Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.813
Filtrar
1.
J Biomed Sci ; 31(1): 58, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824576

RESUMO

BACKGROUND: A vaccine against Trypanosoma cruzi, the agent of Chagas disease, would be an excellent additional tool for disease control. A recombinant vaccine based on Tc24 and TSA1 parasite antigens was found to be safe and immunogenic in naïve macaques. METHODS: We used RNA-sequencing and performed a transcriptomic analysis of PBMC responses to vaccination of naïve macaques after each vaccine dose, to shed light on the immunogenicity of this vaccine and guide the optimization of doses and formulation. We identified differentially expressed genes and pathways and characterized immunoglobulin and T cell receptor repertoires. RESULTS: RNA-sequencing analysis indicated a clear transcriptomic response of PBMCs after three vaccine doses, with the up-regulation of several immune cell activation pathways and a broad non-polarized immune profile. Analysis of the IgG repertoire showed that it had a rapid turnover with novel IgGs produced following each vaccine dose, while the TCR repertoire presented several persisting clones that were expanded after each vaccine dose. CONCLUSIONS: These data suggest that three vaccine doses may be needed for optimum immunogenicity and support the further evaluation of the protective efficacy of this vaccine.


Assuntos
Doença de Chagas , Macaca mulatta , Vacinas Protozoárias , Receptores de Antígenos de Linfócitos T , Animais , Doença de Chagas/imunologia , Doença de Chagas/prevenção & controle , Receptores de Antígenos de Linfócitos T/imunologia , Vacinas Protozoárias/imunologia , Trypanosoma cruzi/imunologia , Imunoglobulinas/imunologia
2.
Infect Immun ; 92(6): e0006524, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38722167

RESUMO

Giardia lamblia is an important protozoan cause of diarrheal disease worldwide, delayed development and cognitive impairment in children in low- and middle-income countries, and protracted post-infectious syndromes in developed regions. G. lamblia resides in the lumen and at the epithelial surface of the proximal small intestine but is not mucosa invasive. The protozoan parasite is genetically diverse with significant genome differences across strains and assemblages. Animal models, particularly murine models, have been instrumental in defining mechanisms of host defense against G. lamblia, but mice cannot be readily infected with most human pathogenic strains. Antibiotic pretreatment can increase susceptibility, suggesting that the normal microbiota plays a role in controlling G. lamblia infection in mice, but the broader implications on susceptibility to diverse strains are not known. Here, we have used gnotobiotic mice to demonstrate that robust intestinal infection can be achieved for a broad set of human-pathogenic strains of the genetic assemblages A and B. Furthermore, gnotobiotic mice were able to eradicate infection with a similar kinetics to conventional mice after trophozoite challenge. Germ-free mice could also be effectively immunized by the mucosal route with a protective antigen, α1-giardin, in a manner dependent on CD4 T cells. These results indicate that the gnotobiotic mouse model is powerful for investigating acquired host defenses in giardiasis, as the mice are broadly susceptible to diverse G. lamblia strains yet display no apparent defects in mucosal immunity needed for controlling and eradicating this lumen-dwelling pathogen.


Assuntos
Modelos Animais de Doenças , Vida Livre de Germes , Giardia lamblia , Giardíase , Animais , Giardíase/imunologia , Giardíase/parasitologia , Giardia lamblia/imunologia , Giardia lamblia/genética , Camundongos , Vacinas Protozoárias/imunologia , Vacinação , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/parasitologia , Humanos , Feminino
3.
Front Immunol ; 15: 1380660, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720894

RESUMO

Introduction: Babesia bovis, a tick-borne apicomplexan parasite causing bovine babesiosis, remains a significant threat worldwide, and improved and practical vaccines are needed. Previous studies defined the members of the rhoptry associated protein-1 (RAP-1), and the neutralization-sensitive rhoptry associated protein-1 related antigen (RRA) superfamily in B. bovis, as strong candidates for the development of subunit vaccines. Both RAP-1 and RRA share conservation of a group of 4 cysteines and amino acids motifs at the amino terminal end (NT) of these proteins. Methods and results: Sequence comparisons among the RRA sequences of several B. bovis strains and other Babesia spp parasites indicate a high level of conservation of a 15-amino acid (15-mer) motif located at the NT of the protein. BlastP searches indicate that the 15-mer motif is also present in adenylate cyclase, dynein, and other ATP binding proteins. AlphaFold2 structure predictions suggest partial exposure of the 15-mer on the surface of RRA of three distinct Babesia species. Antibodies in protected cattle recognize a synthetic peptide representing the 15-mer motif sequence in iELISA, and rabbit antibodies against the 15-mer react with the surface of free merozoites in immunofluorescence. Discussion and conclusion: The presence of the 15-mer-like regions in dynein and ATP-binding proteins provides a rationale for investigating possible functional roles for RRA. The demonstrated presence of a surface exposed B-cell epitope in the 15-mer motif of the B. bovis RRA, which is recognized by sera from protected bovines, supports its inclusion in future subunit epitope-based vaccines against B. bovis.


