Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.625
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2316376121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38861603

RESUMO

Human parainfluenza virus type 3 (HPIV3) is a major pediatric respiratory pathogen lacking available vaccines or antiviral drugs. We generated live-attenuated HPIV3 vaccine candidates by codon-pair deoptimization (CPD). HPIV3 open reading frames (ORFs) encoding the nucleoprotein (N), phosphoprotein (P), matrix (M), fusion (F), hemagglutinin-neuraminidase (HN), and polymerase (L) were modified singly or in combination to generate 12 viruses designated Min-N, Min-P, Min-M, Min-FHN, Min-L, Min-NP, Min-NPM, Min-NPL, Min-PM, Min-PFHN, Min-MFHN, and Min-PMFHN. CPD of N or L severely reduced growth in vitro and was not further evaluated. CPD of P or M was associated with increased and decreased interferon (IFN) response in vitro, respectively, but had little effect on virus replication. In Vero cells, CPD of F and HN delayed virus replication, but final titers were comparable to wild-type (wt) HPIV3. In human lung epithelial A549 cells, CPD F and HN induced a stronger IFN response, viral titers were reduced 100-fold, and the expression of F and HN proteins was significantly reduced without affecting N or P or the relative packaging of proteins into virions. Following intranasal infection in hamsters, replication in the nasal turbinates and lungs tended to be the most reduced for viruses bearing CPD F and HN, with maximum reductions of approximately 10-fold. Despite decreased in vivo replication (and lower expression of CPD F and HN in vitro), all viruses induced titers of serum HPIV3-neutralizing antibodies similar to wt and provided complete protection against HPIV3 challenge. In summary, CPD of HPIV3 yielded promising vaccine candidates suitable for further development.


Assuntos
Códon , Vírus da Parainfluenza 3 Humana , Vacinas Atenuadas , Replicação Viral , Animais , Vírus da Parainfluenza 3 Humana/imunologia , Vírus da Parainfluenza 3 Humana/genética , Humanos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/genética , Códon/genética , Cricetinae , Infecções por Respirovirus/imunologia , Infecções por Respirovirus/prevenção & controle , Infecções por Respirovirus/virologia , Chlorocebus aethiops , Células Vero , Fases de Leitura Aberta/genética , Mesocricetus , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Vacinas Virais/imunologia , Vacinas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/genética , Vacinas contra Parainfluenza/imunologia , Vacinas contra Parainfluenza/genética
2.
Diagn Microbiol Infect Dis ; 109(4): 116346, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38759540

RESUMO

Rotaviruses belong to genotype VP4-P[8] are a significant cause of severe loose diarrhea in infants and young children. In the present study, we characterised the complete genome of three of the Pakistani P[8]b RVA strains by Illumina HiSeq sequencing technology to determine the complete genotype constellation providing insight into the evolutionary dynamics of their genes using maximum likelihood analysis. The maximum genomic sequences of our study strains were similar to more recent human Wa-Like G1P[8]a, G3P[8]a, G4P[6], G4P[8], G9P[4], G9P[8]a, G11P[25],G12P[8]a and G12P[6] strains circulating around the world. Therefore, strains PAK274, PAK439 and PAK624 carry natively distinctive VP4 gene with universally common human Wa-Like genetic backbone. Comparing our study P[8]b strains with vaccines strains RotarixTM and RotaTeqTM, multiple amino acid differences were examined between vaccine virus antigenic epitopes and Pakistani isolates. Over time, these differences may result in the selection for strains that will escape the vaccine-induced RVA-neutralizing-antibody effect.


Assuntos
Antígenos Virais , Proteínas do Capsídeo , Epitopos , Genoma Viral , Genótipo , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Rotavirus/genética , Rotavirus/classificação , Rotavirus/imunologia , Rotavirus/isolamento & purificação , Humanos , Infecções por Rotavirus/virologia , Paquistão , Vacinas contra Rotavirus/imunologia , Epitopos/genética , Epitopos/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Genoma Viral/genética , Antígenos Virais/genética , Antígenos Virais/imunologia , Lactente , Filogenia , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/genética , Pré-Escolar
3.
Vaccine ; 42(18): 3756-3767, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38724417

RESUMO

A Newcastle disease virus (NDV)-vectored vaccine expressing clade 2.3.4.4b H5 Hemagglutinin was developed and assessed for efficacy against H5N1 highly pathogenic avian influenza (HPAI) in specific pathogen-free (SPF) chickens, broilers, and domestic ducks. In SPF chickens, the live recombinant NDV-vectored vaccine, rK148/22-H5, achieved complete survival against HPAI and NDV challenges and significantly reduced viral shedding. Notably, the live rK148/22-H5 vaccine conferred good clinical protection in broilers despite the presence of maternally derived antibodies. Good clinical protection was observed in domestic ducks, with decreased viral shedding. It demonstrated complete survival and reduced cloacal viral shedding when used as an inactivated vaccine from SPF chickens. The rK148/22-H5 vaccine is potentially a viable and supportive option for biosecurity measure, effectively protecting in chickens against the deadly clade 2.3.4.4b H5 HPAI and NDV infections. Furthermore, it aligns with the strategy of Differentiating Infected from Vaccinated Animals (DIVA).


Assuntos
Anticorpos Antivirais , Galinhas , Patos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Vírus da Doença de Newcastle , Vacinas de Produtos Inativados , Vacinas Sintéticas , Eliminação de Partículas Virais , Animais , Galinhas/imunologia , Influenza Aviária/prevenção & controle , Influenza Aviária/imunologia , Vírus da Doença de Newcastle/imunologia , Vírus da Doença de Newcastle/genética , Virus da Influenza A Subtipo H5N1/imunologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/patogenicidade , Patos/virologia , Patos/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Organismos Livres de Patógenos Específicos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Doença de Newcastle/prevenção & controle , Doença de Newcastle/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
4.
PLoS Pathog ; 20(5): e1012198, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38739647

RESUMO

Respiratory syncytial virus (RSV) is the most important viral agent of severe pediatric respiratory illness worldwide, but there is no approved pediatric vaccine. Here, we describe the development of the live-attenuated RSV vaccine candidate Min AL as well as engineered derivatives. Min AL was attenuated by codon-pair deoptimization (CPD) of seven of the 11 RSV open reading frames (ORFs) (NS1, NS2, N, P, M, SH and L; 2,073 silent nucleotide substitutions in total). Min AL replicated efficiently in vitro at the permissive temperature of 32°C but was highly temperature sensitive (shut-off temperature of 36°C). When serially passaged at increasing temperatures, Min AL retained greater temperature sensitivity compared to previous candidates with fewer CPD ORFs. However, whole-genome deep-sequencing of passaged Min AL revealed mutations throughout its genome, most commonly missense mutations in the polymerase cofactor P and anti-termination transcription factor M2-1 (the latter was not CPD). Reintroduction of selected mutations into Min AL partially rescued its replication in vitro at temperatures up to 40°C, confirming their compensatory effect. These mutations restored the accumulation of positive-sense RNAs to wild-type (wt) RSV levels, suggesting increased activity by the viral transcriptase, whereas viral protein expression, RNA replication, and virus production were only partly rescued. In hamsters, Min AL and derivatives remained highly restricted in replication in the upper and lower airways, but induced serum IgG and IgA responses to the prefusion form of F (pre F) that were comparable to those induced by wt RSV, as well as robust mucosal and systemic IgG and IgA responses against RSV G. Min AL and derivatives were fully protective against challenge virus replication. The derivatives had increased genetic stability compared to Min AL. Thus, Min AL and derivatives with selected mutations are stable, attenuated, yet highly-immunogenic RSV vaccine candidates that are available for further evaluation.


Assuntos
Fases de Leitura Aberta , Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vacinas Atenuadas , Replicação Viral , Animais , Vacinas contra Vírus Sincicial Respiratório/imunologia , Vacinas contra Vírus Sincicial Respiratório/genética , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/genética , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Infecções por Vírus Respiratório Sincicial/virologia , Cricetinae , Administração Intranasal , Códon , Imunidade nas Mucosas , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Humanos , Vírus Sincicial Respiratório Humano/imunologia , Vírus Sincicial Respiratório Humano/genética , Mesocricetus , Vírus Sinciciais Respiratórios/imunologia , Vírus Sinciciais Respiratórios/genética
5.
Methods Mol Biol ; 2775: 393-410, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758333

RESUMO

Creating a safe and effective vaccine against infection by the fungal pathogen Cryptococcus neoformans is an appealing option that complements the discovery of new small molecule antifungals. Recent animal studies have yielded promising results for a variety of vaccines that include live-attenuated and heat-killed whole-cell vaccines, as well as subunit vaccines formulated around recombinant proteins. Some of the recombinantly engineered cryptococcal mutants in the chitosan biosynthesis pathway are avirulent and very effective at conferring protective immunity. Mice vaccinated with these avirulent chitosan-deficient strains are protected from a lethal pulmonary infection with C. neoformans strain KN99. Heat-killed derivatives of the vaccination strains are likewise effective in a murine model of infection. The efficacy of these whole-cell vaccines, however, is dependent on a number of factors, including the inoculation dose, route of vaccination, frequency of vaccination, and the specific mouse strain used in the study. Here, we present detailed methods for identifying and optimizing various factors influencing vaccine potency and efficacy in various inbred mouse strains using a chitosan-deficient cda1Δcda2Δcda3Δ strain as a whole-cell vaccine candidate. This chapter describes the protocols for immunizing three different laboratory mouse strains with vaccination regimens that use intranasal, orotracheal, and subcutaneous vaccination routes after the animals were sedated using two different types of anesthesia.


Assuntos
Quitosana , Criptococose , Cryptococcus neoformans , Vacinas Fúngicas , Animais , Quitosana/química , Camundongos , Vacinas Fúngicas/imunologia , Vacinas Fúngicas/genética , Vacinas Fúngicas/administração & dosagem , Criptococose/imunologia , Criptococose/prevenção & controle , Criptococose/microbiologia , Cryptococcus neoformans/imunologia , Cryptococcus neoformans/genética , Modelos Animais de Doenças , Vacinação/métodos , Feminino , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/genética
6.
Virus Res ; 345: 199378, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38643857

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a significant threat to human health globally. It is crucial to develop a vaccine to reduce the effect of the virus on public health, economy, and society and regulate the transmission of SARS-CoV-2. Influenza B virus (IBV) can be used as a vector that does not rely on the current circulating influenza A strains. In this study, we constructed an IBV-based vector vaccine by inserting a receptor-binding domain (RBD) into a non-structural protein 1 (NS1)-truncated gene (rIBV-NS110-RBD). Subsequently, we assessed its safety, immunogenicity, and protective efficacy against SARS-CoV-2 in mice, and observed that it was safe in a mouse model. Intranasal administration of a recombinant rIBV-NS110-RBD vaccine induced high levels of SARS-CoV-2-specific IgA and IgG antibodies and T cell-mediated immunity in mice. Administering two doses of the intranasal rIBV-NS110-RBD vaccine significantly reduced the viral load and lung damage in mice. This novel IBV-based vaccine offers a novel approach for controlling the SARS-CoV-2 pandemic.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Vírus da Influenza B , Camundongos Endogâmicos BALB C , SARS-CoV-2 , Vacinas Atenuadas , Animais , Camundongos , Vírus da Influenza B/imunologia , Vírus da Influenza B/genética , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/genética , COVID-19/prevenção & controle , COVID-19/imunologia , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Feminino , Administração Intranasal , Humanos , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Imunoglobulina A/sangue , Modelos Animais de Doenças , Imunoglobulina G/sangue , Carga Viral , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia
7.
PLoS Negl Trop Dis ; 18(4): e0012120, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38648230

RESUMO

Chikungunya fever virus (CHIKV) is a mosquito-borne alphavirus that causes wide-spread human infections and epidemics in Asia, Africa and recently, in the Americas. CHIKV is considered a priority pathogen by CEPI and WHO. Despite recent approval of a live-attenuated CHIKV vaccine, development of additional vaccines is warranted due to the worldwide outbreaks of CHIKV. Previously, we developed immunization DNA (iDNA) plasmid capable of launching live-attenuated CHIKV vaccine in vivo. Here we report the use of CHIKV iDNA plasmid to prepare a novel, live-attenuated CHIKV vaccine V5040 with rearranged RNA genome. In V5040, genomic RNA was rearranged to encode capsid gene downstream from the glycoprotein genes. Attenuated mutations derived from experimental CHIKV 181/25 vaccine were also engineered into E2 gene of V5040. The DNA copy of rearranged CHIKV genomic RNA with attenuated mutations was cloned into iDNA plasmid pMG5040 downstream from the CMV promoter. After transfection in vitro, pMG5040 launched replication of V5040 virus with rearranged genome and attenuating E2 mutations. Furthermore, V5040 virus was evaluated in experimental murine models for general safety and immunogenicity. Vaccination with V5040 virus subcutaneously resulted in elicitation of CHIKV-specific, virus-neutralizing antibodies. The results warrant further evaluation of V5040 virus with rearranged genome as a novel live-attenuated vaccine for CHIKV.


Assuntos
Anticorpos Antivirais , Febre de Chikungunya , Vírus Chikungunya , Genoma Viral , Vacinas Atenuadas , Vacinas Virais , Replicação Viral , Animais , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/administração & dosagem , Camundongos , Vírus Chikungunya/genética , Vírus Chikungunya/imunologia , Vacinas Virais/imunologia , Vacinas Virais/genética , Vacinas Virais/administração & dosagem , Febre de Chikungunya/prevenção & controle , Febre de Chikungunya/imunologia , Febre de Chikungunya/virologia , Anticorpos Antivirais/sangue , Feminino , Humanos , Chlorocebus aethiops , Anticorpos Neutralizantes/sangue , Células Vero , Camundongos Endogâmicos BALB C
8.
EMBO Mol Med ; 16(4): 723-754, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514791

RESUMO

Vaccination with infectious Plasmodium falciparum (Pf) sporozoites (SPZ) administered with antimalarial drugs (PfSPZ-CVac), confers superior sterilizing protection against infection when compared to vaccination with replication-deficient, radiation-attenuated PfSPZ. However, the requirement for drug administration constitutes a major limitation for PfSPZ-CVac. To obviate this limitation, we generated late liver stage-arresting replication competent (LARC) parasites by deletion of the Mei2 and LINUP genes (mei2-/linup- or LARC2). We show that Plasmodium yoelii (Py) LARC2 sporozoites did not cause breakthrough blood stage infections and engendered durable sterilizing immunity against various infectious sporozoite challenges in diverse strains of mice. We next genetically engineered a PfLARC2 parasite strain that was devoid of extraneous DNA and produced cryopreserved PfSPZ-LARC2. PfSPZ-LARC2 liver stages replicated robustly in liver-humanized mice but displayed severe defects in late liver stage differentiation and did not form liver stage merozoites. This resulted in complete abrogation of parasite transition to viable blood stage infection. Therefore, PfSPZ-LARC2 is the next-generation vaccine strain expected to unite the safety profile of radiation-attenuated PfSPZ with the superior protective efficacy of PfSPZ-CVac.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Parasitos , Animais , Camundongos , Plasmodium falciparum/genética , Malária Falciparum/prevenção & controle , Deleção de Genes , Vacinas Antimaláricas/genética , Vacinas Atenuadas/genética , Esporozoítos/genética
9.
J Microbiol ; 62(2): 125-134, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38480615

RESUMO

African swine fever virus (ASFV) is the causative agent of the highly lethal African swine fever disease that affects domestic pigs and wild boars. In spite of the rapid spread of the virus worldwide, there is no licensed vaccine available. The lack of a suitable cell line for ASFV propagation hinders the development of a safe and effective vaccine. For ASFV propagation, primary swine macrophages and monocytes have been widely studied. However, obtaining these cells can be time-consuming and expensive, making them unsuitable for mass vaccine production. The goal of this study was to validate the suitability of novel CA-CAS-01-A (CAS-01) cells, which was identified as a highly permissive cell clone for ASFV replication in the MA-104 parental cell line for live attenuated vaccine development. Through a screening experiment, maximum ASFV replication was observed in the CAS-01 cell compared to other sub-clones of MA-104 with 14.89 and log10 7.5 ± 0.15 Ct value and TCID50/ml value respectively. When CAS-01 cells are inoculated with ASFV, replication of ASFV was confirmed by Ct value for ASFV DNA, HAD50/ml assay, TCID50/ml assay, and cytopathic effects and hemadsoption were observed similar to those in primary porcine alveolar macrophages after 5th passage. Additionally, we demonstrated stable replication and adaptation of ASFV over the serial passage. These results suggest that CAS-01 cells will be a valuable and promising cell line for ASFV isolation, replication, and development of live attenuated vaccines.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/prevenção & controle , Vacinas Atenuadas/genética , Proteínas Virais/genética , Sus scrofa , Desenvolvimento de Vacinas , Linhagem Celular
10.
J Virol ; 98(4): e0011224, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38506509

RESUMO

Live-attenuated virus vaccines provide long-lived protection against viral disease but carry inherent risks of residual pathogenicity and genetic reversion. The live-attenuated Candid#1 vaccine was developed to protect Argentines against lethal infection by the Argentine hemorrhagic fever arenavirus, Junín virus. Despite its safety and efficacy in Phase III clinical study, the vaccine is not licensed in the US, in part due to concerns regarding the genetic stability of attenuation. Previous studies had identified a single F427I mutation in the transmembrane domain of the Candid#1 envelope glycoprotein GPC as the key determinant of attenuation, as well as the propensity of this mutation to revert upon passage in cell culture and neonatal mice. To ascertain the consequences of this reversion event, we introduced the I427F mutation into recombinant Candid#1 (I427F rCan) and investigated the effects in two validated small-animal models: in mice expressing the essential virus receptor (human transferrin receptor 1; huTfR1) and in the conventional guinea pig model. We report that I427F rCan displays only modest virulence in huTfR1 mice and appears attenuated in guinea pigs. Reversion at another attenuating locus in Candid#1 GPC (T168A) was also examined, and a similar pattern was observed. By contrast, virus bearing both revertant mutations (A168T+I427F rCan) approached the lethal virulence of the pathogenic Romero strain in huTfR1 mice. Virulence was less extreme in guinea pigs. Our findings suggest that genetic stabilization at both positions is required to minimize the likelihood of reversion to virulence in a second-generation Candid#1 vaccine.IMPORTANCELive-attenuated virus vaccines, such as measles/mumps/rubella and oral poliovirus, provide robust protection against disease but carry with them the risk of genetic reversion to the virulent form. Here, we analyze the genetics of reversion in the live-attenuated Candid#1 vaccine that is used to protect against Argentine hemorrhagic fever, an often-lethal disease caused by the Junín arenavirus. In two validated small-animal models, we find that restoration of virulence in recombinant Candid#1 viruses requires back-mutation at two positions specific to the Candid#1 envelope glycoprotein GPC, at positions 168 and 427. Viruses bearing only a single change showed only modest virulence. We discuss strategies to genetically harden Candid#1 GPC against these two reversion events in order to develop a safer second-generation Candid#1 vaccine virus.


Assuntos
Febre Hemorrágica Americana , Vírus Junin , Vacinas Virais , Animais , Cobaias , Humanos , Camundongos , Glicoproteínas/genética , Febre Hemorrágica Americana/prevenção & controle , Vírus Junin/fisiologia , População da América do Sul , Vacinas Atenuadas/genética , Vacinas Virais/genética , Virulência
11.
Viruses ; 16(3)2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38543742

RESUMO

The African swine fever virus (ASFV) mutant ASFV-G-∆I177L is a safe and efficacious vaccine which induces protection against the challenge of its parental virus, the Georgia 2010 isolate. Although a genetic DIVA (differentiation between infected and vaccinated animals) assay has been developed for this vaccine, still there is not a serological DIVA test for differentiating between animals vaccinated with ASFV-G-∆I177L and those infected with wild-type viruses. In this report, we describe the development of the ASFV-G-∆I177L mutant having deleted the EP402R gene, which encodes for the viral protein responsible for mediating the hemadsorption of swine erythrocytes. The resulting virus, ASFV-G-∆I177L/∆EP402R, does not have a decreased ability to replicates in swine macrophages when compared with the parental ASFV-G-∆I177L. Domestic pigs intramuscularly (IM) inoculated with either 102 or 106 HAD50 of ASFV-G-∆I177L/∆EP402R remained clinically normal, when compared with a group of mock-vaccinated animals, indicating the absence of residual virulence. Interestingly, an infectious virus could not be detected in the blood samples of the ASFV-G-∆I177L/∆EP402R-inoculated animals in either group at any of the time points tested. Furthermore, while all of the mock-inoculated animals presented a quick and lethal clinical form of ASF after the intramuscular inoculation challenge with 102 HAD50 of highly virulent parental field isolate Georgia 2010 (ASFV-G), all of the ASFV-G-∆I177L/∆EP402R-inoculated animals were protected, remaining clinically normal until the end of the observational period. Most of the ASFV-G-∆I177L/∆EP402R-inoculated pigs developed strong virus-specific antibody responses against viral antigens, reaching maximum levels at 28 days post inoculation. Importantly, all of the sera collected at that time point in the ASFV-G-∆I177L/∆EP402R-inoculated pigs did not react in a direct ELISA coated with the recombinant EP402R protein. Conversely, the EP402R protein was readily recognized by the pool of sera from the animals immunized with recombinant live attenuated vaccine candidates ASFV-G-∆I177L, ASFV-G-∆MGF, or ASFV-G-∆9GL/∆UK. Therefore, ASFV-G-∆I177L/∆EP402R is a novel, safe and efficacious candidate with potential to be used as an antigenically DIVA vaccine.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Suínos , Animais , Vacinas Virais/genética , Sus scrofa , Virulência , Vacinas Sintéticas/genética , Vacinas Atenuadas/genética , Proteínas Recombinantes/genética , Deleção de Genes
12.
Braz J Microbiol ; 55(1): 997-1010, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311710

RESUMO

The swine industry across the globe is recently facing a devastating situation imparted by a highly contagious and deadly viral disease, African swine fever. The disease is caused by a DNA virus, the African swine fever virus (ASFV) of the genus Asfivirus. ASFV affects both wild boars and domestic pigs resulting in an acute form of hemorrhagic fever. Since the first report in 1921, the disease remains endemic in some of the African countries. However, the recent occurrence of ASF outbreaks in Asia led to a fresh and formidable challenge to the global swine production industry. Culling of the infected animals along with the implementation of strict sanitary measures remains the only options to control this devastating disease. Efforts to develop an effective and safe vaccine against ASF began as early as in the mid-1960s. Different approaches have been employed for the development of effective ASF vaccines including inactivated vaccines, subunit vaccines, DNA vaccines, virus-vectored vaccines, and live attenuated vaccines (LAVs). Inactivated vaccines are a non-feasible strategy against ASF due to their inability to generate a complete cellular immune response. However genetically engineered vaccines, such as subunit vaccines, DNA vaccines, and virus vector vaccines, represent tailored approaches with minimal adverse effects and enhanced safety profiles. As per the available data, gene deleted LAVs appear to be the most potential vaccine candidates. Currently, a gene deleted LAV (ASFV-G-∆I177L), developed in Vietnam, stands as the sole commercially available vaccine against ASF. The major barrier to the goal of developing an effective vaccine is the critical gaps in the knowledge of ASFV biology and the immune response induced by ASFV infection. The precise contribution of various hosts, vectors, and environmental factors in the virus transmission must also be investigated in depth to unravel the disease epidemiology. In this review, we mainly focus on the recent progress in vaccine development against ASF and the major gaps associated with it.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas de DNA , Vacinas Virais , Suínos , Animais , Febre Suína Africana/prevenção & controle , Febre Suína Africana/epidemiologia , Vírus da Febre Suína Africana/genética , Vacinas de DNA/genética , Sus scrofa , Vacinas Virais/genética , Vacinas Atenuadas/genética , Desenvolvimento de Vacinas , Vacinas de Produtos Inativados , Vacinas de Subunidades Antigênicas
13.
Microb Pathog ; 189: 106591, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401591

RESUMO

The eel farming industry is highly susceptible to Vibriosis. Although various types of vaccines against Vibriosis have been investigated, there is limited research on decreasing the virulence of Vibrions through gene knockout and utilizing it as live attenuated vaccines (LAV). In this study, we aim to develop a LAV candidate against Vibrio harveyi infection in American eels (Anguilla rostrata) using a ferric uptake regulator (fur) gene mutant strain of V. harveyi (Δfur mutant). After the eels were administrated with the Δfur mutant at the dose of 4 × 102 cfu/g body weight, the phagocytic activity of the leucocytes, plasma IgM antibody titers, activity of lysozyme and Superoxide Dismutase (SOD) enzyme, and gene expression levels of 18 immune related proteins were detected to evaluate the protection effect of the LAV. Preliminary findings suggest that the LAV achieved over 60% relative percent survival (RPS) after the American eels were challenged by a wild-type strain of V. harveyi infection on 28 and 42 days post the immunization (dpi). The protection was mainly attributed to increased plasma IgM antibody titers, higher levels of lysozyme, enhanced activity of SOD and some regulated genes encoded immune related proteins. Together, the Δfur mutant strain of V. harveyi, as a novel LAV vaccine, demonstrates promising protective effects against V. harveyi infection in American eels, thus presenting a potential candidate vaccine for fish farming.


Assuntos
Anguilla , Doenças dos Peixes , Vibrioses , Vibrio , Animais , Vacinas Atenuadas/genética , Muramidase , Vacinas Bacterianas , Vibrioses/prevenção & controle , Vibrioses/veterinária , Vibrio/genética , Superóxido Dismutase/genética , Imunoglobulina M , Doenças dos Peixes/prevenção & controle
14.
Vaccine ; 42(8): 1868-1872, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38365481

RESUMO

Vaccination is the most cost-effective tool to control contagious bovine pleuropneumonia. The vaccines currently used in Africa are derived from a live strain called T1, which was attenuated by passage in embryonated eggs and broth culture. The number of passages is directly correlated to the degree of attenuation of the vaccinal strains and inversely correlated to their immunogenicity in cattle. Current quality control protocols applied to vaccine batches allow the assessment of identity, purity, and titers, but cannot assess the level of genetic drift form the parental vaccine strains. Deep sequencing was used to assess the genetic drift generated over controlled in vitro passages of the parental strain, as well as on commercial vaccine batches. Signatures of cloning procedures were detected in some batches, which imply a deviation from the standard production protocol. Deep sequencing is proposed as a new tool for the identity and stability control of T1 vaccines.


Assuntos
Doenças dos Bovinos , Mycoplasma mycoides , Pleuropneumonia Contagiosa , Pleuropneumonia , Animais , Bovinos , Vacinas Bacterianas/genética , África , Vacinas Atenuadas/genética , Controle de Qualidade , Sequenciamento de Nucleotídeos em Larga Escala , Pleuropneumonia Contagiosa/prevenção & controle , Mycoplasma mycoides/genética
15.
Microbiol Spectr ; 12(4): e0355723, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38385737

RESUMO

We propose a novel strategy for quick and easy preparation of suicide live vaccine candidates against bacterial pathogens. This method requires only the transformation of one or more plasmids carrying genes encoding for two types of biological devices, an unnatural amino acid (uAA) incorporation system and toxin-antitoxin systems in which translation of the antitoxins requires the uAA incorporation. Escherichia coli BL21-AI laboratory strains carrying the plasmids were viable in the presence of the uAA, whereas the free toxins killed these strains after the removal of the uAA. The survival time after uAA removal could be controlled by the choice of the uAA incorporation system and toxin-antitoxin systems. Multilayered toxin-antitoxin systems suppressed escape frequency to less than 1 escape per 109 generations in the best case. This conditional suicide system also worked in Salmonella enterica and E. coli clinical isolates. The S. enterica vaccine strains were attenuated with a >105 fold lethal dose. Serum IgG response and protection against the parental pathogenic strain were confirmed. In addition, the live E. coli vaccine strain was significantly more immunogenic and provided greater protection than a formalin-inactivated vaccine. The live E. coli vaccine was not detected after inoculation, presumably because the uAA is not present in the host animals or the natural environment. These results suggest that this strategy provides a novel way to rapidly produce safe and highly immunogenic live bacterial vaccine candidates. IMPORTANCE: Live vaccines are the oldest vaccines with a history of more than 200 years. Due to their strong immunogenicity, live vaccines are still an important category of vaccines today. However, the development of live vaccines has been challenging due to the difficulties in achieving a balance between safety and immunogenicity. In recent decades, the frequent emergence of various new and old pathogens at risk of causing pandemics has highlighted the need for rapid vaccine development processes. We have pioneered the use of uAAs to control gene expression and to conditionally kill host bacteria as a biological containment system. This report proposes a quick and easy conversion of bacterial pathogens into live vaccine candidates using this containment system. The balance between safety and immunogenicity can be modulated by the selection of the genetic devices used. Moreover, the uAA-auxotrophy can prevent the vaccine from infecting other individuals or establishing the environment.


Assuntos
Escherichia coli , Salmonella enterica , Humanos , Animais , Escherichia coli/metabolismo , Aminoácidos/metabolismo , Vacinas Atenuadas/genética , Salmonella enterica/metabolismo , Vacinas de Produtos Inativados
16.
Emerg Microbes Infect ; 13(1): 2300464, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38164797

RESUMO

Genetic changes have occurred in the genomes of prevalent African swine fever viruses (ASFVs) in the field in China, which may change their antigenic properties and result in immune escape. There is usually poor cross-protection between heterogonous isolates, and, therefore, it is important to test the cross-protection of the live attenuated ASFV vaccines against current prevalent heterogonous isolates. In this study, we evaluated the protective efficacy of the ASFV vaccine candidate HLJ/18-7GD against emerging isolates. HLJ/18-7GD provided protection against a highly virulent variant and a lower lethal isolate, both derived from genotype II Georgia07-like ASFV and isolated in 2020. HLJ/18-7GD vaccination prevented pigs from developing ASF-specific clinical signs and death, decreased viral shedding via the oral and rectal routes, and suppressed viral replication after challenges. However, HLJ/18-7GD vaccination did not provide solid cross-protection against genotype I NH/P68-like ASFV challenge in pigs. HLJ/18-7GD vaccination thus shows great promise as an alternative strategy for preventing and controlling genotype II ASFVs, but vaccines providing cross-protection against different ASFV genotypes may be needed in China.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Suínos , Animais , Febre Suína Africana/prevenção & controle , Vacinas Atenuadas/genética , Proteínas Virais/genética , Genótipo , Vacinas Virais/genética
17.
Methods Mol Biol ; 2733: 101-113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38064029

RESUMO

Rift Valley fever virus (RVFV) is an important mosquito-borne virus that can cause severe disease manifestations in humans including ocular damage, vision loss, late-onset encephalitis, and hemorrhagic fever. In ruminants, RVFV can cause high mortality rates in young animals and high rates of abortion in pregnant animals resulting in an enormous negative impact on the economy of affected regions. To date, no licensed vaccines in humans or anti-RVFV therapeutics for animal or human use are available. The development of reverse genetics has facilitated the generation of recombinant infectious viruses that serve as powerful tools for investigating the molecular biology and pathogenesis of RVFV. Infectious recombinant RVFV can be rescued entirely from cDNAs containing predetermined mutations in their genomes to investigate virus-host interactions and mechanisms of pathogenesis and generate live-attenuated vaccines. In this chapter, we will describe the experimental procedures for the implementation of RVFV reverse genetics.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Humanos , Vírus da Febre do Vale do Rift/genética , Febre do Vale de Rift/genética , Febre do Vale de Rift/prevenção & controle , Genética Reversa , Vacinas Atenuadas/genética , Mutação
18.
J Virol ; 97(12): e0119323, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37971221

RESUMO

IMPORTANCE: Coronaviruses are important pathogens of humans and animals, and vaccine developments against them are imperative. Due to the ability to induce broad and prolonged protective immunity and the convenient administration routes, live attenuated vaccines (LAVs) are promising arms for controlling the deadly coronavirus infections. However, potential recombination events between vaccine and field strains raise a safety concern for LAVs. The porcine epidemic diarrhea virus (PEDV) remodeled TRS (RMT) mutant generated in this study replicated efficiently in both cell culture and in pigs and retained protective immunogenicity against PEDV challenge in pigs. Furthermore, the RMT PEDV was resistant to recombination and genetically stable. Therefore, RMT PEDV can be further optimized as a backbone for the development of safe LAVs.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Recombinação Genética , Doenças dos Suínos , Suínos , Vacinas Atenuadas , Vacinas Virais , Animais , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Vírus da Diarreia Epidêmica Suína/genética , Vírus da Diarreia Epidêmica Suína/crescimento & desenvolvimento , Vírus da Diarreia Epidêmica Suína/imunologia , Suínos/imunologia , Suínos/virologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Replicação Viral , Células Cultivadas , Mutação
19.
Viruses ; 15(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38005861

RESUMO

Rift Valley fever virus (RVFV) is considered to be a high biodefense priority based on its threat to livestock and its ability to cause human hemorrhagic fever. RVFV-infected livestock are also a significant risk factor for human infection by direct contact with contaminated blood, tissues, and aborted fetal materials. Therefore, livestock vaccination in the affected regions has the direct dual benefit and one-health approach of protecting the lives of millions of animals and eliminating the risk of severe and sometimes lethal human Rift Valley fever (RVF) disease. Recently, we have developed a bovine herpesvirus type 1 (BoHV-1) quadruple gene mutant virus (BoHV-1qmv) vector that lacks virulence and immunosuppressive properties due to the deletion of envelope proteins UL49.5, glycoprotein G (gG), gE cytoplasmic tail, and US9 coding sequences. In the current study, we engineered the BoHV-1qmv further by incorporating a chimeric gene sequence to express a proteolytically cleavable polyprotein: RVFV envelope proteins Gn ectodomain sequence fused with bovine granulocyte-macrophage colony-stimulating factor (GMCSF) and Gc, resulting in a live BoHV-1qmv-vectored subunit vaccine against RVFV for livestock. In vitro, the resulting recombinant virus, BoHV-1qmv Sub-RVFV, was replicated in cell culture with high titers. The chimeric Gn-GMCSF and Gc proteins expressed by the vaccine virus formed the Gn-Gc complex. In calves, the BoHV-1qmv Sub-RVFV vaccination was safe and induced moderate levels of the RVFV vaccine strain, MP12-specific neutralizing antibody titers. Additionally, the peripheral blood mononuclear cells from the vaccinated calves had six-fold increased levels of interferon-gamma transcription compared with that of the BoHV-1qmv (vector)-vaccinated calves when stimulated with heat-inactivated MP12 antigen in vitro. Based on these findings, we believe that a single dose of BoHV-1qmv Sub-RVFV vaccine generated a protective RVFV-MP12-specific humoral and cellular immune response. Therefore, the BoHV-1qmv sub-RVFV can potentially be a protective subunit vaccine for cattle against RVFV.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Vacinas Virais , Animais , Bovinos , Humanos , Vírus da Febre do Vale do Rift/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Leucócitos Mononucleares , Imunidade Celular , Vacinas Atenuadas/genética , Vacinas de Subunidades Antigênicas
20.
Virol Sin ; 38(5): 813-826, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660949

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is one of the most significant diseases affecting the pig industry worldwide. The PRRSV mutation rate is the highest among the RNA viruses. To date, NADC30-like PRRSV and highly pathogenic PRRSV (HP-PRRSV) are the dominant epidemic strains in China; however, commercial vaccines do not always provide sufficient cross-protection, and the reasons for insufficient protection are unclear. This study isolated a wild-type NADC30-like PRRSV, SX-YL1806, from Shaanxi Province. Vaccination challenge experiments in piglets showed that commercial modified live virus (MLV) vaccines provided good protection against HP-PRRSV. However, it could not provide sufficient protection against the novel strain SX-YL1806. To explore the reasons for this phenomenon, we compared the genomic homology between the MLV strain and HP-PRRSV or NADC30-like PRRSV and found that the MLV strain had a lower genome similarity with NADC30-like PRRSV. Serum neutralization assay showed that MLV-immune serum slightly promoted the homologous HP-PRRSV replication and significantly promoted the heterologous NADC30-like PRRSV strain replication in vitro, suggesting that antibody-dependent enhancement (ADE) might also play a role in decreasing MLV protective efficacy. These findings expand our understanding of the potential factors affecting the protective effect of PRRSV MLV vaccines against the NADC30-like strains.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Vacinas Virais , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Anticorpos Facilitadores , Síndrome Respiratória e Reprodutiva Suína/prevenção & controle , Genoma Viral , Vacinas Atenuadas/genética , Genômica , Vacinas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA