Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.989
Filtrar
1.
BMC Vet Res ; 20(1): 399, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39244529

RESUMO

BACKGROUND: Klebsiella pneumoniae (KP), responsible for acute lung injury (ALI) and inflammation of the gastrointestinal tract, is a zoonotic pathogen that poses a threat to livestock farming worldwide. Nevertheless, there is currently no validated vaccine to prevent KP infection. The development of mucosal vaccines against KP using Lactobacillus plantarum (L. plantarum) is an effective strategy. RESULTS: Firstly, the L. plantarum strains NC8-pSIP409-aCD11c' and NC8-pLc23-aCD11c were constructed via homologous recombination to express the aCD11c protein either inducibly or constitutively. Both NC8-pSIP409-aCD11c' and NC8-pLc23-aCD11c strains could enhance the adhesion and invasion of L. plantarum on bone marrow-derived dendritic cells (BMDCs), and stimulate the activation of BMDCs compared to the control strain NC8-pSIP409 in vitro. Following oral immunization of mice with NC8-pSIP409-aCD11c' and NC8-pLc23-aCD11c, the cellular, humoral, and mucosal immunity were significantly improved, as evidenced by the increased expression of CD4+ IL-4+ T cells in the spleen, IgG in serum, and secretory IgA (sIgA) in the intestinal lavage fluid (ILF). Furthermore, the protective effects of L. plantarum against inflammatory damage caused by KP infection were confirmed by assessing the bacterial loads in various tissues, lung wet/dry ratio (W/D), levels of inflammatory cytokines, and histological evaluation, which influenced T helper 17 (Th17) and regulatory T (Treg) cells in peripheral blood and lung. CONCLUSIONS: Both the inducible and constitutive L. plantarum strains NC8-pSIP409-aCD11c' and NC8-pLc23-aCD11c have been found to stimulate cellular and humoral immunity levels and alleviate the inflammatory response caused by KP infection. These findings have provided a basis for the development of a novel vaccine against KP.


Assuntos
Imunidade Celular , Infecções por Klebsiella , Klebsiella pneumoniae , Lactobacillus plantarum , Animais , Infecções por Klebsiella/prevenção & controle , Infecções por Klebsiella/veterinária , Infecções por Klebsiella/imunologia , Klebsiella pneumoniae/imunologia , Camundongos , Administração Oral , Feminino , Camundongos Endogâmicos BALB C , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Células Dendríticas/imunologia , Inflamação
2.
Vaccine ; 42(24): 126261, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39217776

RESUMO

INTRODUCTION: Clostridioides difficile (C.diff) infection (CDI) causes significant morbidity and mortality among older adults. Vaccines to prevent CDI are in development; however, data on the target population's preferences are needed to inform vaccination recommendations in the United States (US). This study assessed US adults' willingness to receive a C.diff vaccine and examined how vaccine attributes influence their choices. METHODS: A cross-sectional online survey with a discrete choice experiment (DCE) was conducted among US adults aged ≥50 years. DCE attributes included effectiveness, duration of protection, reduction in symptom severity, out-of-pocket (OOP) costs, number of doses, and side effects. The DCE included 11 choice tasks, each with two hypothetical vaccine profiles and an opt-out (i.e., no vaccine). Attribute-level preference weights were estimated using hierarchical Bayesian modeling. Attribute relative importance (RI) was compared between select subgroups. RESULTS: Of 1216 adults in the analyses, 29.9% reported they knew either 'a little' (20.7%) or 'a lot' (9.2%) about C.diff before the study. A C.diff vaccine was chosen 58.0% of the time (vs. opt-out) across choice tasks. It was estimated that up to 75.0% would choose a vaccine when OOP was $0. Those who were immunocompromised/high-risk for CDI (vs. not) more frequently chose a C.diff vaccine. Decreases in OOP costs (RI = 56.1), improvements in vaccine effectiveness (RI = 17.7), and reduction in symptom severity (RI = 10.3) were most important to vaccine choice. The rank ordering of attributes by importance was consistent across subgroups. CONCLUSION: OOP cost, improvements in vaccine effectiveness, and reduction in CDI severity were highly influential to vaccine selection. Most adults aged ≥50 years were receptive to a C.diff vaccine, especially with little-to-no OOP cost, suggesting that mandating insurance coverage of vaccination with no copayment may increase uptake. The limited awareness about C.diff among adults presents an opportunity for healthcare providers to educate their patients about CDI prevention.


Assuntos
Vacinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Humanos , Pessoa de Meia-Idade , Feminino , Estados Unidos , Masculino , Infecções por Clostridium/prevenção & controle , Estudos Transversais , Idoso , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/economia , Clostridioides difficile/imunologia , Vacinação/psicologia , Preferência do Paciente/estatística & dados numéricos , Inquéritos e Questionários , Idoso de 80 Anos ou mais , Teorema de Bayes
3.
Microb Pathog ; 195: 106913, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39236968

RESUMO

Bacterial septicemia represents a significant disease affecting cultured grass carp culture, with the primary etiological agent identified as the Gram-negative bacterium Aeromonas veronii. In response to an outbreak of septicemia in Guangzhou, we developed a formaldehyde-inactivated vaccine against an A. veronii strain designated AV-GZ21-2. This strain exhibited high pathogenicity in experimental infections across at all developmental stages of grass carp. Mortality rates for grass carp weighing 15 ± 5 g ranged from 16 % to 92 % at exposure temperatures of 19 °C-34 °C, respectively. The median lethal dose (LD50) for grass carp groups weighing 15 ± 5 g, 60 ± 10 g, 150 ± 30 g and 500 ± 50 g were determined to be 1.43, 2.52, 4.65 and 7.12 × 107(CFU/mL), respectively. We investigated the inactivated vaccine in conbination with aluminum hydroxide gel (AV-AHG), Montanide ISA201VG (AV-201VG), and white oil (AV-WO) adjuvants. This study aimed to optimize inactivation conditions and identify the adjuvant that elicits the most robust immune response. The AV-GZ21-2 inactivated bacterial solution (AV),when combined with various adjuvants, was capable of inducing a strong specific immune response in grass carp. The relative percent survival (RPS) following a lethal challenge with AV-GZ21-2 were 94 % for AV-AHG, 88 % for AV-201VG, 84 % for AV-WO and 78 % for AV alone. The minimum immunization dose of the AV-AHG vaccine was determined to be 6.0 × 107 CFU per fish, providing immunity for a duration of six months with an immune protection level exceeding 75 %. Furthermore, the AV-AHG vaccine demonstrated significant protective efficacy against various epidemic isolates of A. veronii. Consequently, we developed an inactivated vaccine targeting a highly pathogenic strain of A. veronii, incorporating an aluminum hydroxide gel adjuvant, which resulted in high immune protection and a duration of immunity exceeding six months. These findings suggest that the AV-AHG vaccine holds substantial potential for industrial application.


Assuntos
Adjuvantes Imunológicos , Aeromonas veronii , Vacinas Bacterianas , Carpas , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Vacinas de Produtos Inativados , Animais , Carpas/microbiologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Aeromonas veronii/imunologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Virulência , Adjuvantes Imunológicos/administração & dosagem , Dose Letal Mediana , Temperatura , China/epidemiologia , Hidróxido de Alumínio/administração & dosagem
4.
Hum Vaccin Immunother ; 20(1): 2399915, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-39262177

RESUMO

Syphilis, caused by Treponema pallidum subsp. pallidum, is a global health concern with increasing rates worldwide. Current prevention strategies, including screen-and-treat approaches, are not sufficient to resolve rising infection rates, emphasizing the need for a vaccine. Developing a syphilis vaccine necessitates a range of cross-disciplinary considerations, including essential disease-specific protection, technical requirements, economic feasibility, manufacturing constraints, public acceptance, equitable vaccine access, alignment with global public vaccination programs, and identification of essential populations to be vaccinated to achieve herd immunity. Central to syphilis vaccine development is prioritization of global vaccine availability, including access in low- to middle-income settings. Various vaccine platforms, including subunit, virus-like particle (VLP), mRNA, and outer membrane vesicle (OMV) vaccines, present both advantages and challenges. The proactive consideration of both manufacturing feasibility and efficacy throughout the pre-clinical research and development stages is essential for producing an efficacious, inexpensive, and scalable syphilis vaccine to address the growing global health burden caused by this disease.


Assuntos
Vacinas Bacterianas , Sífilis , Treponema pallidum , Desenvolvimento de Vacinas , Sífilis/prevenção & controle , Sífilis/imunologia , Humanos , Treponema pallidum/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Saúde Global , Animais , Vacinas de Partículas Semelhantes a Vírus/imunologia
5.
Eur J Pharm Sci ; 202: 106896, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39250981

RESUMO

Recent advances in understanding Alzheimer's disease (AD) suggest the possibility of an infectious etiology, with Porphyromonas gingivalis emerging as a prime suspect in contributing to AD. P. gingivalis may invade systemic circulation via weakened oral/intestinal barriers and then cross the blood-brain barrier (BBB), reaching the brain and precipitating AD pathology. Based on the proposed links between P. gingivalis and AD, a prospective approach is the development of an oral nanovaccine containing P. gingivalis antigens for mucosal delivery. Targeting the gut-associated lymphoid tissue (GALT), the nanovaccine may elicit both mucosal and systemic immunity, thereby hampering P. gingivalis ability to breach the oral/intestinal barriers and the BBB, respectively. The present study describes the optimization, characterization, and in vitro evaluation of a candidate chitosan-coated poly(lactic-co-glycolic acid) (PLGA-CS) nanovaccine containing a P. gingivalis antigen extract. The nanocarrier was prepared using the double emulsion solvent evaporation method and optimized for selected experimental factors, e.g. PLGA amount, surfactant concentration, w1/o phase ratio, applying a d-optimal statistical design to target the desired physicochemical criteria for its intended application. After nanocarrier optimization, the nanovaccine was characterized in terms of particle size, polydispersity index (PdI), ζ-potential, encapsulation efficiency (EE), drug loading (DL), morphology, and in vitro release profile, as well as for mucoadhesivity, stability under simulated gastrointestinal conditions, antigen integrity, in vitro cytotoxicity and uptake using THP-1 macrophages. The candidate PLGA-CS nanovaccine demonstrated appropriate physicochemical, mucoadhesive, and antigen release properties for oral delivery, along with acceptable levels of EE (55.3 ± 3.5 %) and DL (1.84 ± 0.12 %). The integrity of the encapsulated antigens remained uncompromised throughout NPs production and simulated gastrointestinal exposure, as confirmed by SDS-PAGE and Western blotting analyses. Furthermore, the nanovaccine showed effective in vitro uptake, while exhibiting low cytotoxicity. Taken together, these findings underscore the potential of PLGA-CS NPs as carriers for adequate antigen mucosal delivery, paving the way for further investigations into their applicability as vaccine candidates against P. gingivalis.


Assuntos
Antígenos de Bactérias , Quitosana , Portadores de Fármacos , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porphyromonas gingivalis , Quitosana/química , Quitosana/administração & dosagem , Porphyromonas gingivalis/efeitos dos fármacos , Humanos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Portadores de Fármacos/química , Nanopartículas/administração & dosagem , Antígenos de Bactérias/administração & dosagem , Antígenos de Bactérias/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/imunologia , Liberação Controlada de Fármacos
6.
J Infect Dis ; 230(Supplement_1): S82-S86, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140718

RESUMO

Lyme disease is caused by the spirochete, Borrelia burgdorferi, which is transmitted by Ixodes spp ticks. The rise in Lyme disease cases since its discovery in the 1970s has reinforced the need for a vaccine. A vaccine based on B burgdorferi outer surface protein A (OspA) was approved by the Food and Drug Administration (FDA) several decades ago, but was pulled from the market a few years later, reportedly due to poor sales, despite multiple organizations concluding that it was safe and effective. Newer OspA-based vaccines are being developed and are likely to be available in the coming years. More recently, there has been a push to develop vaccines that target the tick vector instead of the pathogen to inhibit tick feeding and thus prevent transmission of tick-borne pathogens to humans and wildlife reservoirs. This review outlines the history of Lyme disease vaccines and this movement to anti-tick vaccine approaches.


Assuntos
Borrelia burgdorferi , Ixodes , Vacinas contra Doença de Lyme , Doença de Lyme , Doença de Lyme/prevenção & controle , Doença de Lyme/imunologia , Humanos , Animais , Borrelia burgdorferi/imunologia , Vacinas contra Doença de Lyme/imunologia , Ixodes/microbiologia , Vacinação , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Antígenos de Superfície/imunologia , Lipoproteínas/imunologia
7.
Vet Microbiol ; 297: 110197, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39126781

RESUMO

Klebsiella pneumoniae is a primary cause of clinical mastitis in dairy cows, with prevention being crucial, as treatments often fail due to antimicrobial resistance. Recent studies identified type I fimbrial antigens of K. pneumoniae as promising vaccine candidates, but there are limited research data. In this study, 3 fimbriae genes (fimA, fimC and fimG) were cloned and recombinantly expressed in Escherichia coli and their protective efficacy against K. pneumoniae evaluated in a mouse model. All 3 recombinant fimbriae proteins elicited strong humoral immune responses in mice, significantly increasing IgG, IgG1 and IgG2a. Notably, using a model of mice challenged with an intraperitoneal injection of bacteria, FimG significantly reduced bacterial loads in the spleen and lung, whereas FimA and FimC had limited protection for these organs. Either active or passive immunization with FimG produced substantial protective effects in mice challenged with K. pneumoniae LD100; in contrast, the mortality rate in the FimA-immunized group was similar to that of the control group, whereas FimC had weak protection. We concluded that the FimG recombinant protein vaccine had a favorable protective effect, with potential for immunization against K. pneumoniae mastitis.


Assuntos
Anticorpos Antibacterianos , Vacinas Bacterianas , Modelos Animais de Doenças , Proteínas de Fímbrias , Infecções por Klebsiella , Klebsiella pneumoniae , Camundongos Endogâmicos BALB C , Animais , Klebsiella pneumoniae/imunologia , Camundongos , Infecções por Klebsiella/prevenção & controle , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Proteínas de Fímbrias/imunologia , Proteínas de Fímbrias/genética , Feminino , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Proteínas Recombinantes/imunologia , Fímbrias Bacterianas/imunologia , Imunoglobulina G/sangue , Imunidade Humoral
8.
Anaerobe ; 89: 102902, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39187174

RESUMO

INTRODUCTION: Chickens with Necrotic Enteritis (NE), caused by Clostridium perfringens, exhibit acute and chronic symptoms that are difficult to diagnose, leading to significant economic losses. Vaccination is the best method for controlling and preventing NE. However, only two vaccines based on the CPA and NetB toxins have been commercialized, offering partial protection, highlighting the urgent need for more effective vaccines. OBJECTIVE: This review aimed to identify promising antigens for NE vaccine formulation and discuss factors affecting their effectiveness. METHODS: A systematic review using five scientific databases identified 30 eligible studies through the Rayyan tool, which were included for quality review. RESULTS: We identified 25 promising antigens, including CPA, NetB, FBA, ZMP, CnaA, FimA, and FimB, categorized by their role in disease pathogenesis. This review discusses the biochemical, physiological, and genetic traits of recombinant antigens used in vaccine prototypes, their expression systems, and immunization potential in chickens challenged with virulent C. perfringens strains. Market supply challenges, immunogenic potential, vaccine platforms, adjuvants, and factors related to vaccination schedules-such as administration routes, dosing intervals, and age at immunization-are also addressed. Additionally, the study notes that vaccine formulations tested under mild challenges may not offer adequate field-level protection due to issues replicating aggressive conditions, strain virulence loss, and varied methodologies. CONCLUSIONS: An ideal NE vaccine should incorporate multiple antigens, molecular adjuvants, and delivery systems via in ovo and oral routes. The review underscores the challenges in developing and validating NE vaccines and the urgent need for a standardized protocol to replicate aggressive challenges accurately.


Assuntos
Vacinas Bacterianas , Galinhas , Infecções por Clostridium , Clostridium perfringens , Enterite , Doenças das Aves Domésticas , Animais , Clostridium perfringens/imunologia , Clostridium perfringens/genética , Enterite/prevenção & controle , Enterite/veterinária , Enterite/microbiologia , Enterite/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/veterinária , Infecções por Clostridium/imunologia , Antígenos de Bactérias/imunologia , Desenvolvimento de Vacinas/métodos , Vacinação/veterinária , Vacinação/métodos , Necrose/veterinária
9.
Lancet Microbe ; 5(9): 100871, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39181152

RESUMO

BACKGROUND: The increase in syphilis rates worldwide necessitates development of a vaccine with global efficacy. We aimed to explore Treponema pallidum subspecies pallidum (TPA) molecular epidemiology essential for vaccine research by analysing clinical data and specimens from early syphilis patients using whole-genome sequencing (WGS) and publicly available WGS data. METHODS: In this multicentre, cross-sectional, molecular epidemiology study, we enrolled patients with primary, secondary, or early latent syphilis from clinics in China, Colombia, Malawi, and the USA between Nov 28, 2019, and May 27, 2022. Participants aged 18 years or older with laboratory confirmation of syphilis by direct detection methods or serological testing, or both, were included. Patients were excluded from enrolment if they were unwilling or unable to give informed consent, did not understand the study purpose or nature of their participation, or received antibiotics active against syphilis in the past 30 days. TPA detection and WGS were conducted on lesion swabs, skin biopsies, skin scrapings, whole blood, or rabbit-passaged isolates. We compared our WGS data to publicly available genomes and analysed TPA populations to identify mutations associated with lineage and geography. FINDINGS: We screened 2802 patients and enrolled 233 participants, of whom 77 (33%) had primary syphilis, 154 (66%) had secondary syphilis, and two (1%) had early latent syphilis. The median age of participants was 28 years (IQR 22-35); 154 (66%) participants were cisgender men, 77 (33%) were cisgender women, and two (1%) were transgender women. Of the cisgender men, 66 (43%) identified as gay, bisexual, or other sexuality. Among all participants, 56 (24%) had HIV co-infection. WGS data from 113 participants showed a predominance of SS14-lineage strains with geographical clustering. Phylogenomic analyses confirmed that Nichols-lineage strains were more genetically diverse than SS14-lineage strains and clustered into more distinct subclades. Differences in single nucleotide variants (SNVs) were evident by TPA lineage and geography. Mapping of highly differentiated SNVs to three-dimensional protein models showed population-specific substitutions, some in outer membrane proteins (OMPs) of interest. INTERPRETATION: Our study substantiates the global diversity of TPA strains. Additional analyses to explore TPA OMP variability within strains is vital for vaccine development and understanding syphilis pathogenesis on a population level. FUNDING: US National Institutes of Health National Institute for Allergy and Infectious Disease, the Bill & Melinda Gates Foundation, Connecticut Children's, and the Czech Republic National Institute of Virology and Bacteriology.


Assuntos
Epidemiologia Molecular , Sífilis , Treponema pallidum , Sequenciamento Completo do Genoma , Humanos , Treponema pallidum/genética , Treponema pallidum/imunologia , Masculino , Feminino , Sífilis/epidemiologia , Sífilis/microbiologia , Adulto , Estudos Transversais , Genoma Bacteriano , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Pessoa de Meia-Idade , Adulto Jovem , Variação Genética/genética , Filogenia , Estados Unidos/epidemiologia , Genômica , Treponema
10.
Vaccine ; 42(24): 126268, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39208565

RESUMO

Mycoplasma (M.) hyopneumoniae is a primary etiological agent of porcine enzootic pneumonia (PEP), a disease that causes significant economic losses to pig farming worldwide. Current commercial M. hyopneumoniae vaccines induce partial protection, decline in preventing transmission of this pathogen or inducing complete immunity, evidencing the need for improving vaccines against PEP. In our study, we aimed to test the effectiveness of the SBA-15 ordered mesoporous silica nanostructured particles as an immune adjuvant of a vaccine composed of M. hyopneumoniae strain 232 proteins encapsulated in SBA-15 and administered by intramuscular route in piglets to evaluate the immune responses and immune-protection against challenge. Forty-eight 24-day-old M. hyopneumoniae-free piglets were divided into four experimental groups with different protocols, encompassing a commercial vaccine against M. hyopneumoniae, SBA-15 vaccine, SBA-15 adjuvant without antigens and a non-immunized group. All piglets were challenged with the virulent strain 232 of M. hyopneumoniae. Piglets that received the SBA-15 and commercial vaccine presented marked immune responses characterized by anti-M. hyopneumoniae IgA and IgG antibodies in serum, anti-M. hyopneumoniae IgA antibodies in nasal mucosa and showed an upregulation of IL-17 and IL-4 cytokines and downregulation of IFN-γ in lungs 35 days post-infection. Piglets immunized with SBA-15 vaccine presented a reduction of bacterial shedding compared to piglets immunized with a commercial bacterin. In addition, piglets from SBA-15 adjuvant suspension group presented increased IL-17 gene expression in the lungs without involvement of Th1 and Th2 responses after challenge. These results indicated that SBA-15 vaccine induced both humoral and cell-mediated responses in the upper respiratory tract and lungs, first site of replication and provided protection against M. hyopneumoniae infection with a homologous strain with reduction of lung lesions and bacterial shedding. Finally, these results enhance the potential use of new technologies such as nanostructured particles applied in vaccines for the pig farming industry.


Assuntos
Adjuvantes Imunológicos , Anticorpos Antibacterianos , Vacinas Bacterianas , Mycoplasma hyopneumoniae , Nanoestruturas , Pneumonia Suína Micoplasmática , Dióxido de Silício , Vacinas de Produtos Inativados , Animais , Mycoplasma hyopneumoniae/imunologia , Dióxido de Silício/administração & dosagem , Dióxido de Silício/imunologia , Pneumonia Suína Micoplasmática/prevenção & controle , Pneumonia Suína Micoplasmática/imunologia , Suínos , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Anticorpos Antibacterianos/sangue , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Derrame de Bactérias , Citocinas/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Injeções Intramusculares
11.
Vaccine ; 42(24): 126254, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39213981

RESUMO

Lawsonia intracellularis is the causative agent of ileitis in swine that manifests as slower weight gain, mild or hemorrhagic diarrhea and/or death in severe cases. As an economically important swine pathogen, development of effective vaccines is important to the swine industry. In developing a subunit vaccine with three recombinant antigens - FliC, GroEL and YopN - we wanted to identify a formulation that would produce robust immune responses that reduce disease parameters associated with Lawsonia intracellularis infection. We formulated these three antigens with four adjuvants: Montanide ISA 660 VG, Montanide Gel 02 PR, Montanide IMS 1313 VG NST, and Montanide ISA 61 VG in an immunogenicity study. Groups vaccinated with formulations including Montanide ISA 660 VG or Montanide ISA 61 VG had significantly more robust immune responses than groups vaccinated with formulations including Montanide Gel 02 PR or Montanide IMS 1313 VG NST. In the challenge study, animals vaccinated with these antigens and Montanide ISA 61 VG had reduced lesion scores, reduced lesion lengths, and increased average daily gain, but no reduction in shedding relative to the control animals. This work shows that this vaccine formulation should be considered for future study in a field and performance trial.


Assuntos
Infecções por Desulfovibrionaceae , Lawsonia (Bactéria) , Doenças dos Suínos , Vacinas de Subunidades Antigênicas , Animais , Suínos , Lawsonia (Bactéria)/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Infecções por Desulfovibrionaceae/prevenção & controle , Infecções por Desulfovibrionaceae/imunologia , Infecções por Desulfovibrionaceae/veterinária , Vacinação/métodos , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Emulsões , Derrame de Bactérias
12.
Vaccine ; 42(23): 126217, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39163713

RESUMO

Klebsiella pneumoniae (K. pneumoniae) is an opportunistic pathogen and the major cause of healthcare-associated infections, which are increasingly complicated by the prevalence of highly invasive and hyper-virulent K. pneumoniae strains, necessitating the development of alternative strategies for combatting infections caused by this bacterium. In this study, we successfully constructed a fusion antigen called KP-Ag1, comprising three antigens (GlnH, FimA, and KPN_00466) that were previously identified through reverse vaccinology. Immunization with KP-Ag1 formulated with Al(OH)3 adjuvant elicited robust humoral and cellular immune response in mice, and conferred protective immunity in a murine model of K. pneumoniae lung infection. Further analysis of serum IgG subtypes from mice immunized with KP-Ag1 revealed a predominant IgG1 response, indicating that KP-Ag1 predominantly induces a Th2-biased immune response. Additionally, opsonophagocytic killing assay suggested that humoral immune responses play a pivotal role in mediating protection conferred by KP-Ag1. Moreover, KP-Ag1 was found to promote the activation and maturation of BMDCs in vitro, which is essential for subsequent efficient antigen presentation. More importantly, vaccination with KP-Ag1 demonstrated cross-protective efficacy against clinical isolates of K. pneumoniae varying in serotypes, antibiotic resistance, and virulence profiles. Therefore, KP-Ag1 holds promise as a candidate for K. pneumoniae vaccine development.


Assuntos
Adjuvantes Imunológicos , Anticorpos Antibacterianos , Vacinas Bacterianas , Modelos Animais de Doenças , Imunoglobulina G , Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Klebsiella pneumoniae/imunologia , Infecções por Klebsiella/prevenção & controle , Infecções por Klebsiella/imunologia , Camundongos , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Adjuvantes Imunológicos/administração & dosagem , Feminino , Imunidade Humoral , Vacinação/métodos , Antígenos de Bactérias/imunologia , Pneumonia Bacteriana/prevenção & controle , Pneumonia Bacteriana/imunologia , Camundongos Endogâmicos BALB C , Imunidade Celular , Proteção Cruzada/imunologia
13.
Vaccine ; 42(23): 126220, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39182314

RESUMO

Sheep farming contributes to the socioeconomic development of small and medium-scale livestock farmers. However, several factors can hinder successful animal production, as is the case for infectious diseases, such as the one caused by Corynebacterium pseudotuberculosis, known as caseous lymphadenitis (CLA). CLA has >90% prevalence in Brazilian herds and antibiotic treatment is not effective, consequently causing significant economic losses to farmers. Given the above, effective vaccines need to be developed to prevent this disease. This study aimed to evaluate the adjuvant activity of the lipid extract from the macroalgae Iridaea cordata as a candidate for developing an effective vaccine formulation. For such, four groups of six sheep each were inoculated with sterile 0.9% saline solution (G1), rCP01850 (G2), rCP01850 + I. cordata (G3), and rCP01850 + saponin (G4). Each sheep received two vaccine doses 30 days apart. Total IgG production levels significantly increased in experimental groups G3 and G4 on days 30, 60, and 90. On day 90, G3 showed higher total IgG production (p < 0.05) when compared to G4. When analyzing cytokine production, G3 was the only experimental group with significantly increased IFN-γ, IL-12, TNF-α, and IL-10 mRNA expression levels. Our results show the vaccine formulation containing rCP01850 adjuvanted with the I. cordata lipid extract elicited a Th1 immune response in sheep, indicating I. cordata lipid extract may be a promising adjuvant for developing an effective vaccine against infection caused by C. pseudotuberculosis.


Assuntos
Adjuvantes Imunológicos , Vacinas Bacterianas , Corynebacterium pseudotuberculosis , Doenças dos Ovinos , Células Th1 , Animais , Ovinos , Doenças dos Ovinos/prevenção & controle , Doenças dos Ovinos/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Células Th1/imunologia , Corynebacterium pseudotuberculosis/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Citocinas/metabolismo , Citocinas/imunologia , Imunoglobulina G/sangue , Infecções por Corynebacterium/prevenção & controle , Infecções por Corynebacterium/imunologia , Lipídeos/imunologia , Brasil , Proteínas de Bactérias/imunologia
14.
Anaerobe ; 89: 102895, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39122140

RESUMO

INTRODUCTION: Producing commercial bacterins/toxoids against Clostridium spp. is laborious and hazardous. Conversely, developing prototype vaccines using purified recombinant toxoids, though safe and effective, is both laborious and costly for application in production animals. OBJECTIVE: Considering that inactivated recombinant Escherichiacoli (bacterin) is a simple, cost-effective, and to be safe solution, we evaluated, for the first time, a pentavalent formulation of recombinant bacterins containing the alpha, beta, and epsilon toxins of Clostridiumperfringens and C and D neurotoxins of Clostridiumbotulinum in sheep. METHODS: Subcutaneously, 18 Texel sheep received two doses (200 µg of each antigen) of recombinant bacterin (n = 7) or purified recombinant antigens (n = 6) on days 0 and 28, while the control group (n = 5) did not receive an immunization. Sera samples from days 0 (before the 1st dose), 28 (before the 2nd dose), and 56, 84, and 112 were used for measuring IgG (indirect ELISA) and neutralizing antibodies (mouse serum neutralization). RESULTS: Both formulations induced significant levels of IgG against all five toxins (p < 0.05) up to day 112, with peaks at days 28 and 56 post-immunization. The expected booster effect occurred only for the botulinum toxins. The neutralizing antibody titers were satisfactory against ETX (≥2 IU/ml for both formulations) and BoNT-D [5 IU/ml (bacterin) and 10 IU/ml (purified)]. CONCLUSION: While adjustments are required, the recombinant bacterin platform holds great potential for polyvalent vaccines due to its straightforward, safe, and cost-effective production, establishing it as a user-friendly technology for the veterinary immunobiological industry.


Assuntos
Anticorpos Antibacterianos , Anticorpos Neutralizantes , Vacinas Bacterianas , Botulismo , Enterotoxemia , Animais , Botulismo/prevenção & controle , Botulismo/veterinária , Botulismo/imunologia , Ovinos , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Anticorpos Antibacterianos/sangue , Enterotoxemia/prevenção & controle , Enterotoxemia/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Doenças dos Ovinos/prevenção & controle , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/microbiologia , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Imunoglobulina G/sangue , Escherichia coli/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/genética , Feminino
15.
Anaerobe ; 89: 102896, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39127403

RESUMO

INTRODUCTION: Clostridioides difficile is the main cause of antibiotic-associated diarrhea in humans and is a major enteropathogen in several animal species. In newborn piglets, colonic lesions caused by C. difficile A and B toxins (TcdA and TcdB, respectively) cause diarrhea and significant production losses. OBJECTIVE: The present study aimed to develop two recombinant vaccines from immunogenic C-terminal fragments of TcdA and TcdB and evaluate the immune response in rabbits and in breeding sows. Two vaccines were produced: bivalent (rAB), consisting of recombinant fragments of TcdA and TcdB, and chimeric (rQAB), corresponding to the synthesis of the same fragments in a single protein. Groups of rabbits were inoculated with 10 or 50 µg of proteins adjuvanted with aluminum or 0.85 % sterile saline in a final volume of 1 mL/dose. Anti-TcdA and anti-TcdB IgG antibodies were detected in rabbits and sows immunized with both rAB and rQAB vaccines by ELISA. The vaccinated sows were inoculated intramuscularly with 20 µg/dose using a prime-boost approach. RESULTS: Different antibody titers (p ≤ 0.05) were observed among the vaccinated groups of sows (rAB and rQAB) and control. Additionally, newborn piglets from vaccinated sows were also positive for anti-TcdA and anti-TcdB IgGs, in contrast to control piglets (p ≤ 0.05). Immunization of sows with the rQAB vaccine conferred higher anti-TcdA and anti-TcdB responses in piglets, suggesting the superiority of this compound over rAB. CONCLUSION: The synthesized recombinant proteins were capable of inducing antibody titers against C. difficile toxins A and B in sows, and were passively transferred to piglets through colostrum.


Assuntos
Animais Recém-Nascidos , Anticorpos Antibacterianos , Toxinas Bacterianas , Vacinas Bacterianas , Clostridioides difficile , Infecções por Clostridium , Doenças dos Suínos , Vacinas Sintéticas , Animais , Feminino , Suínos , Coelhos , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/veterinária , Infecções por Clostridium/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/genética , Gravidez , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Clostridioides difficile/imunologia , Clostridioides difficile/genética , Anticorpos Antibacterianos/sangue , Toxinas Bacterianas/imunologia , Toxinas Bacterianas/genética , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Enterotoxinas/imunologia , Enterotoxinas/genética
16.
Fish Shellfish Immunol ; 153: 109836, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39147177

RESUMO

Pseudomonas plecoglossicida is one of most important pathogenic bacterial species in large yellow croaker and several other commercially valuable fish species. In our previous study, a GacS deficient mutant (ΔgacS) was constructed and its virulence showed substantially attenuated. In present study, the safety, immunogenicity and protective effect of the ΔgacS were evaluated in large yellow croaker as a live-attenuated vaccine candidate. It was shown that the ΔgacS strain exhibited good safety to large yellow croaker and there was no mortality or clinical symptoms observed in all fish that infected by ΔgacS strain with the doses range from 2 × 105~107 CFU per fish via intraperitoneal injection (IP) or immersion (IM), and almost all bacteria were cleaned up in the spleen of the fish at 14-day post infection. Specific antibodies could be detected at 7-day and 14-day post infection by direct agglutination method, and the valences of antibodies and bactericidal activities of the serum were significant increased with vaccination doses and vaccination time. Moreover, the expressions of some molecules and cytokines involved in specific immune responses were detected in the ΔgacS strain immunization group and control group. After challenged by the wild-type (WT) strain XSDHY-P, the relative percentage survival (RPS) showed highly correlated with the immunized dosage regardless of vaccination methods. It showed that the RPS of the IP groups were 39.47 %, 57.89 %, 71.05 % with the immune dosage in a descending order, respectively, and the RPS of the IM groups were 26.31 %, 36.84 %, 76.31 % with the immune dosage in a descending order, respectively. In summary, the ΔgacS strain exhibited safety and good protective effect to large yellow croaker and was a potential live vaccine candidate.


Assuntos
Doenças dos Peixes , Perciformes , Infecções por Pseudomonas , Pseudomonas , Vacinas Atenuadas , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Perciformes/imunologia , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Infecções por Pseudomonas/veterinária , Infecções por Pseudomonas/prevenção & controle , Infecções por Pseudomonas/imunologia , Pseudomonas/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas contra Pseudomonas/imunologia , Vacinas contra Pseudomonas/genética , Imunogenicidade da Vacina
17.
Vet Med Sci ; 10(5): e70001, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39189840

RESUMO

BACKGROUND: This field efficacy study was designed to determine the efficacy of a new bivalent vaccine containing porcine circovirus type 2d (PCV2d) and Mycoplasma hyopneumoniae at three independent pig farms. METHODS: Three pig farms were selected based on their history of subclinical PCV2 infection and enzootic pneumonia. Each farm housed a total of 40, 18-day-old pigs that were randomly allocated to 1 of 2 treatment groups. Pigs were administered a 2.0 mL dose of the bivalent vaccine intramuscularly at 21 days of age in accordance with the manufacturer's recommendations, whereas unvaccinated pigs were administered a single dose of phosphate-buffered saline at the same age. RESULTS: Clinically, the average daily weight gain of vaccinated groups was significantly higher (p < 0.05) than those of unvaccinated animals during the growing (70-112 days of age), finishing (112-175 days of age) and overall (3-175 days of age) stages of production. Vaccinated animals elicited neutralizing anti-PCV2 antibodies and PCV2d-specific interferon-γ secreting cells (IFN-γ-SC), which reduced the amount of PCV2d genomic copies in blood and reduced lymphoid lesions severity when compared with unvaccinated animals. Similarly, vaccinated animals elicited M. hyopneumoniae-specific IFN-γ-SC, which reduced the amount of M. hyopneumoniae in the larynx and reduced lung lesions severity. CONCLUSIONS: The result of the field trial demonstrated that the bivalent vaccine was efficacious in the protection of swine herds suffering from subclinical PCV2d infection and enzootic pneumonia.


Assuntos
Vacinas Bacterianas , Infecções por Circoviridae , Circovirus , Mycoplasma hyopneumoniae , Pneumonia Suína Micoplasmática , Vacinas Virais , Animais , Circovirus/imunologia , Mycoplasma hyopneumoniae/imunologia , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/prevenção & controle , Suínos , Pneumonia Suína Micoplasmática/prevenção & controle , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Combinadas/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Doenças dos Suínos/microbiologia , Distribuição Aleatória , Sus scrofa , Infecções Assintomáticas
18.
Fish Shellfish Immunol ; 151: 109751, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971349

RESUMO

Egg yolk antibodies (IgY) can be prepared in large quantities and economically, and have potential value as polyvalent passive vaccines (against multiple bacteria) in aquaculture. This study prepared live and inactivated Vibrio fluvialis IgY and immunized Carassius auratus prior to infection with V. fluvialis and Aeromonas hydrophila. The results showed that the two IgY antibodies hold effective passive protective rates against V. fluvialis and A. hydrophila in C. auratus. Further, the serum of C. auratus recognized the two bacteria in vitro, with a decrease in the bacteria content of the kidney. The phagocytic activity of C. auratus plasma was enhanced, with a decrease in the expression of inflammatory and antioxidant factors. Pathological sections showed that the kidney, spleen, and intestinal tissue structures were intact, and apoptosis and DNA damage decreased in kidney cells. Moreover, the immunoprotection conferred by the live V. fluvialis IgY was higher than that of the inactivated IgY. Addition, live V. fluvialis immunity induced IgY antibodies against outer membrane proteins of V. fluvialis were more than inactivated V. fluvialis immunity. Furthermore, heterologous immune bacteria will not cause infection, so V. fluvialis can be used to immunize chickens to obtain a large amount of IgY antibody. These findings suggest that the passive immunization effect of live bacterial IgY antibody on fish is significantly better than that of inactivated bacterial antibody, and the live V. fluvialis IgY hold potential value as polyvalent passive vaccines in aquaculture.


Assuntos
Aeromonas hydrophila , Gema de Ovo , Doenças dos Peixes , Imunoglobulinas , Vibrioses , Vibrio , Animais , Imunoglobulinas/imunologia , Imunoglobulinas/sangue , Vibrioses/veterinária , Vibrioses/imunologia , Vibrioses/prevenção & controle , Vibrio/imunologia , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Gema de Ovo/imunologia , Aeromonas hydrophila/imunologia , Carpa Dourada/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/prevenção & controle , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Imunização Passiva/veterinária , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem
19.
Int J Biol Macromol ; 275(Pt 2): 133671, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38971274

RESUMO

Vaccination is the most effective method for preventing infectious diseases. Oral vaccinations have attracted much attention due to the ability to boost intestinal and systemic immunity. The focus of this study was to develop a poly (lactide-co-glycolide) acid (PLGA)-based ternary polyelectrolyte complex (PEC) with chitosan, sodium alginate, and transmembrane peptides R8 for the delivery of antigen proteins. In this study, the antigen protein (HBf), consisting of the Mycobacterium avium subspecies paratuberculosis (MAP) antigens HBHA, Ag85B, and Bfra, was combined with R8 to generate self-assembled conjugates. The results showed that PEC presented a cross-linked reticular structure to protect the encapsulated proteins in the simulated gastric fluid. Then, the nanocomposite separated into individual nanoparticles after entering the simulated intestinal fluid. The ternary PEC with R8 promoted the in vivo uptake of antigens by intestinal lymphoid tissue. Moreover, the ternary PEC administered orally to mice promoted the secretion of specific antibodies and intestinal mucosal IgA. In addition, in the mouse models of MAP infection, the ternary PEC enhanced splenic T cell responses, thus reducing bacterial load and liver pathology score. These results suggested that this ternary electrolyte complex could be a promising delivery platform for oral subunit vaccine candidates, not limited to MAP infection.


Assuntos
Alginatos , Quitosana , Imunidade nas Mucosas , Quitosana/química , Alginatos/química , Animais , Imunidade nas Mucosas/efeitos dos fármacos , Camundongos , Administração Oral , Polieletrólitos/química , Feminino , Camundongos Endogâmicos BALB C , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/química , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinas Bacterianas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...