Assuntos
Antígenos de Protozoários , Babesia bovis , Babesiose , Proteínas de Protozoários , Animais , Bovinos , Motivos de Aminoácidos , Sequência de Aminoácidos , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Babesia bovis/imunologia , Babesiose/imunologia , Babesiose/parasitologia , Babesiose/prevenção & controle , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/prevenção & controle , Sequência Conservada , Epitopos de Linfócito B/imunologia , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia
4.
Mol Biochem Parasitol ; 259: 111630, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38795969

RESUMO

Toxoplasma gondii is an intracellular protozoan parasite that infects all nucleated cells except the red blood cells. Currently, nucleic acid vaccines are being widely investigated in Toxoplasma gondii control, and several nucleic acid vaccine candidate antigens have shown good protection in various studies. The aim of this study was to construct a nucleic acid vaccine with Toxoplasma gondii SRS29C as the target gene. We explored the nucleic acid vaccine with Toxoplasma surface protein SRS29C and the combined gene of SRS29C and SAG1 and evaluated its immunoprotective effect against Toxoplasma gondii. To amplify the gene fragment and clone it to the expression vector, the recombinant plasmid pEGFP-SRS29C was constructed by PCR. Eukaryotic cells were transfected with the plasmid, and the expression of the target protein was assessed using the Western blot method. The level of serum IgG was determined via ELISA, and the splenic lymphocyte proliferation ability was detected using the CCK-8 method. The percentages of CD4+ and CD8+ T cells were measured by flow cytometry. Mice were immunised three times with single-gene nucleic acid vaccine and combination vaccine. Splenic lymphocytokine expression was determined using ELISA kits. The mice's survival time was monitored and recorded during an in vivo insect assault experiment, and the vaccine's protective power was assessed. The outcomes showed that PCR-amplification of an SRS29C gene fragment was successful. The 4,733-bp vector fragment and the 1,119-bp target segment were both recognised by double digestion. Additionally, after transfection of the recombinant plasmid pEGFP-SRS29C, Western blot examination of the extracted protein revealed the presence of a target protein strip at 66 kDa. The test results demonstrated that the IgG content in the serum of the pEGFP-SRS29C group and the co-immunization group was significantly higher than that of the PBS group and the empty vector group. The IgG potency induced by the co-immunization group was higher than that of the pEGFP-SRS29C group and the pEGFP-SAG1 group, the number of splenic lymphocyte proliferation number was higher than that of the PBS group and the empty vector group. The CD4+/CD8+ T ratio was higher than that of the PBS group and the empty vector group. The expression of IFN-γ and TNF-α in the splenocytes of the pEGFP-SRS29C group and the combined immunisation group was significantly higher following antigen stimulation. In the worm attack experiments, mice in the PBS and empty vector groups perished within 9 days of the worm attack, whereas mice in the pEGFP-SRS29C group survived for 18 days, mice in the pEGFP-SAG1 group survived for 21 days, and mice in the co-immunization group survived for 24 days. This demonstrates that the constructed Toxoplasma gondii nucleic acid vaccine pEGFP-SRS29C and the combined gene vaccine can induce mice to develop certain humoral and cellular immune responses, and enhance their ability to resist Toxoplasma gondii infection.


Assuntos
Anticorpos Antiprotozoários , Antígenos de Protozoários , Imunoglobulina G , Proteínas de Protozoários , Vacinas Protozoárias , Toxoplasma , Vacinas de DNA , Animais , Toxoplasma/imunologia , Toxoplasma/genética , Vacinas de DNA/imunologia , Vacinas de DNA/genética , Vacinas de DNA/administração & dosagem , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/genética , Vacinas Protozoárias/imunologia , Vacinas Protozoárias/genética , Camundongos , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/genética , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Feminino , Toxoplasmose Animal/prevenção & controle , Toxoplasmose Animal/imunologia , Camundongos Endogâmicos BALB C , Linfócitos T CD8-Positivos/imunologia , Baço/imunologia , Baço/parasitologia , Proliferação de Células , Plasmídeos/genética , Plasmídeos/imunologia , Citocinas/metabolismo
5.
Adv Parasitol ; 124: 91-154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38754928

RESUMO

Neospora caninum is an apicomplexan and obligatory intracellular parasite, which is the leading cause of reproductive failure in cattle and affects other farm and domestic animals, but also induces neuromuscular disease in dogs of all ages. In cattle, neosporosis is an important health problem, and has a considerable economic impact. To date there is no protective vaccine or chemotherapeutic treatment on the market. Immuno-prophylaxis has long been considered as the best control measure. Proteins involved in host cell interaction and invasion, as well as antigens mediating inflammatory responses have been the most frequently assessed vaccine targets. However, despite considerable efforts no effective vaccine has been introduced to the market to date. The development of effective compounds to limit the effects of vertical transmission of N. caninum tachyzoites has emerged as an alternative or addition to vaccination, provided suitable targets and safe and efficacious drugs can be identified. Additionally, the combination of both treatment strategies might be interesting to further increase protectivity against N. caninum infections and to decrease the duration of treatment and the risk of potential drug resistance. Well-established and standardized animal infection models are key factors for the evaluation of promising vaccine and compound candidates. The vast majority of experimental animal experiments concerning neosporosis have been performed in mice, although in recent years the numbers of experimental studies in cattle and sheep have increased. In this review, we discuss the recent findings concerning the progress in drug and vaccine development against N. caninum infections in mice and ruminants.


Assuntos
Coccidiose , Neospora , Vacinas Protozoárias , Animais , Coccidiose/prevenção & controle , Coccidiose/veterinária , Coccidiose/parasitologia , Coccidiose/tratamento farmacológico , Coccidiose/imunologia , Neospora/imunologia , Vacinas Protozoárias/imunologia , Bovinos , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/parasitologia , Desenvolvimento de Vacinas
7.
J Biomed Semantics ; 15(1): 4, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664818

RESUMO

BACKGROUND: Pathogenic parasites are responsible for multiple diseases, such as malaria and Chagas disease, in humans and livestock. Traditionally, pathogenic parasites have been largely an evasive topic for vaccine design, with most successful vaccines only emerging recently. To aid vaccine design, the VIOLIN vaccine knowledgebase has collected vaccines from all sources to serve as a comprehensive vaccine knowledgebase. VIOLIN utilizes the Vaccine Ontology (VO) to standardize the modeling of vaccine data. VO did not model complex life cycles as seen in parasites. With the inclusion of successful parasite vaccines, an update in parasite vaccine modeling was needed. RESULTS: VIOLIN was expanded to include 258 parasite vaccines against 23 protozoan species, and 607 new parasite vaccine-related terms were added to VO since 2022. The updated VO design for parasite vaccines accounts for parasite life stages and for transmission-blocking vaccines. A total of 356 terms from the Ontology of Parasite Lifecycle (OPL) were imported to VO to help represent the effect of different parasite life stages. A new VO class term, 'transmission-blocking vaccine,' was added to represent vaccines able to block infectious transmission, and one new VO object property, 'blocks transmission of pathogen via vaccine,' was added to link vaccine and pathogen in which the vaccine blocks the transmission of the pathogen. Additionally, our Gene Set Enrichment Analysis (GSEA) of 140 parasite antigens used in the parasitic vaccines identified enriched features. For example, significant patterns, such as signal, plasma membrane, and entry into host, were found in the antigens of the vaccines against two parasite species: Plasmodium falciparum and Toxoplasma gondii. The analysis found 18 out of the 140 parasite antigens involved with the malaria disease process. Moreover, a majority (15 out of 54) of P. falciparum parasite antigens are localized in the cell membrane. T. gondii antigens, in contrast, have a majority (19/24) of their proteins related to signaling pathways. The antigen-enriched patterns align with the life cycle stage patterns identified in our ontological parasite vaccine modeling. CONCLUSIONS: The updated VO modeling and GSEA analysis capture the influence of the complex parasite life cycles and their associated antigens on vaccine development.


Assuntos
Ontologias Biológicas , Animais , Parasitos/imunologia , Vacinas Protozoárias/imunologia , Humanos , Vacinas/imunologia , Modelos Biológicos
8.
Parasite Immunol ; 46(2): e13023, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38372452

RESUMO

Toxoplasmosis is one of the most dangerous zoonotic diseases, causing serious economic losses worldwide due to abortion and reproductive problems. Vaccination is the best way to prevent disease; thus, it is imperative to develop a candidate vaccine for toxoplasmosis. BAG1 and ROP8 have the potential to become vaccine candidates. In this study, rTgBAG1, rTgROP8, and rTgBAG1-rTgROP8 were used to evaluate the immune effect of vaccines in each group by detecting the humoral and cellular immune response levels of BABL/c mice after immunization and the ability to resist acute and chronic infection with Toxoplasma gondii (T. gondii). We divided the mice into vaccine groups with different proteins, and the mice were immunized on days 0, 14, and 28. The protective effects of different proteins against T. gondii were analysed by measuring the cytokines, serum antibodies, splenocyte proliferation assay results, survival time, and number and diameter of brain cysts of mice after infection. The vaccine groups exhibited substantially higher IgG, IgG1, and IgG2a levels and effectively stimulated lymphocyte proliferation. The levels of IFN-γ and IL-2 in the vaccine group were significantly increased. The survival time of the mice in each vaccine group was prolonged and the diameter of the cysts in the vaccine group was smaller; rTgBAG1-rTgROP8 had a better protection. Our study showed that the rTgBAG1, rTgROP8, and rTgBAG1-rTgROP8 recombinant protein vaccines are partial but effective approaches against acute or chronic T. gondii infection. They are potential candidates for a toxoplasmosis vaccine.


Assuntos
Vacinas Protozoárias , Toxoplasmose , Animais , Camundongos , Anticorpos Antiprotozoários , Antígenos de Protozoários/genética , Imunidade Celular , Imunização , Imunoglobulina G , Camundongos Endogâmicos BALB C , Proteínas de Protozoários , Vacinas Protozoárias/imunologia , Proteínas Recombinantes/genética , Toxoplasma , Toxoplasmose/prevenção & controle , Vacinação
9.
Front Immunol ; 13: 809711, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185896

RESUMO

Cheap, easy-to-produce oral vaccines are needed for control of coccidiosis in chickens to reduce the impact of this disease on welfare and economic performance. Saccharomyces cerevisiae yeast expressing three Eimeria tenella antigens were developed and delivered as heat-killed, freeze-dried whole yeast oral vaccines to chickens in four separate studies. After vaccination, E. tenella replication was reduced following low dose challenge (250 oocysts) in Hy-Line Brown layer chickens (p<0.01). Similarly, caecal lesion score was reduced in Hy-Line Brown layer chickens vaccinated using a mixture of S. cerevisiae expressing EtAMA1, EtIMP1 and EtMIC3 following pathogenic-level challenge (4,000 E. tenella oocysts; p<0.01). Mean body weight gain post-challenge with 15,000 E. tenella oocysts was significantly increased in vaccinated Cobb500 broiler chickens compared to mock-vaccinated controls (p<0.01). Thus, inactivated recombinant yeast vaccines offer cost-effective and scalable opportunities for control of coccidiosis, with relevance to broiler production and chickens reared in low-and middle-income countries (LMICs).


Assuntos
Coccidiose/veterinária , Eimeria tenella/imunologia , Doenças das Aves Domésticas/parasitologia , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Animais , Galinhas/imunologia , Galinhas/parasitologia , Coccidiose/prevenção & controle , Eimeria tenella/crescimento & desenvolvimento , Feminino , Masculino , Doenças das Aves Domésticas/prevenção & controle , Proteínas de Protozoários/genética , Vacinas Protozoárias/genética , Saccharomyces cerevisiae/imunologia , Vacinação/métodos , Vacinação/veterinária , Vacinas de Subunidades Antigênicas/imunologia
10.
Infect Genet Evol ; 96: 105150, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34801755

RESUMO

Toxoplasma gondii, a worldwide opportunistic parasite, causes serious diseases in both humans and fetuses with defective immune systems. The development of an effective vaccine is urgently required to prevent and control the spread of toxoplasmosis, caused by the apicomplexan parasite Toxoplasma gondii which is one of the most damaging zoonotic diseases of global importance. Plasmid DNA vaccination is a promising procedure for vaccine development and following the previous studies, pcROP13 + pcGRA14 cocktail DNA vaccine was evaluated for Th17 immune responses. Four groups of BALB/c mice were immunized intramuscularly three times at 2-week intervals. Subsequently, the production of anti- T. gondii antibodies and serum levels of cytokines IL-17, and IL-22 were evaluated against the RH strain of T. gondii. In addition, both the reactive oxygen species (ROS) and parasite load were assessed using ELISA and Q-PCR, respectively. The results of this study showed that high levels of IgG were found in mice immunized with cocktail DNA vaccine (p < 0.05). The cytokines level of Th17, IL-17, and IL-22, increased remarkably in the immunized mice (p < 0.05). Also, significant induction (p < 0.05) was observed in ROS. In addition, immunization with pcROP13 + GRA14 resulted in a considerable decrease in parasite load compared to the control groups (p < 0.05). Based on the results, the pcROP13 + GRA14 cocktail DNA vaccine induced Th17 related cytokines and decreased the parasite load in spleen and brain tissues. Hence, pcGRA14 + pcROP13 cocktails are suitable candidates for DNA-based vaccines and due to the development of protective immune responses against T. gondii infection, future studies may yield promising results using these antigens in vaccine design.


Assuntos
Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Toxoplasma/imunologia , Toxoplasmose/prevenção & controle , Desenvolvimento de Vacinas , Animais , Antígenos de Protozoários/imunologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C
11.
Int J Mol Sci ; 22(19)2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34638530

RESUMO

Outer Membrane Vesicles (OMV) constitute a promising platform for the development of efficient vaccines. OMV can be decorated with heterologous antigens (proteins or polysaccharides), becoming attractive novel carriers for the development of multicomponent vaccines. Chemical conjugation represents a tool for linking antigens, also from phylogenetically distant pathogens, to OMV. Here we develop two simple and widely applicable conjugation chemistries targeting proteins or lipopolysaccharides on the surface of Generalized Modules for Membrane Antigens (GMMA), OMV spontaneously released from Gram-negative bacteria mutated to increase vesicle yield and reduce potential reactogenicity. A Design of Experiment approach was used to identify optimal conditions for GMMA activation before conjugation, resulting in consistent processes and ensuring conjugation efficiency. Conjugates produced by both chemistries induced strong humoral response against the heterologous antigen and GMMA. Additionally, the use of the two orthogonal chemistries allowed to control the linkage of two different antigens on the same GMMA particle. This work supports the further advancement of this novel platform with great potential for the design of effective vaccines.


Assuntos
Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Vesículas Extracelulares/imunologia , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/química , Vacinas Bacterianas/biossíntese , Feminino , Lipopolissacarídeos/imunologia , Camundongos , Neisseria meningitidis/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/química , Vacinas Protozoárias/biossíntese , Salmonella typhimurium/imunologia , Shigella sonnei/imunologia
12.
Front Cell Infect Microbiol ; 11: 735191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660343

RESUMO

Pathogens require physical contact with the mucosal surface of the host organism to initiate infection and as such, vaccines eliciting both mucosal and systemic immune responses would be promising. Studies involving the use of recombinant baculoviruses (rBVs) as mucosal vaccines are severely lacking despite their inherently safe nature, especially against pathogens of global importance such as Toxoplasma gondii. Here, we generated rBVs displaying T. gondii rhoptry protein 4 (ROP4) and evaluated their protective efficacy in BALB/c mice following immunization via intranasal (IN) and oral routes. IN immunization with the ROP4-expressing rBVs elicited higher levels of parasite-specific IgA antibody responses compared to oral immunization. Upon challenge infection with a lethal dose of T. gondii ME49, IN immunization elicited significantly higher parasite-specific antibody responses in the mucosal tissues such as intestines, feces, vaginal samples, and brain than oral immunization. Marked increases in IgG and IgA antibody-secreting cell (ASC) responses were observed from intranasally immunized mice. IN immunization elicited significantly enhanced induction of CD4+, CD8+ T cells, and germinal center B (GC B) cell responses from secondary lymphoid organs while limiting the production of the inflammatory cytokines IFN-γ and IL-6 in the brain, all of which contributed to protecting mice against T. gondii lethal challenge infection. Our findings suggest that IN delivery of ROP4 rBVs induced better mucosal and systemic immunity against the lethal T. gondii challenge infection compared to oral immunization.


Assuntos
Proteínas de Membrana/imunologia , Proteínas de Protozoários/imunologia , Vacinas Protozoárias , Toxoplasma , Administração através da Mucosa , Animais , Anticorpos Antiprotozoários , Baculoviridae/genética , Linfócitos T CD8-Positivos , Citocinas , Feminino , Imunoglobulina G , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/genética , Vacinas Protozoárias/imunologia , Toxoplasma/genética
13.
J Immunol ; 207(8): 1965-1977, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34507950

RESUMO

Parasite-specific CD8 T cell responses play a key role in mediating immunity against Theileria parva in cattle (Bos taurus), and there is evidence that efficient induction of these responses requires CD4 T cell responses. However, information on the antigenic specificity of the CD4 T cell response is lacking. The current study used a high-throughput system for Ag identification using CD4 T cells from immune animals to screen a library of ∼40,000 synthetic peptides representing 499 T. parva gene products. Use of CD4 T cells from 12 immune cattle, representing 12 MHC class II types, identified 26 Ags. Unlike CD8 T cell responses, which are focused on a few dominant Ags, multiple Ags were recognized by CD4 T cell responses of individual animals. The Ags had diverse properties, but included proteins encoded by two multimember gene families: five haloacid dehalogenases and five subtelomere-encoded variable secreted proteins. Most Ags had predicted signal peptides and/or were encoded by abundantly transcribed genes, but neither parameter on their own was reliable for predicting antigenicity. Mapping of the epitopes confirmed presentation by DR or DQ class II alleles and comparison of available T. parva genome sequences demonstrated that they included both conserved and polymorphic epitopes. Immunization of animals with vaccine vectors expressing two of the Ags demonstrated induction of CD4 T cell responses capable of recognizing parasitized cells. The results of this study provide detailed insight into the CD4 T cell responses induced by T. parva and identify Ags suitable for use in vaccine development.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Vacinas Protozoárias/imunologia , Theileria parva/fisiologia , Theileriose/imunologia , Animais , Apresentação de Antígeno , Antígenos de Protozoários/imunologia , Bovinos , Células Cultivadas , Mapeamento de Epitopos , Epitopos de Linfócito T/imunologia , Ensaios de Triagem em Larga Escala , Antígenos de Histocompatibilidade Classe II , Ativação Linfocitária , Biblioteca de Peptídeos , Peptídeos/síntese química , Peptídeos/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T
14.
Sci Rep ; 11(1): 17626, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475453

RESUMO

Antigen identification is an important step in the vaccine development process. Computational approaches including deep learning systems can play an important role in the identification of vaccine targets using genomic and proteomic information. Here, we present a new computational system to discover and analyse novel vaccine targets leading to the design of a multi-epitope subunit vaccine candidate. The system incorporates reverse vaccinology and immuno-informatics tools to screen genomic and proteomic datasets of several pathogens such as Trypanosoma cruzi, Plasmodium falciparum, and Vibrio cholerae to identify potential vaccine candidates (PVC). Further, as a case study, we performed a detailed analysis of the genomic and proteomic dataset of T. cruzi (CL Brenner and Y strain) to shortlist eight proteins as possible vaccine antigen candidates using properties such as secretory/surface-exposed nature, low transmembrane helix (< 2), essentiality, virulence, antigenic, and non-homology with host/gut flora proteins. Subsequently, highly antigenic and immunogenic MHC class I, MHC class II and B cell epitopes were extracted from top-ranking vaccine targets. The designed vaccine construct containing 24 epitopes, 3 adjuvants, and 4 linkers was analysed for its physicochemical properties using different tools, including docking analysis. Immunological simulation studies suggested significant levels of T-helper, T-cytotoxic cells, and IgG1 will be elicited upon administration of such a putative multi-epitope vaccine construct. The vaccine construct is predicted to be soluble, stable, non-allergenic, non-toxic, and to offer cross-protection against related Trypanosoma species and strains. Further, studies are required to validate safety and immunogenicity of the vaccine.


Assuntos
Biologia Computacional/métodos , Vacinas/imunologia , Vacinologia/métodos , Vacinas Bacterianas/imunologia , Doença de Chagas/imunologia , Doença de Chagas/prevenção & controle , Cólera/imunologia , Cólera/prevenção & controle , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Humanos , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/imunologia , Vacinas Protozoárias/imunologia , Trypanosoma cruzi/imunologia , Vibrio cholerae/imunologia
15.
ACS Appl Mater Interfaces ; 13(34): 40415-40428, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470103

RESUMO

Toxoplasma gondii (T. gondii) infection causes severe zoonotic toxoplasmosis, which threatens the safety of almost one-third of the human population globally. However, there is no effective protective vaccine against human toxoplasmosis. This necessitates anti-T. gondii vaccine development, which is a main priority of public health. In this study, we optimized the adjuvant system 04 (AS04), a vaccine adjuvant constituted by 3-O-desacyl-4'-monophosphoryl lipid A (a TLR4 agonist) and aluminum salts, by packing it within natural extracts of ß-glucan particles (GPs) from Saccharomyces cerevisiae to form a GP-AS04 hybrid adjuvant system. Through a simple mixing procedure, we loaded GP-AS04 particles with the total extract (TE) of T. gondii lysate, forming a novel anti-T. gondii vaccine GP-AS04-TE. Results indicated that the hybrid adjuvant can efficiently and stably load antigens, mediate antigen delivery, facilitate the dendritic uptake of antigens, boost dendritic cell maturation and stimulation, and increase the secretion of pro-inflammatory cytokines. In the mouse inoculation model, GP-AS04-TE significantly stimulated the function of dendritic cells, induced a very strong TE-specific humoral and cellular immune response, and finally showed a strong and effective protection against toxoplasma chronic and acute infections. This work proves the potential of GP-AS04 for exploitation as a vaccine against a range of pathogens.


Assuntos
Adjuvantes de Vacinas/uso terapêutico , Hidróxido de Alumínio/uso terapêutico , Lipídeo A/análogos & derivados , Nanocompostos/uso terapêutico , Vacinas Protozoárias/uso terapêutico , Toxoplasma/imunologia , Toxoplasmose/prevenção & controle , Adjuvantes de Vacinas/química , Adjuvantes de Vacinas/toxicidade , Hidróxido de Alumínio/química , Hidróxido de Alumínio/imunologia , Hidróxido de Alumínio/toxicidade , Animais , Células Dendríticas/efeitos dos fármacos , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/uso terapêutico , Polissacarídeos Fúngicos/toxicidade , Imunidade Celular/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Lipídeo A/química , Lipídeo A/imunologia , Lipídeo A/uso terapêutico , Lipídeo A/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Nanocompostos/química , Nanocompostos/toxicidade , Fagócitos/efeitos dos fármacos , Vacinas Protozoárias/química , Vacinas Protozoárias/imunologia , Vacinas Protozoárias/toxicidade , Saccharomyces cerevisiae/química , Extratos de Tecidos/química , Extratos de Tecidos/imunologia , Extratos de Tecidos/uso terapêutico , Extratos de Tecidos/toxicidade , Toxoplasma/química , Toxoplasmose/imunologia , beta-Glucanas/química , beta-Glucanas/uso terapêutico , beta-Glucanas/toxicidade
16.
Sci Rep ; 11(1): 18295, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521964

RESUMO

Drug resistance against coccidiosis has posed a significant threat to chicken welfare and productivity worldwide, putting daunting pressure on the poultry industry to reduce the use of chemoprophylactic drugs and live vaccines in poultry to treat intestinal diseases. Chicken coccidiosis, caused by an apicomplexan parasite of Eimeria spp., is a significant challenge worldwide. Due to the experience of economic loss in production and prevention of the disease, development of cost-effective vaccines or drugs that can stimulate defence against multiple Eimeria species is imperative to control coccidiosis. This study explored Eimeria immune mapped protein-1 (IMP-1) to develop a multiepitope-based vaccine against coccidiosis by identifying antigenic T-cell and B-cell epitope candidates through immunoinformatic techniques. This resulted in the design of 7 CD8+, 21 CD4+ T-cell epitopes and 6 B-cell epitopes, connected using AAY, GPGPG and KK linkers to form a vaccine construct. A Cholera Toxin B (CTB) adjuvant was attached to the N-terminal of the multiepitope construct to improve the immunogenicity of the vaccine. The designed vaccine was assessed for immunogenicity (8.59968), allergenicity and physiochemical parameters, which revealed the construct molecular weight of 73.25 kDa, theoretical pI of 8.23 and instability index of 33.40. Molecular docking simulation of vaccine with TLR-5 with binding affinity of - 151.893 kcal/mol revealed good structural interaction and stability of protein structure of vaccine construct. The designed vaccine predicts the induction of immunity and boosted host's immune system through production of antibodies and cytokines, vital in hindering surface entry of parasites into host. This is a very important step in vaccine development though further experimental study is still required to validate these results.


Assuntos
Coccidiose/veterinária , Eimeria/imunologia , Doenças das Aves Domésticas/prevenção & controle , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Galinhas/imunologia , Galinhas/parasitologia , Coccidiose/imunologia , Coccidiose/prevenção & controle , Sequência Conservada/genética , Eimeria/genética , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/parasitologia , Proteínas de Protozoários/genética
17.
Front Immunol ; 12: 674484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305904

RESUMO

East Coast Fever (ECF), caused by the tick-borne apicomplexan parasite Theileria parva, remains one of the most important livestock diseases in sub-Saharan Africa with more than 1 million cattle dying from infection every year. Disease prevention relies on the so-called "Infection and Treatment Method" (ITM), which is costly, complex, laborious, difficult to standardise on a commercial scale and results in a parasite strain-specific, MHC class I-restricted cytotoxic T cell response. We therefore attempted to develop a safe, affordable, stable, orally applicable and potent subunit vaccine for ECF using five different T. parva schizont antigens (Tp1, Tp2, Tp9, Tp10 and N36) and Saccharomyces cerevisiae as an expression platform. Full-length Tp2 and Tp9 as well as fragments of Tp1 were successfully expressed on the surface of S. cerevisiae. In vitro analyses highlighted that recombinant yeast expressing Tp2 can elicit IFNγ responses using PBMCs from ITM-immunized calves, while Tp2 and Tp9 induced IFNγ responses from enriched bovine CD8+ T cells. A subsequent in vivo study showed that oral administration of heat-inactivated, freeze-dried yeast stably expressing Tp2 increased total murine serum IgG over time, but more importantly, induced Tp2-specific serum IgG antibodies in individual mice compared to the control group. While these results will require subsequent experiments to verify induction of protection in neonatal calves, our data indicates that oral application of yeast expressing Theileria antigens could provide an affordable and easy vaccination platform for sub-Saharan Africa. Evaluation of antigen-specific cellular immune responses, especially cytotoxic CD8+ T cell immunity in cattle will further contribute to the development of a yeast-based vaccine for ECF.


Assuntos
Imunização/métodos , Vacinas Protozoárias/imunologia , Theileria parva/imunologia , Theileriose/prevenção & controle , Animais , Linfócitos T CD8-Positivos/imunologia , Bovinos/imunologia , Imunização/veterinária , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Vacinas Protozoárias/uso terapêutico , Linfócitos T Citotóxicos/imunologia , Carrapatos , Leveduras/imunologia
18.
Front Immunol ; 12: 683157, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248966

RESUMO

Amebiasis is a neglected tropical disease caused by Entamoeba histolytica. Although the disease burden varies geographically, amebiasis is estimated to account for some 55,000 deaths and millions of infections globally per year. Children and travelers are among the groups with the greatest risk of infection. There are currently no licensed vaccines for prevention of amebiasis, although key immune correlates for protection have been proposed from observational studies in humans. We previously described the development of a liposomal adjuvant formulation containing two synthetic TLR ligands (GLA and 3M-052) that enhanced antigen-specific fecal IgA, serum IgG2a, a mixed IFNγ and IL-17A cytokine profile from splenocytes, and protective efficacy following intranasal administration with the LecA antigen. By applying a statistical design of experiments (DOE) and desirability function approach, we now describe the optimization of the dose of each vaccine formulation component (LecA, GLA, 3M-052, and liposome) as well as the excipient composition (acyl chain length and saturation; PEGylated lipid:phospholipid ratio; and presence of antioxidant, tonicity, or viscosity agents) to maximize desired immunogenicity characteristics while maintaining physicochemical stability. This DOE/desirability index approach led to the identification of a lead candidate composition that demonstrated immune response durability and protective efficacy in the mouse model, as well as an assessment of the impact of each active vaccine formulation component on protection. Thus, we demonstrate that both GLA and 3M-052 are required for statistically significant protective efficacy. We also show that immunogenicity and efficacy results differ in female vs male mice, and the differences appear to be at least partly associated with adjuvant formulation composition.


Assuntos
Antígenos de Protozoários/imunologia , Entamoeba histolytica/imunologia , Entamebíase/imunologia , Entamebíase/prevenção & controle , Vacinas Protozoárias/imunologia , Adjuvantes Imunológicos/química , Administração Intranasal , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Fenômenos Químicos , Citocinas/metabolismo , Composição de Medicamentos , Entamebíase/parasitologia , Ensaio de Imunoadsorção Enzimática , Humanos , Imunogenicidade da Vacina , Imunoglobulina G/imunologia , Lipossomos , Camundongos , Vacinas Protozoárias/administração & dosagem , Vacinas Protozoárias/química , Vacinação
19.
PLoS Negl Trop Dis ; 15(7): e0009613, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34314435

RESUMO

Chagas disease, caused by the parasite Trypanosoma cruzi, is considered endemic in more than 20 countries but lacks both an approved vaccine and limited treatment for its chronic stage. Chronic infection is most harmful to human health because of long-term parasitic infection of the heart. Here we show that immunization with a virus-like particle vaccine displaying a high density of the immunogenic α-Gal trisaccharide (Qß-αGal) induced several beneficial effects concerning acute and chronic T. cruzi infection in α1,3-galactosyltransferase knockout mice. Approximately 60% of these animals were protected from initial infection with high parasite loads. Vaccinated animals also produced high anti-αGal IgG antibody titers, improved IFN-γ and IL-12 cytokine production, and controlled parasitemia in the acute phase at 8 days post-infection (dpi) for the Y strain and 22 dpi for the Colombian strain. In the chronic stage of infection (36 and 190 dpi, respectively), all of the vaccinated group survived, showing significantly decreased heart inflammation and clearance of amastigote nests from the heart tissue.


Assuntos
Cardiomiopatia Chagásica/prevenção & controle , Coração/parasitologia , Vacinas Protozoárias/imunologia , Trypanosoma cruzi , Animais , Anticorpos Antiprotozoários/sangue , Cardiomiopatia Chagásica/parasitologia , Cardiomiopatia Chagásica/patologia , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica/imunologia , Imunoglobulina G/sangue , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Parasitemia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
20.
Front Immunol ; 12: 621803, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149685

RESUMO

Feeding practices have been found to influence gut microbiota which play a major role in immunity of poultry. In the present study, changes in cecal microbiota and humoral responses resulting in the 55 ppm bacitracin (BACI), 1% each of cranberry (CP1) and wild blueberry (BP1) pomace alone or in combination (CP+BP) feeding in broiler Cobb 500 vaccinated or not against coccidiosis were investigated. In the non-vaccinated group, no significant treatment effects were observed on performance parameters. Vaccination significantly affected bird's performance parameters particularly during the growing phase from 10 to 20 days of age. In general, the prevalence of coccidiosis and necrotic enteritis (NE) was reduced by vaccination (P < 0.05). BACI-treated birds showed low intestinal lesion scores, and both CP1 and BP1 feed supplementations reduced Eimeria acervulina and Clostridium perfringens incidences similar to BACI. Vaccination induced change in serum enzymes, minerals, and lipid levels in 21-day old birds while, levels of triglyceride (TRIG) and non-esterified fatty acids (NEFA) were higher (P < 0.05) in CP1 treated non-vaccinated group than in the control. The levels of NEFA were lower in BACI- and CP1-fed birds than in the control in non-vaccinated day 28 old birds. The highest levels of all estimated three immunoglobulins (IgY, IgM, and IgA) were found in the vaccinated birds. Metagenomics analysis of the cecal bacterial community in 21-day old birds showed the presence of Firmicutes (90%), Proteobacteria (5%), Actinobacteria (2%), and Bacteroidetes (2%). In the vaccinated group, an effect of BACI was noted on Proteobacteria (P = 0.03). Vaccination and/or dietary treatments influenced the population of Lactobacillaceae, Enterobacteriaceae, Clostridiaceae, and Streptococcaceae which were among the most abundant families. Overall, this study revealed that besides their beneficial effects on performance, alike bacitracin, berry pomaces in poultry feed have profound impacts on the chicken cecal microbiota and blood metabolites that could be influenced by vaccination against coccidiosis.


Assuntos
Infecções Bacterianas/imunologia , Doenças das Aves/imunologia , Ceco/microbiologia , Galinhas/imunologia , Coccídios/fisiologia , Coccidiose/imunologia , Eimeria/fisiologia , Microbioma Gastrointestinal/imunologia , Vacinas Protozoárias/imunologia , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bacitracina , Mirtilos Azuis (Planta) , Imunidade Humoral , Metabolismo dos Lipídeos , Vacinação , Vaccinium macrocarpon
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA