placebo-treated volunteers. Transcriptional and metabolomic analyses collectively showed that a brief course of metformin, started 3 days prior to YF17D vaccination and stopped at 3 days after vaccination, expanded oxidative phosphorylation and protein translation capacities. These increased capacities directly correlated with YF17D neutralizing antibody titers, with reduced reactive oxygen species response compared to placebo-treated volunteers. Our findings thus demonstrate a functional association between cellular respiration and vaccine-induced humoral immunity and suggest potential approaches to enhancing vaccine immunogenicity.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Metformina , Vacina contra Febre Amarela , Humanos , Vacina contra Febre Amarela/imunologia , Vacina contra Febre Amarela/administração & dosagem , Metformina/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Imunogenicidade da Vacina , Febre Amarela/prevenção & controle , Febre Amarela/imunologia , Adulto , Masculino , Feminino
4.
Sci Rep ; 14(1): 10842, 2024 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735993

RESUMO

Yellow fever outbreaks are prevalent, particularly in endemic regions. Given the lack of an established treatment for this disease, significant attention has been directed toward managing this arbovirus. In response, we developed a multiepitope vaccine designed to elicit an immune response, utilizing advanced immunoinformatic and molecular modeling techniques. To achieve this, we predicted B- and T-cell epitopes using the sequences from all structural (E, prM, and C) and nonstructural proteins of 196 YFV strains. Through comprehensive analysis, we identified 10 cytotoxic T-lymphocyte (CTL) and 5T-helper (Th) epitopes that exhibited overlap with B-lymphocyte epitopes. These epitopes were further evaluated for their affinity to a wide range of human leukocyte antigen system alleles and were rigorously tested for antigenicity, immunogenicity, allergenicity, toxicity, and conservation. These epitopes were linked to an adjuvant ( ß -defensin) and to each other using ligands, resulting in a vaccine sequence with appropriate physicochemical properties. The 3D structure of this sequence was created, improved, and quality checked; then it was anchored to the Toll-like receptor. Molecular Dynamics and Quantum Mechanics/Molecular Mechanics simulations were employed to enhance the accuracy of docking calculations, with the QM portion of the simulations carried out utilizing the density functional theory formalism. Moreover, the inoculation model was able to provide an optimal codon sequence that was inserted into the pET-28a( +) vector for in silico cloning and could even stimulate highly relevant humoral and cellular immunological responses. Overall, these results suggest that the designed multi-epitope vaccine can serve as prophylaxis against the yellow fever virus.


Assuntos
Epitopos de Linfócito T , Vacina contra Febre Amarela , Febre Amarela , Vírus da Febre Amarela , Vacina contra Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia , Vírus da Febre Amarela/genética , Humanos , Febre Amarela/prevenção & controle , Febre Amarela/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito B/imunologia , Vacinologia/métodos , Modelos Moleculares , Desenvolvimento de Vacinas , Simulação de Dinâmica Molecular , Linfócitos T Citotóxicos/imunologia
5.
PLoS Negl Trop Dis ; 18(5): e0012173, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739650

RESUMO

BACKGROUND: Yellow fever (YF), a mosquito-borne viral hemorrhagic fever, is endemic in Uganda and causes frequent outbreaks. A total of 1.6 million people were vaccinated during emergency mass immunization campaigns in 2011 and 2016. This study explored local perceptions of YF emergency mass immunization among vulnerable groups to inform future vaccination campaigns. METHODOLOGY: In this qualitative study, we conducted 43 semi-structured interviews, 4 focus group discussions, and 10 expert interviews with 76 participants. Data were collected in six affected districts with emergency mass vaccination. We included vulnerable groups (people ≥ 65 years and pregnant women) who are typically excluded from YF vaccination except during mass immunization. Data analysis was conducted using grounded theory. Inductive coding was utilized, progressing through open, axial, and selective coding. PRINCIPAL FINDINGS: Participants relied on community sources for information about the YF mass vaccination. Information was disseminated door-to-door, in community spaces, during religious gatherings, and on the radio. However, most respondents had no knowledge of the vaccine, and it was unclear to them whether a booster dose was required. In addition, the simultaneous presidential election during the mass vaccination campaign led to suspicion and resistance to vaccination. The lack of reliable and trustworthy information and the politicization of vaccination campaigns reinforced mistrust of YF vaccines. CONCLUSIONS/SIGNIFICANCE: People in remote areas affected by YF outbreaks rely on community sources of information. We therefore recommend improving health education, communication, and engagement through respected and trusted community members. Vaccination campaigns can never be seen as detached from political systems and power relations.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Vacinação em Massa , Pesquisa Qualitativa , Vacina contra Febre Amarela , Febre Amarela , Humanos , Uganda/epidemiologia , Feminino , Febre Amarela/prevenção & controle , Febre Amarela/epidemiologia , Masculino , Vacina contra Febre Amarela/administração & dosagem , Vacinação em Massa/psicologia , Idoso , Pessoa de Meia-Idade , Populações Vulneráveis , Adulto , Gravidez , Surtos de Doenças/prevenção & controle , Grupos Focais
6.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791547

RESUMO

The COVID-19 pandemic has made assessing vaccine efficacy more challenging. Besides neutralizing antibody assays, systems vaccinology studies use omics technology to reveal immune response mechanisms and identify gene signatures in human peripheral blood mononuclear cells (PBMCs). However, due to their low proportion in PBMCs, profiling the immune response signatures of dendritic cells (DCs) is difficult. Here, we develop a predictive model for evaluating early immune responses in dendritic cells. We establish a THP-1-derived dendritic cell (TDDC) model and stimulate their maturation in vitro with an optimal dose of attenuated yellow fever 17D (YF-17D). Transcriptomic analysis reveals that type I interferon (IFN-I)-induced immunity plays a key role in dendritic cells. IFN-I regulatory biomarkers (IRF7, SIGLEC1) and IFN-I-inducible biomarkers (IFI27, IFI44, IFIT1, IFIT3, ISG15, MX1, OAS2, OAS3) are identified and validated in vitro and in vivo. Furthermore, we apply this TDDC approach to various types of vaccines, providing novel insights into their early immune response signatures and their heterogeneity in vaccine recipients. Our findings suggest that a standardizable TDDC model is a promising predictive approach to assessing early immunity in DCs. Further research into vaccine efficacy assessment approaches on various types of immune cells could lead to a systemic regimen for vaccine development in the future.


Assuntos
Células Dendríticas , Vacinação , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Vacinação/métodos , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Células THP-1 , COVID-19/imunologia , COVID-19/prevenção & controle , Animais , SARS-CoV-2/imunologia , Biomarcadores , Vacinas contra COVID-19/imunologia , Perfilação da Expressão Gênica , Camundongos , Transcriptoma , Vacina contra Febre Amarela/imunologia
7.
Eur J Immunol ; 54(5): e2250133, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38571392

RESUMO

Live-attenuated yellow fever vaccine (YF17D) was developed in the 1930s as the first ever empirically derived human vaccine. Ninety years later, it is still a benchmark for vaccines made today. YF17D triggers a particularly broad and polyfunctional response engaging multiple arms of innate, humoral and cellular immunity. This unique immunogenicity translates into an extraordinary vaccine efficacy and outstanding longevity of protection, possibly by single-dose immunization. More recently, progress in molecular virology and synthetic biology allowed engineering of YF17D as a powerful vector and promising platform for the development of novel recombinant live vaccines, including two licensed vaccines against Japanese encephalitis and dengue, even in paediatric use. Likewise, numerous chimeric and transgenic preclinical candidates have been described. These include prophylactic vaccines against emerging viral infections (e.g. Lassa, Zika and SARS-CoV-2) and parasitic diseases (e.g. malaria), as well as therapeutic applications targeting persistent infections (e.g. HIV and chronic hepatitis), and cancer. Efforts to overcome historical safety concerns and manufacturing challenges are ongoing and pave the way for wider use of YF17D-based vaccines. In this review, we summarize recent insights regarding YF17D as vaccine platform, and how YF17D-based vaccines may complement as well as differentiate from other emerging modalities in response to unmet medical needs and for pandemic preparedness.


Assuntos
Vacinas Atenuadas , Vacina contra Febre Amarela , Vírus da Febre Amarela , Humanos , Vacina contra Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia , Vacinas Atenuadas/imunologia , Animais , Febre Amarela/prevenção & controle , Febre Amarela/imunologia , Vacinação/métodos
8.
J Virol ; 98(5): e0151623, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38567951

RESUMO

The non-human primate (NHP) model (specifically rhesus and cynomolgus macaques) has facilitated our understanding of the pathogenic mechanisms of yellow fever (YF) disease and allowed the evaluation of the safety and efficacy of YF-17D vaccines. However, the accuracy of this model in mimicking vaccine-induced immunity in humans remains to be fully determined. We used a systems biology approach to compare hematological, biochemical, transcriptomic, and innate and antibody-mediated immune responses in cynomolgus macaques and human participants following YF-17D vaccination. Immune response progression in cynomolgus macaques followed a similar course as in adult humans but with a slightly earlier onset. Yellow fever virus neutralizing antibody responses occurred earlier in cynomolgus macaques [by Day 7[(D7)], but titers > 10 were reached in both species by D14 post-vaccination and were not significantly different by D28 [plaque reduction neutralization assay (PRNT)50 titers 3.6 Log vs 3.5 Log in cynomolgus macaques and human participants, respectively; P = 0.821]. Changes in neutrophils, NK cells, monocytes, and T- and B-cell frequencies were higher in cynomolgus macaques and persisted for 4 weeks versus less than 2 weeks in humans. Low levels of systemic inflammatory cytokines (IL-1RA, IL-8, MIP-1α, IP-10, MCP-1, or VEGF) were detected in either or both species but with no or only slight changes versus baseline. Similar changes in gene expression profiles were elicited in both species. These included enriched and up-regulated type I IFN-associated viral sensing, antiviral innate response, and dendritic cell activation pathways D3-D7 post-vaccination in both species. Hematological and blood biochemical parameters remained relatively unchanged versus baseline in both species. Low-level YF-17D viremia (RNAemia) was transiently detected in some cynomolgus macaques [28% (5/18)] but generally absent in humans [except one participant (5%; 1/20)].IMPORTANCECynomolgus macaques were confirmed as a valid surrogate model for replicating YF-17D vaccine-induced responses in humans and suggest a key role for type I IFN.


Assuntos
Macaca fascicularis , Modelos Animais , Vacina contra Febre Amarela , Animais , Feminino , Humanos , Masculino , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Imunidade Inata , Biologia de Sistemas/métodos , Vacinação , Febre Amarela/prevenção & controle , Febre Amarela/imunologia , Febre Amarela/virologia , Vacina contra Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia
9.
Sci Rep ; 14(1): 7709, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565882

RESUMO

The present study aimed at evaluating the YF-specific neutralizing antibody profile besides a multiparametric analysis of phenotypic/functional features of cell-mediated response elicited by the 1/5 fractional dose of 17DD-YF vaccine, administered as a single subcutaneous injection. The immunological parameters of each volunteer was monitored at two time points, referred as: before (Day 0) [Non-Vaccinated, NV(D0)] and after vaccination (Day 30-45) [Primary Vaccinees, PV(D30-45)]. Data demonstrated high levels of neutralizing antibodies for PV(D30-45) leading to a seropositivity rate of 93%. A broad increase of systemic soluble mediators with a mixed profile was also observed for PV(D30-45), with IFN-γ and TNF-α presenting the highest baseline fold changes. Integrative network mapping of soluble mediators showed increased correlation numbers in PV(D30-45) as compared to NV(D0) (532vs398). Moreover, PV(D30-45) exhibited increased levels of Terminal Effector (CD45RA+CCR7-) CD4+ and CD8+ T-cells and Non-Classical memory B-cells (IgD+CD27+). Dimensionality reduction of Mass Cytometry data further support these findings. A polyfunctional cytokine profile (TNF-α/IFN-γ/IL-10/IL-17/IL-2) of T and B-cells was observed upon in vitro antigen recall. Mapping and kinetics timeline of soluble mediator signatures for PV(D30-45) further confirmed the polyfunctional profile upon long-term in vitro culture, mediated by increased levels of IFN-γ and TNF-α along with decreased production of IL-10. These findings suggest novel insights of correlates of protection elicited by the 1/5 fractional dose of 17DD-YF vaccine.


Assuntos
Vacina contra Febre Amarela , Febre Amarela , Humanos , Adulto , Anticorpos Neutralizantes , Interleucina-10 , Anticorpos Antivirais , Fator de Necrose Tumoral alfa , Linfócitos T CD8-Positivos , Vacinação
10.
Trials ; 25(1): 216, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532475

RESUMO

RATIONALE: The effectiveness of immunisation with pneumococcal conjugate vaccine (PCV) has been demonstrated in many countries. However, the global impact of PCV is limited by its cost, which has prevented its introduction in some countries. Reducing the cost of PCV programmes will facilitate further vaccine introductions and improve the sustainability of PCV in low-income countries when they transition from subsidised vaccine supply. We are conducting a large, population-level, cluster-randomised field trial (PVS) of an alternative reduced-dose schedule of PCV compared to the standard schedule. We are also conducting a nested sub-study at the individual level to investigate the immunogenicity of the two schedules and their effects on pneumococcal carriage acquisition (PVS-AcqImm). METHODS AND DESIGN: PVS-AcqImm is a prospective, cluster-randomised trial of an alternative schedule of one dose of PCV scheduled at age 6 weeks with a booster dose at age 9 months compared to the standard of three primary doses scheduled at 6, 10, and 14 weeks of age. Sub-groups within the alternative schedule group receive yellow fever vaccine separately or co-administered with PCV at 9 months of age. The primary endpoints are (a) concentrations of vaccine-type anti-pneumococcal IgG at 18 months of age, (b) proportions with yellow fever neutralising antibody titre ≥ 1:8 4 weeks after separate or co-administration of PCV and yellow fever vaccines, and (c) rate of nasopharyngeal vaccine-type pneumococcal acquisition from 10-14 months of age. Participants and field staff are not masked to group allocation while measurement of the laboratory endpoints is masked. Approximately equal numbers of participants are resident in each of 28 randomly allocated geographic clusters (14 clusters in each group); 784 enrolled for acquisition measurements and 336 for immunogenicity measurements. PURPOSE: This statistical analysis plan (SAP) describes the PVS-AcqImm cohort and follow-up criteria to be used in different analyses. The SAP defines the endpoints and describes how adherence to the interventions will be presented. We describe the approach to analyses and how we will account for the effect of clustering. Defining the SAP prior to the conduct of analysis will avoid bias in analyses that may arise from prior knowledge of trial findings. TRIAL REGISTRATION: ISRCTN, ISRCTN7282161328. Registered on 28 November 2019. https://www.isrctn.com/ISRCTN72821613 . PROTOCOL: MRCG SCC number 1670, LSHTM Ref 17683. Current protocol version: 6.0, 24 May 2021. Version: 1.0 (5 April 2023); SAP revisions-none.


Assuntos
Vacina contra Febre Amarela , Febre Amarela , Humanos , Lactente , Esquemas de Imunização , Vacinas Pneumocócicas , Estudos Prospectivos , Streptococcus pneumoniae , Vacinação/métodos , Vacinas Conjugadas
11.
J Travel Med ; 31(3)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38438165

RESUMO

BACKGROUND: Vaccination plays a critical role in mitigating the burden associated with yellow fever (YF). However, there is a lack of comprehensive evidence on the humoral response to primary vaccination in the paediatric population, with several questions debated, including the response when the vaccine is administered at early ages, the effect of co-administration with other vaccines, the duration of immunity and the use of fractional doses, among others. This study summarizes the existing evidence regarding the humoral response to primary YF vaccination in infants and children. METHODS: Studies on the humoral response to primary YF vaccination in children aged 12 years or younger were reviewed. The humoral vaccine response rate (VRR), i.e. the proportion of children who tested positive for vaccine-induced YF-specific neutralizing antibodies, was pooled through random-effects meta-analysis and categorized based on the time elapsed since vaccination. Subgroup, meta-regression and sensitivity analyses were performed. RESULTS: A total of 33 articles met the inclusion criteria, with all but one conducted in countries where YF is endemic. A total of 14 028 infants and children entered this systematic review. Within three months following vaccination, the pooled VRR was 91.9% (95% CI 89.8-93.9). A lower VRR was observed with the 17DD vaccine at the meta-regression analysis. No significant differences in immunogenicity outcomes were observed based on age, administration route, co-administration with other vaccines, or fractional dosing. Results also indicate a decline in VRR over time. CONCLUSIONS: Primary YF vaccination effectively provides humoral immunity in paediatric population. However, humoral response declines over time, and this decline is observable after the first 18 months following vaccination. A differential response according to the vaccine substrain was also observed. This research has valuable implications for stimulating further research on the primary YF vaccination in infants and children, as well as for informing future policies.


Assuntos
Vacina contra Febre Amarela , Febre Amarela , Criança , Lactente , Humanos , Febre Amarela/prevenção & controle , Anticorpos Neutralizantes , Vacinação/métodos , Imunidade Humoral , Anticorpos Antivirais
12.
Aust J Rural Health ; 32(3): 455-461, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38506501

RESUMO

INTRODUCTION: Yellow fever is caused by an RNA flavivirus. Immunisation in conjunction with vector control is at the forefront of yellow fever control and elimination. OBJECTIVE: This narrative review describes the impact and importance of yellow fever vaccinations for northern Australian health practitioners. DESIGN: Selected key policies, studies and medical guidelines are reviewed and presented. FINDING: Large yellow fever outbreaks, associated with vector spread, have occurred in the last decade in Africa and South America, increasing the risk of international spread of the virus. Mobile populations, like travellers or migrant workers, continue to be at risk of yellow fever. Quality assurance, including yellow fever centre accreditation and initiatives to decrease fraudulent yellow fever vaccination documentation, has evolved in the past few years. Fractional dosing of yellow fever vaccines has been shown to provide protection for 1 year in outbreak scenarios, but further studies are needed. DISCUSSION: Although Australia is yellow fever-free, the disease could be introduced by viraemic persons as a competent Aedes mosquito vector is present in northern Australia. In addition to surveillance and vector control, health education and yellow fever vaccination remain the best lines of defence. In the event of an outbreak, a response via fractional dosing could prove to be effective in controlling the virus. CONCLUSION: Health care providers in northern Australia should be aware of the risks of yellow fever and its introduction to northern Australia and be able to discuss vaccination status with their clients when needed.


Assuntos
Surtos de Doenças , Vacina contra Febre Amarela , Febre Amarela , Humanos , Febre Amarela/prevenção & controle , Febre Amarela/epidemiologia , Vacina contra Febre Amarela/administração & dosagem , Austrália/epidemiologia , Surtos de Doenças/prevenção & controle , Animais
13.
Microbiol Spectr ; 12(5): e0370323, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38511952

RESUMO

Between 2016 and 2018, Brazil experienced major sylvatic yellow fever (YF) outbreaks that caused hundreds of casualties, with Minas Gerais (MG) being the most affected state. These outbreaks provided a unique opportunity to assess the immune response triggered by the wild-type (WT) yellow fever virus (YFV) in humans. The plaque reduction neutralization test (PRNT) is currently the standard method to assess the humoral immune response to YFV by measuring neutralizing antibodies (nAbs). The present study aimed to evaluate the humoral immune response of patients from the 2017-2018 sylvatic YF outbreak in MG with different disease outcomes by using PRNTs with a WT YFV strain, isolated from the 2017-2018 outbreak, and a vaccine YFV strain. Samples from naturally infected YF patients were tested, in comparison with healthy vaccinees. Results showed that both groups presented different levels of nAb against the WT and vaccine strains, and the levels of neutralization against the strains varied homotypically and heterotypically. Results based on the geometric mean titers (GMTs) suggest that the humoral immune response after a natural infection of YFV can reach higher levels than that induced by vaccination (GMT of patients against WT YFV compared to GMT of vaccinees, P < 0.0001). These findings suggest that the humoral immune responses triggered by the vaccine and WT strains of YFV are different, possibly due to genetic and antigenic differences between these viruses. Therefore, current means of assessing the immune response in naturally infected YF individuals and immunological surveillance methods in areas with intense viral circulation may need to be updated.IMPORTANCEYellow fever is a deadly febrile disease caused by the YFV. Despite the existence of effective vaccines, this disease still represents a public health concern worldwide. Much is known about the immune response against the vaccine strains of the YFV, but recent studies have shown that it differs from that induced by WT strains. The extent of this difference and the mechanisms behind it are still unclear. Thus, studies aimed to better understand the immune response against this virus are relevant and necessary. The present study evaluated levels of neutralizing antibodies of yellow fever patients from recent outbreaks in Brazil, in comparison with healthy vaccinees, using plaque reduction neutralization tests with WT and vaccine YFV strains. Results showed that the humoral immune response in naturally infected patients was higher than that induced by vaccination, thus providing new insights into the immune response triggered against these viruses.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Surtos de Doenças , Imunidade Humoral , Vacina contra Febre Amarela , Febre Amarela , Vírus da Febre Amarela , Febre Amarela/imunologia , Febre Amarela/epidemiologia , Febre Amarela/virologia , Humanos , Brasil/epidemiologia , Vírus da Febre Amarela/imunologia , Vírus da Febre Amarela/genética , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Masculino , Vacina contra Febre Amarela/imunologia , Feminino , Adulto , Pessoa de Meia-Idade , Vacinação , Testes de Neutralização , Adulto Jovem , Idoso , Adolescente
14.
Int J Infect Dis ; 143: 107017, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521450

RESUMO

Yellow fever (YF) is a potentially lethal viral hemorrhagic fever that can be prevented with the 17D live attenuated YF vaccine. However, this vaccination can cause severe adverse reactions including vaccine-associated YF. Here, we describe the case of a 32-year-old female who was permanently immunosuppressed with an anti-CD20 antibody due to multiple sclerosis. Following YF vaccination, the patient developed a variety of symptoms such as febrile temperatures, muscle and joint pain, headaches, and dysuria. A vaccine-associated YF with viremia was diagnosed. To avoid a potentially severe course of the disease, sofosbuvir was used as antiviral treatment followed by the resolution of symptoms and serological response. As travelers with chronic diseases and immunosuppression will increasingly engage in long distance travel, this case demonstrates the importance of assessing patient history prior to the administration of live vaccines and points towards a possible therapeutic approach in those suffering from vaccine-associated YF.


Assuntos
Antivirais , Hospedeiro Imunocomprometido , Sofosbuvir , Vacina contra Febre Amarela , Febre Amarela , Adulto , Feminino , Humanos , Antivirais/uso terapêutico , Antivirais/efeitos adversos , Rituximab/efeitos adversos , Rituximab/uso terapêutico , Sofosbuvir/uso terapêutico , Sofosbuvir/efeitos adversos , Febre Amarela/imunologia , Vacina contra Febre Amarela/efeitos adversos , Vacina contra Febre Amarela/imunologia , Antígenos CD20/imunologia , Antígenos CD20/uso terapêutico , Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia
15.
Vaccine ; 42(11): 2729-2732, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38514353

RESUMO

Studies on yellow fever vaccine (YF) in chronic kidney disease (CKD) patients are scarce. This cross-sectional study aimed to evaluate YF neutralizing antibody seroprevalence and titers in previously vaccinated adults with CKD, on dialysis (D-CKD) or not (ND-CKD), compared to healthy persons. The micro Plaque Reduction Neutralization-Horseradish Peroxidase (µPRN-HP) test was used. Antibody titers were expressed as the reciprocal of the highest dilution that neutralized the challenge virus by 50 % (µPRN50). Seropositivity cut-off was set at ≥ 1:100. We included 153 participants: 46 ND-CKD, 50 D-CKD and 57 healthy adults. Median ages were 58.3, 55 and 52.2 years, respectively. Median time since YF vaccination was 22.3, 18.5 and 48.3 months respectively. There were no statistically significant differences in YF seroprevalence and neutralizing antibodies titers among groups: 100 % of ND-CKD; 96 % of D-CKD and 100 % of healthy participants were seropositive. Geometric mean titers (GMT) were 818.5, 683.0 and 665.5, respectively (p = 0.289).


Assuntos
Insuficiência Renal Crônica , Vacina contra Febre Amarela , Febre Amarela , Adulto , Humanos , Febre Amarela/prevenção & controle , Anticorpos Neutralizantes , Estudos Transversais , Estudos Soroepidemiológicos , Anticorpos Antivirais , Vírus da Febre Amarela , Vacinação , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia
16.
Arch Dermatol Res ; 316(3): 96, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38430244

RESUMO

Given the higher susceptibility to infectious disease in patients receiving immunosuppressive therapies for inflammatory dermatologic conditions, immunization is important in this population. While live vaccines protect against life-threatening diseases, they can be harmful in immunosuppressed patients given the risk of replication of the attenuated pathogen and adverse reactions. The utilization of live vaccines in immunosuppressed patients depends on multiple factors such as the vaccine and therapy regimen. To provide an overview of evidence-based recommendations for the use of live vaccines in patients receiving immunosuppressive therapies for dermatological conditions. A literature search of the PubMed database was performed using keywords live vaccine, live-attenuated vaccine, dermatology, immunosuppressed, and immunocompromised, and specific immunosuppressive therapies: corticosteroids, glucocorticoids, methotrexate, azathioprine, cyclosporine, mycophenolate mofetil, biologics. Relevant articles written in English were included. Using these keywords, 125 articles were reviewed, of which 28 were ultimately selected. Recommendations for live vaccines can be determined on a case-by-case basis. Measles, mumps, rubella, varicella (MMRV) vaccines may be safely administered to patients on low-dose immunosuppressive agents while the yellow fever vaccine is typically contraindicated. It may be safe to administer live MMRV boosters to children on immunosuppressive therapies and the live herpes zoster vaccine to patients on biologics. Given poor adherence to immunization guidelines in immunosuppressed patients, dermatologists have a critical role in educating patients and general practitioners regarding live vaccines. By reviewing a patient's vaccination history and following immunization guidelines prior to initiating immunosuppressive therapies, physicians can mitigate morbidity and mortality from vaccine-preventable diseases.


Assuntos
Dermatologia , Hospedeiro Imunocomprometido , Vacinação , Humanos , Vacina contra Varicela/administração & dosagem , Vacina contra Varicela/efeitos adversos , Vacina contra Sarampo-Caxumba-Rubéola/administração & dosagem , Vacina contra Sarampo-Caxumba-Rubéola/efeitos adversos , Vacinação/efeitos adversos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Vacina contra Febre Amarela/administração & dosagem , Vacina contra Febre Amarela/efeitos adversos
17.
Nat Commun ; 15(1): 1696, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402207

RESUMO

The yellow fever 17D vaccine (YF17D) is highly effective but is frequently administered to individuals with pre-existing cross-reactive immunity, potentially impacting their immune responses. Here, we investigate the impact of pre-existing flavivirus immunity induced by the tick-borne encephalitis virus (TBEV) vaccine on the response to YF17D vaccination in 250 individuals up to 28 days post-vaccination (pv) and 22 individuals sampled one-year pv. Our findings indicate that previous TBEV vaccination does not affect the early IgM-driven neutralizing response to YF17D. However, pre-vaccination sera enhance YF17D virus infection in vitro via antibody-dependent enhancement (ADE). Following YF17D vaccination, TBEV-pre-vaccinated individuals develop high amounts of cross-reactive IgG antibodies with poor neutralizing capacity. In contrast, TBEV-unvaccinated individuals elicit a non-cross-reacting neutralizing response. Using YF17D envelope protein mutants displaying different epitopes, we identify quaternary dimeric epitopes as the primary target of neutralizing antibodies. Additionally, TBEV-pre-vaccination skews the IgG response towards the pan-flavivirus fusion loop epitope (FLE), capable of mediating ADE of dengue and Zika virus infections in vitro. Together, we propose that YF17D vaccination conceals the FLE in individuals without prior flavivirus exposure but favors a cross-reactive IgG response in TBEV-pre-vaccinated recipients directed to the FLE with potential to enhance dengue virus infection.


Assuntos
Dengue , Vírus da Encefalite Transmitidos por Carrapatos , Vacina contra Febre Amarela , Infecção por Zika virus , Zika virus , Humanos , Anticorpos Antivirais , Anticorpos Neutralizantes , Infecção por Zika virus/prevenção & controle , Epitopos , Imunoglobulina G , Dengue/prevenção & controle
20.
Lancet Infect Dis ; 24(6): 611-618, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38335976

RESUMO

BACKGROUND: In 2016, outbreaks of yellow fever in Angola and the Democratic Republic of the Congo led to a global vaccine shortage. A fractional dose of 17DD yellow fever vaccine (containing one-fifth [0·1 ml] of the standard dose) was used during a pre-emptive mass campaign in August, 2016, in Kinshasa, Democratic Republic of the Congo among children aged 2 years and older and non-pregnant adults (ie, those aged 18 years and older). 1 year following vaccination, 97% of participants were seropositive; however, the long-term durability of the immune response is unknown. We aimed to conduct a prospective cohort study and invited participants enrolled in the previous evaluation to return 5 years after vaccination to assess durability of the immune response. METHODS: Participants returned to one of six health facilities in Kinshasa in 2021, where study staff collected a brief medical history and blood specimen. We assessed neutralising antibody titres against yellow fever virus using a plaque reduction neutralisation test with a 50% cutoff (PRNT50). Participants with a PRNT50 titre of 10 or higher were considered seropositive. The primary outcome was the proportion of participants seropositive at 5 years. FINDINGS: Among the 764 participants enrolled, 566 (74%) completed the 5-year visit. 5 years after vaccination, 539 (95·2%, 95% CI 93·2-96·7) participants were seropositive, including 361 (94·3%, 91·5-96·2) of 383 who were seronegative and 178 (97·3%, 93·8-98·8) of 183 who were seropositive at baseline. Geometric mean titres (GMTs) differed significantly across age groups for those who were initially seronegative with the lowest GMT among those aged 2-5 years and highest among those aged 13 years and older. INTERPRETATION: A fractional dose of the 17DD yellow fever vaccine induced an immunologic response with detectable titres at 5 years among the majority of participants in the Democratic Republic of the Congo. These findings support the use of fractional-dose vaccination for outbreak prevention with the potential for sustained immunity. FUNDING: Gavi, the Vaccine Alliance through the CDC Foundation. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.


Assuntos
Anticorpos Antivirais , Surtos de Doenças , Vacina contra Febre Amarela , Febre Amarela , Humanos , República Democrática do Congo/epidemiologia , Febre Amarela/prevenção & controle , Febre Amarela/imunologia , Febre Amarela/epidemiologia , Estudos Prospectivos , Vacina contra Febre Amarela/imunologia , Vacina contra Febre Amarela/administração & dosagem , Surtos de Doenças/prevenção & controle , Masculino , Feminino , Criança , Pré-Escolar , Adolescente , Adulto , Anticorpos Antivirais/sangue , Adulto Jovem , Vacinação , Pessoa de Meia-Idade , Anticorpos Neutralizantes/sangue , Vírus da Febre Amarela/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...