Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.340
Filtrar
1.
Sci Rep ; 14(1): 20579, 2024 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-39242614

RESUMO

During COVID-19 pandemic, cases of postvaccination infections and restored SARS-CoV-2 virus have increased after full vaccination, which might be contributed to by immune surveillance escape or virus rebound. Here, artificial linear 9-mer human leucocyte antigen (HLA)-restricted UC peptides were designed based on the well-conserved S2 region of the SARS-CoV-2 spike protein regardless of rapid mutation and glycosylation hindrance. The UC peptides were characterized for its effect on immune molecules and cells by HLA-tetramer refolding assay for HLA-binding ability, by HLA-tetramer specific T cell assay for engaged cytotoxic T lymphocytes (CTLs) involvement, by HLA-dextramer T cell assay for B cell activation, by intracellular cytokine release assay for polarization of immune response, Th1 or Th2. The specific lysis activity assay of T cells was performed for direct activation of cytotoxic T lymphocytes by UC peptides. Mice were immunized for immunogenicity of UC peptides in vivo and immunized sera was assay for complement cytotoxicity assay. Results appeared that through the engagement of UC peptides and immune molecules, HLA-I and II, that CTLs elicited cytotoxic activity by recognizing SARS-CoV-2 spike-bearing cells and preferably secreting Th1 cytokines. The UC peptides also showed immunogenicity and generated a specific antibody in mice by both intramuscular injection and oral delivery without adjuvant formulation. In conclusion, a T-cell vaccine could provide long-lasting protection against SARS-CoV-2 either during reinfection or during SARS-CoV-2 rebound. Due to its ability to eradicate SARS-CoV-2 virus-infected cells, a COVID-19 T-cell vaccine might provide a solution to lower COVID-19 severity and long COVID-19.


Assuntos
Linfócitos B , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Linfócitos T Citotóxicos , Vacinas de Subunidades Antigênicas , Glicoproteína da Espícula de Coronavírus/imunologia , Animais , Humanos , Camundongos , SARS-CoV-2/imunologia , Vacinas contra COVID-19/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Linfócitos B/imunologia , Linfócitos T Citotóxicos/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Feminino , Antígenos HLA/imunologia , Camundongos Endogâmicos BALB C , Vacinas de Subunidades Proteicas
3.
Vaccine ; 42(24): 126254, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39213981

RESUMO

Lawsonia intracellularis is the causative agent of ileitis in swine that manifests as slower weight gain, mild or hemorrhagic diarrhea and/or death in severe cases. As an economically important swine pathogen, development of effective vaccines is important to the swine industry. In developing a subunit vaccine with three recombinant antigens - FliC, GroEL and YopN - we wanted to identify a formulation that would produce robust immune responses that reduce disease parameters associated with Lawsonia intracellularis infection. We formulated these three antigens with four adjuvants: Montanide ISA 660 VG, Montanide Gel 02 PR, Montanide IMS 1313 VG NST, and Montanide ISA 61 VG in an immunogenicity study. Groups vaccinated with formulations including Montanide ISA 660 VG or Montanide ISA 61 VG had significantly more robust immune responses than groups vaccinated with formulations including Montanide Gel 02 PR or Montanide IMS 1313 VG NST. In the challenge study, animals vaccinated with these antigens and Montanide ISA 61 VG had reduced lesion scores, reduced lesion lengths, and increased average daily gain, but no reduction in shedding relative to the control animals. This work shows that this vaccine formulation should be considered for future study in a field and performance trial.


Assuntos
Infecções por Desulfovibrionaceae , Lawsonia (Bactéria) , Doenças dos Suínos , Vacinas de Subunidades Antigênicas , Animais , Suínos , Lawsonia (Bactéria)/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Infecções por Desulfovibrionaceae/prevenção & controle , Infecções por Desulfovibrionaceae/imunologia , Infecções por Desulfovibrionaceae/veterinária , Vacinação/métodos , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Emulsões , Derrame de Bactérias
4.
ACS Infect Dis ; 10(9): 3419-3429, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39196071

RESUMO

Despite concerted efforts to tackle the COVID-19 pandemic, the persistent transmission of SARS-CoV-2 demands continued research into novel vaccination strategies to combat the virus. In light of this, intranasally administered peptide vaccines, particularly those conjugated to an immune adjuvant to afford so-called "self-adjuvanted vaccines", remain underexplored. Here, we describe the synthesis and immunological evaluation of self-adjuvanting peptide vaccines derived from epitopes of the spike glycoprotein of SARS-CoV-2 covalently fused to the potent adjuvant, Pam2Cys, that targets toll-like receptor 2 (TLR2). When administered intranasally, these vaccines elicited a strong antigen-specific CD4+ and CD8+ T-cell response in the lungs as well as high titers of IgG and IgA specific to the native spike protein of SARS-CoV-2. Unfortunately, serum and lung fluid from mice immunized with these vaccines failed to inhibit viral entry in spike-expressing pseudovirus assays. Following this, we designed and synthesized fusion vaccines composed of the T-cell epitope discovered in this work, covalently fused to epitopes of the receptor-binding domain of the spike protein reported to be neutralizing. While antibodies elicited against these fusion vaccines were not neutralizing, the T-cell epitope retained its ability to stimulate strong antigen-specific CD4+ lymphocyte responses within the lungs. Given the Spike(883-909) region is still completely conserved in SARS-CoV-2 variants of concern and variants of interest, we envision the self-adjuvanting vaccine platform reported here may inform future vaccine efforts.


Assuntos
Adjuvantes Imunológicos , Administração Intranasal , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Lipopeptídeos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , SARS-CoV-2/imunologia , Camundongos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Glicoproteína da Espícula de Coronavírus/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Lipopeptídeos/imunologia , Lipopeptídeos/administração & dosagem , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Feminino , Humanos , Camundongos Endogâmicos BALB C , Adjuvantes de Vacinas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Imunidade Celular , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD4-Positivos/imunologia
5.
Brain Behav Immun ; 122: 185-201, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39142420

RESUMO

Amyloid-ß (Aß) and hyperphosphorylated tau protein are targets for Alzheimer's Disease (AD) immunotherapies, which are generally focused on single epitopes within Aß or tau. However, due to the complexity of both Aß and tau in AD pathogenesis, a multipronged approach simultaneously targeting multiple epitopes of both proteins could overcome limitations of monotherapies. Herein, we propose an active AD immunotherapy based on a nanoparticle vaccine comprising two Aß peptides (1-14 and pyroglutamate pE3-14) and three tau peptides (centered on phosphorylated pT181, pT217 and pS396/404). These correspond to both soluble and aggregated targets and are displayed on the surface of immunogenic liposomes in an orientation that maintains reactivity with epitope-specific monoclonal antibodies. Intramuscular immunization of mice with individual epitopes resulted in minimally cross-reactive antibody induction, while simultaneous co-display of 5 antigens ("5-plex") induced antibodies against all epitopes without immune interference. Post-immune sera recognized plaques and neurofibrillary tangles from human AD brain tissue. Vaccine administration to 3xTg-AD mice using a prophylactic dosing schedule inhibited tau and amyloid pathologies and resulted in improved cognitive function. Immunization was well tolerated and did not induce antigen-specific cellular responses or persistent inflammatory responses in the peripheral or central nervous system. Antibody levels could be reversed by halting monthly vaccinations. Altogether, these results indicate that active immune therapies based on nanoparticle formulations of multiple Aß and tau epitopes warrant further study for treating early-stage AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Modelos Animais de Doenças , Camundongos Transgênicos , Proteínas tau , Animais , Doença de Alzheimer/imunologia , Doença de Alzheimer/prevenção & controle , Proteínas tau/imunologia , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/imunologia , Peptídeos beta-Amiloides/metabolismo , Camundongos , Humanos , Vacinas contra Alzheimer/imunologia , Vacinas contra Alzheimer/administração & dosagem , Encéfalo/metabolismo , Feminino , Epitopos/imunologia , Nanopartículas , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Anticorpos , Vacinas de Subunidades Proteicas
6.
Int J Nanomedicine ; 19: 8029-8042, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39130684

RESUMO

Purpose: Heterologous immunization using different vaccine platforms has been demonstrated as an efficient strategy to enhance antigen-specific immune responses. In this study, we performed a head-to-head comparison of both humoral and cellular immune response induced by different prime-boost immunization regimens of mRNA vaccine and adjuvanted protein subunit vaccine against varicella-zoster virus (VZV) in middle-aged mice, aiming to get a better understanding of the influence of vaccination schedule on immune response. Methods: VZV glycoprotein (gE) mRNA was synthesized and encapsulated into SM-102-based lipid nanoparticles (LNPs). VZV-primed middle-aged C57BL/6 mice were then subjected to homologous and heterologous prime-boost immunization strategies using VZV gE mRNA vaccine (RNA-gE) and protein subunit vaccine (PS-gE). The antigen-specific antibodies were evaluated using enzyme-linked immunosorbent assay (ELISA) analysis. Additionally, cell-mediated immunity (CMI) was detected using ELISPOT assay and flow cytometry. Besides, in vivo safety profiles were also evaluated and compared. Results: The mRNA-loaded lipid nanoparticles had a hydrodynamic diameter of approximately 130 nm and a polydispersity index of 0.156. Total IgG antibody levels exhibited no significant differences among different immunization strategies. However, mice received 2×RNA-gE or RNA-gE>PS-gE showed a lower IgG1/IgG2c ratio than those received 2×PS-gE and PS-gE> RNA-gE. The CMI response induced by 2×RNA-gE or RNA-gE>PS-gE was significantly stronger than that induced by 2×PS-gE and PS-gE> RNA-gE. The safety evaluation indicated that both mRNA vaccine and protein vaccine induced a transient body weight loss in mice. Furthermore, the protein vaccine produced a notable inflammatory response at the injection sites, while the mRNA vaccine showed no observable inflammation. Conclusion: The heterologous prime-boost strategy has demonstrated that an mRNA-primed immunization regimen can induce a better cell-mediated immune response than a protein subunit-primed regimen in middle-aged mice. These findings provide valuable insights into the design and optimization of VZV vaccines with the potentials to broaden varicella vaccination strategies in the future.


Assuntos
Adjuvantes Imunológicos , Imunidade Celular , Camundongos Endogâmicos C57BL , Nanopartículas , Vacinas de Subunidades Antigênicas , Animais , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Nanopartículas/química , Adjuvantes Imunológicos/administração & dosagem , Feminino , Vacinas de mRNA , Camundongos , Herpesvirus Humano 3/imunologia , Anticorpos Antivirais/sangue , Imunização Secundária/métodos , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/administração & dosagem , Vacina contra Herpes Zoster/imunologia , Vacina contra Herpes Zoster/administração & dosagem , Lipossomos
7.
Vaccine ; 42(22): 126223, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39151232

RESUMO

Objectives We evaluated the safety, immunogenicity and efficacy of Abdala, a protein subunit vaccine for 2019 coronavirus disease (COVID-19), in children and adolescents. Methods A phase 2, open-label, single-arm clinical trial was carried out. Subjects aged 3 to 18 years were eligible. Abdala vaccine was administered intramuscularly at 0-14-28 days. The main endpoints were safety and the immunobridging analysis with a non-inferiority design, to infer the efficacy of the vaccine in paediatric population based on the comparison of neutralizing antibodies (NAb) to SARS-CoV-2, with adults (19-21 years). The trial is registered with the Cuban Public Registry of Clinical Trials, RPCEC00000390. Results From September 13th to September 17th, 2021, 703 participants were included in the context of a predominantly SARS-CoV-2 Delta variant circulation. The number of individuals who experienced adverse reactions was 264/703 (37·6%). Adverse reactions were mostly mild and occurred at the injection site, which resolved within the first 24-48 h. There were no reports of severe adverse events. For the non-inferiority comparison of 297 children (3-11 years) with 297 adults, the geometric mean (GMT) ratio of SARS-CoV-2 NAb was 0·87 (95% CI 0·69-1·08) and 1·07 (0·82-1·39) in the same comparison for 203 adolescents (12-18 years) and 203 adults. For both age groups, the lower limit of GMT was higher than 0·67. The differences in seroresponse rates of Nab for children were 1% (-2%, 4%) and -3% (-7%, 1%) for adolescents, higher than -10% in both age groups. Conclusions The Abdala vaccine was safe and immunogenic in a paediatric population aged 3-18 years, with inferred efficacy based on non-inferior analysis. The vaccine is very suitable to fit into massive vaccination strategies, considering the advantages of using the same vaccine strength (RBD 50 µg) and schedule of administration for both adults and children, as well as the easy storage and handling conditions at 2-8 °C.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Vacinas de Subunidades Antigênicas , Humanos , Adolescente , Criança , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , COVID-19/imunologia , Feminino , Masculino , Pré-Escolar , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , SARS-CoV-2/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/efeitos adversos , Vacinas de Subunidades Antigênicas/administração & dosagem , Eficácia de Vacinas , Imunogenicidade da Vacina , Adulto Jovem
8.
Vaccine ; 42(25): 126213, 2024 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-39138071

RESUMO

Zika virus (ZIKV) infection remains a global public health problem. After the "Public Health Emergencies of International Concern" declared in February 2016, the incidence of new infections by this pathogen has been decreasing in many areas. However, there is still a likely risk that ZIKV will spread to more countries. To date, there is no vaccine or antiviral drug available to prevent or treat Zika virus infection. In the Zika vaccine development, those based on protein subunits are attractive as a non-replicable platform due to their potentially enhanced safety profile to be used in all populations. However, these vaccines frequently require multiple doses and adjuvants to achieve protective immunity. In this study we show the immunological evaluation of new formulations of the recombinant protein ZEC, which combines regions of domain III of the envelope and the capsid from ZIKV. Two nucleotide-based adjuvants were used to enhance the immunity elicited by the vaccine candidate ZEC. ODN 39M or c-di-AMP was incorporated as immunomodulator into the formulations combined with aluminum hydroxide. Following immunizations in immunocompetent BALB/c mice, the formulations stimulated high IgG antibodies. Although the IgG subtypes suggested a predominantly Th1-biased immune response by the formulation including the ODN 39M, cellular immune responses measured by IFNγ secretion from spleen cells after in vitro stimulations were induced by both immunomodulators. These results demonstrate the capacity of both immunomodulators to enhance the immunogenicity of the recombinant subunit ZEC as a vaccine candidate against ZIKV.


Assuntos
Adjuvantes Imunológicos , Anticorpos Antivirais , Camundongos Endogâmicos BALB C , Vacinas de Subunidades Antigênicas , Vacinas Sintéticas , Infecção por Zika virus , Zika virus , Animais , Zika virus/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Camundongos , Feminino , Adjuvantes Imunológicos/administração & dosagem , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunogenicidade da Vacina , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Adjuvantes de Vacinas , Imunidade Celular , Proteínas do Envelope Viral/imunologia , Proteínas do Capsídeo/imunologia , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/imunologia
9.
Eur J Pharm Biopharm ; 203: 114437, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39122053

RESUMO

Tuberculosis (TB) has been and still is a global emergency for centuries. Prevention of disease through vaccination would have a major impact on disease prevalence, but the only available current vaccine, BCG, has insufficient impact. In this article, a novel subunit vaccine against TB was developed, using the Ag85B-ESAT6-Rv2034 fusion antigen, two adjuvants - CpG and MPLA, and a cationic pH-sensitive liposome as a delivery system, representing a new TB vaccine delivery strategy not previously reported for TB. In vitro in human dendritic cells (DCs), the adjuvanted formulation induced a significant increase in the production of (innate) cytokines and chemokines compared to the liposome without additional adjuvants. In vivo, the new vaccine administrated subcutaneously significantly reduced Mycobacterium tuberculosis (Mtb) bacterial load in the lungs and spleens of mice, significantly outperforming results from mice vaccinated with the antigen mixed with adjuvants without liposomes. In-depth analysis underpinned the vaccine's effectiveness in terms of its capacity to induce polyfunctional CD4+ and CD8+ T-cell responses, both considered essential for controlling Mtb infection. Also noteworthy was the differential abundance of various CD69+ B-cell subpopulations, which included IL17-A-producing B-cells. The vaccine stimulated robust antigen-specific antibody titers, further extending its potential as a novel protective agent against TB.


Assuntos
Adjuvantes Imunológicos , Lipossomos , Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Vacinas de Subunidades Antigênicas , Animais , Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/imunologia , Mycobacterium tuberculosis/imunologia , Camundongos , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Humanos , Feminino , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Concentração de Íons de Hidrogênio , Tuberculose/prevenção & controle , Tuberculose/imunologia , Camundongos Endogâmicos C57BL , Células Dendríticas/imunologia , Cátions , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/administração & dosagem , Citocinas/metabolismo , Linfócitos T CD8-Positivos/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Linfócitos T CD4-Positivos/imunologia , Carga Bacteriana
10.
Fish Shellfish Immunol ; 153: 109841, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39173984

RESUMO

Largemouth bass virus (LMBV) infections has resulted in high mortality and economic losses to the global largemouth bass industry and has seriously restricted the healthy development of the bass aquaculture industry. There are currently no antiviral therapies available for the control of this disease. In this study, we developed three types of vaccine against LMBV; whole virus inactivated vaccine (I), a subunit vaccine composed of the major viral capsid protein MCP (S) as well as an MCP DNA vaccine(D), These were employed using differing immunization and booster strategies spaced 2 weeks apart as follows: II, SS, DD and DS. We found that all vaccine groups induced humoral and cellular immune responses and protected largemouth bass from a lethal LMBV challenge to varying degrees and DD produced the best overall effect. Specifically, the levels of specific IgM in serum in all immunized groups were elevated and significantly higher than those in the control group. Moreover, the expression of humoral immunity (CD4 and IgM) and cellular immunity (MHCI-α) as well as cytokines (IL-1ß) was increased, and the activity of immunity-related enzymes ACP, AKP, LZM, and T-SOD in the serum was significantly enhanced. In addition, the relative percent survival of fish following an LMBV lethal challenge 4 weeks after the initial immunizations were high for each group: DD(89.5 %),DS(63.2 %),SS(50 %) and II (44.7 %). These results indicated that the MCP DNA vaccine is the most suitable and promising vaccine candidate for the effective control of LMBV disease.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Vacinas de DNA , Vacinas Virais , Animais , Vacinas de DNA/imunologia , Vacinas de DNA/administração & dosagem , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Bass/imunologia , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/prevenção & controle , Infecções por Vírus de DNA/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Imunidade Humoral , Ranavirus/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Imunidade Celular
11.
Hum Vaccin Immunother ; 20(1): 2396710, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-39193781

RESUMO

Human papillomavirus (HPV) has been linked to the development of various cancers, including head and neck, cervical, vaginal, penile, and anal cancers. The development of therapeutic vaccines against HPV-positive tumors is crucial for protecting individuals already infected with HPV, preventing tumor progression, and effectively treating the disease. The HPV therapeutic peptide-based vaccines demonstrate specificity and safety advantages by targeting specific epitopes while minimizing the risk of allergic or autoimmune reactions. However, HPV therapeutic peptide-based vaccines typically lack immunogenicity and frequently fail to induce effective immune responses. Therefore, there is a need for more effective approaches to improve the immunogenicity of HPV peptide-based vaccines. Here, we review relevant research and possible uses for increasing the immunogenicity and therapeutic efficacy of HPV peptide-based vaccines through combined therapy and improved delivery strategies. Additional research is necessary to validate the application of combination therapy and delivery strategy modifications as standard treatment approaches for HPV therapeutic peptide-based vaccines.


Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vacinas de Subunidades Antigênicas , Humanos , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/imunologia , Infecções por Papillomavirus/prevenção & controle , Infecções por Papillomavirus/terapia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Terapia Combinada/métodos , Papillomaviridae/imunologia , Imunogenicidade da Vacina
12.
Viruses ; 16(8)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39205245

RESUMO

Neonates are more susceptible to influenza virus infection than adults, resulting in increased morbidity and mortality and delayed clearance of the virus. Generating effective CD8+ T cell responses may be important for improving vaccination outcomes in vulnerable populations, but neonatal T cells frequently respond differently than adult cells. We sought to understand CD8+ T cell specificity and immunodominance during neonatal influenza infection and how any differences from the adult hierarchy might impact peptide vaccine effectiveness. Neonatal C57BL/6 mice displayed an altered CD8+ T cell immunodominance hierarchy during influenza infection, preferentially responding to an epitope in the influenza protein PA rather than the co-dominant adult response to NP and PA. Heterosubtypic infections in mice first infected as pups also displayed altered immunodominance and reduced protection compared to mice first infected as adults. Adoptive transfer of influenza-infected bone-marrow-derived dendritic cells promoted an NP-specific CD8+ T cell response in influenza-virus-infected pups and increased viral clearance. Finally, pups responded to PA (224-233), but not NP (366-374) during peptide vaccination. PA (224-233)-vaccinated mice were not protected during viral challenge. Epitope usage should be considered when designing vaccines that target T cells when the intended patient population includes infants and adults.


Assuntos
Animais Recém-Nascidos , Linfócitos T CD8-Positivos , Epitopos Imunodominantes , Vacinas contra Influenza , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae , Animais , Linfócitos T CD8-Positivos/imunologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Epitopos Imunodominantes/imunologia , Vacinação , Feminino , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Epitopos de Linfócito T/imunologia
13.
Esophagus ; 21(4): 447-455, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38990441

RESUMO

BACKGROUND: S-588410, a cancer peptide vaccine (CPV), comprises five HLA-A*24:02-restricted peptides from five cancer-testis antigens. In a phase 2 study, S-588410 was well-tolerated and exhibited antitumor efficacy in patients with urothelial cancer. Therefore, we aimed to evaluate the efficacy, immune response, and safety of S-588410 in patients with completely resected esophageal squamous cell carcinoma (ESCC). METHODS: This phase 3 study involved patients with HLA-A*24:02-positive and lymph node metastasis-positive ESCC who received neoadjuvant therapy followed by curative resection. After randomization, patients were administered S-588410 and placebo (both emulsified with Montanide™ ISA 51VG) subcutaneously. The primary endpoint was relapse-free survival (RFS). The secondary endpoints were overall survival (OS), cytotoxic T-lymphocyte (CTL) induction, and safety. Statistical significance was tested using the one-sided weighted log-rank test with the Fleming-Harrington class of weights. RESULTS: A total of 276 patients were randomized (N = 138/group). The median RFS was 84.3 and 84.1 weeks in the S-588410 and placebo groups, respectively (P = 0.8156), whereas the median OS was 236.3 weeks and not reached, respectively (P = 0.6533). CTL induction was observed in 132/134 (98.5%) patients who received S-588410 within 12 weeks. Injection site reactions (137/140 patients [97.9%]) were the most frequent treatment-emergent adverse events in the S-588410 group. Prolonged survival was observed in S-588410-treated patients with upper thoracic ESCC, grade 3 injection-site reactions, or high CTL intensity. CONCLUSIONS: S-588410 induced immune response and had acceptable safety but failed to reach the primary endpoint. A high CTL induction rate and intensity may be critical for prolonging survival during future CPV development.


Assuntos
Vacinas Anticâncer , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Masculino , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/efeitos adversos , Vacinas Anticâncer/uso terapêutico , Feminino , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/imunologia , Pessoa de Meia-Idade , Idoso , Método Duplo-Cego , Carcinoma de Células Escamosas do Esôfago/imunologia , Carcinoma de Células Escamosas do Esôfago/terapia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/uso terapêutico , Terapia Neoadjuvante/métodos , Linfócitos T Citotóxicos/imunologia , Resultado do Tratamento , Metástase Linfática , Antígeno HLA-A24/imunologia , Intervalo Livre de Doença , Esofagectomia/métodos , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/tratamento farmacológico
14.
Gynecol Oncol ; 189: 90-97, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39068739

RESUMO

OBJECTIVE: Folate receptor alpha (FRα) is overexpressed on >90% of high-grade epithelial ovarian cancers (EOC). Targeting FRα with antibody-drug conjugates has proven utility in the platinum-resistant setting. It is also a potential therapeutic target for immuno-oncologic agents, such as peptide vaccines that work primarily via adaptive and humoral immunity. We tested the hypothesis that FRα peptide immunization could improve outcomes in patients with EOC following response to platinum-based therapy. METHODS: We conducted a randomized, double-blind, multicenter, phase II study to evaluate the safety and efficacy of TPIV200 (a multi-epitope FRα peptide vaccine admixed with GM-CSF) versus GM-CSF alone in 120 women who did not have disease progression after at least 4 cycles of first-line platinum-based therapy. Patients were vaccinated intradermally once every 4 weeks up to 6 times, followed by a boosting period of 6 vaccinations at 12-week intervals. Primary endpoints included safety, tolerability, and progression free survival (PFS). RESULTS: At study termination with a median follow-up of 15.2 months (range 1.2-28.4 months), 68 of 119 intention-to-treat patients had disease progression (55% in TPIV200 + GM-CSF arm and 59% in GM-CSF alone arm). The median PFS was 11.1 months (95% CI 8.3-16.6 months) with no significant difference between the treatment groups (10.9 months with TPIV200 + GM-CSF versus 11.1 months with GM-CSF, HR, 0.85; upper 90% CI 1.17]. No patient experienced a ≥ grade 3 drug-related adverse event. CONCLUSION: TPIV200 was well tolerated but was not associated with improved PFS. Additional studies are required to uncover potential synergies using multiepitope vaccines targeting FRα. Trial Registration NLM/NCBI Registry, NCT02978222, https://clinicaltrials.gov/search?term=NCT02978222.


Assuntos
Vacinas Anticâncer , Carcinoma Epitelial do Ovário , Receptor 1 de Folato , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Neoplasias Ovarianas , Humanos , Feminino , Receptor 1 de Folato/imunologia , Pessoa de Meia-Idade , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/efeitos adversos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/terapia , Idoso , Carcinoma Epitelial do Ovário/imunologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/terapia , Método Duplo-Cego , Adulto , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/efeitos adversos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/efeitos adversos , Intervalo Livre de Progressão , Idoso de 80 Anos ou mais
15.
Clin Cancer Res ; 30(18): 4044-4054, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39028916

RESUMO

PURPOSE: A multicenter, randomized, open-label, phase II study (HERIZON; NCT02795988) was conducted to evaluate the clinical and immunologic efficacy of HER-Vaxx (IMU-131), a B-cell, peptide-based vaccine targeting HER2 overexpressed in 6% to 30% of gastroesophageal adenocarcinomas (GEA). PATIENTS AND METHODS: Patients (n = 36) with GEA were treated with standard-of-care chemotherapy (n = 17) or HER-Vaxx plus chemotherapy (n = 19), using the recommended phase 2 dose for the vaccine. Overall survival (OS; primary endpoint), safety, progression-free survival (PFS), clinical response (secondary endpoints), and vaccine-induced HER2-specific antibody levels in serum and correlation with tumor response rates (exploratory endpoints) were investigated. RESULTS: A 40% OS benefit [HR, 0.60; median OS, 13.9 months; 80% confidence interval (CI), 7.52-14.32] for patients treated with HER-Vaxx plus chemotherapy compared with OS of 8.31 months (80% CI, 6.01-9.59) in patients that received chemotherapy alone. A 20% PFS difference was obtained for the vaccination arm (HR, 0.80; 80% CI, 0.47, 1.38). No additional toxicity due to HER-Vaxx was observed. The vaccine-induced high levels of HER2-specific total IgG and IgG1 antibodies (P < 0.001 vs. controls) that significantly correlated with tumor reduction (IgG, P = 0.001; IgG1, P = 0.016), had a significant capacity in inhibiting phosphorylation of the intracellular HER2-signaling pathways, mediated antibody-dependent cellular cytotoxicity, and decreased immunosuppressive FOXP3+ regulatory T cells. CONCLUSIONS: HER-Vaxx plus standard chemotherapy exhibits an excellent safety profile and improves OS. Furthermore, vaccine-induced immune response was significantly associated with reduced tumor size compared with standard-of-care chemotherapy. The presented vaccination approach may substitute for treatment with trastuzumab, upon unavailability or toxicity, based on further evidence of equivalent treatment efficacy.


Assuntos
Vacinas Anticâncer , Receptor ErbB-2 , Neoplasias Gástricas , Humanos , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Feminino , Pessoa de Meia-Idade , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/efeitos adversos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Masculino , Idoso , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/efeitos adversos , Vacinas de Subunidades Antigênicas/uso terapêutico , Vacinas de Subunidades Antigênicas/imunologia , Resultado do Tratamento , Estadiamento de Neoplasias , Idoso de 80 Anos ou mais
16.
PLoS Pathog ; 20(7): e1012220, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38976694

RESUMO

The fungal infection, cryptococcosis, is responsible for >100,000 deaths annually. No licensed vaccines are available. We explored the efficacy and immune responses of subunit cryptococcal vaccines adjuvanted with Cationic Adjuvant Formulation 01 (CAF01). CAF01 promotes humoral and T helper (Th) 1 and Th17 immune responses and has been safely used in human vaccine trials. Four subcutaneous vaccines, each containing single recombinant Cryptococcus neoformans protein antigens, partially protected mice from experimental cryptococcosis. Protection increased, up to 100%, in mice that received bivalent and quadrivalent vaccine formulations. Vaccinated mice that received a pulmonary challenge with C. neoformans had an influx of leukocytes into the lung including robust numbers of polyfunctional CD4+ T cells which produced interferon gamma (IFNγ), tumor necrosis factor alpha (TNFα), and interleukin (IL)-17 upon ex vivo antigenic stimulation. Cytokine-producing lung CD8+ T cells were also found, albeit in lesser numbers. A significant, durable IFNγ response was observed in the lungs, spleen, and blood. Moreover, IFNγ secretion following ex vivo stimulation directly correlated with fungal control in the lungs. Thus, we have developed multivalent cryptococcal vaccines which protect mice from experimental cryptococcosis using an adjuvant which has been safely tested in humans. These preclinical studies suggest a path towards human cryptococcal vaccine trials.


Assuntos
Adjuvantes Imunológicos , Criptococose , Cryptococcus neoformans , Vacinas Fúngicas , Vacinas de Subunidades Antigênicas , Criptococose/imunologia , Criptococose/prevenção & controle , Animais , Camundongos , Vacinas Fúngicas/imunologia , Vacinas Fúngicas/administração & dosagem , Cryptococcus neoformans/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Feminino , Camundongos Endogâmicos C57BL , Adjuvantes de Vacinas/administração & dosagem , Antígenos de Fungos/imunologia , Modelos Animais de Doenças
17.
J Med Virol ; 96(7): e29793, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39023111

RESUMO

Various vaccine platforms were developed and deployed against the COVID-19 disease. The Fc-mediated functions of IgG antibodies are essential in the adaptive immune response elicited by vaccines. However, the long-term changes of protein subunit vaccines and their combinations with messenger RNA (mRNA) vaccines are unknown. A total of 272 serum and plasma samples were collected from individuals who received first to third doses of the protein subunit Medigen, the mRNA (BNT, Moderna), or the adenovector AstraZeneca vaccines. The IgG subclass level was measured using enzyme-linked immunosorbent assay, and Fc-N glycosylation was measured using liquid chromatography coupled to tandem mass spectrometry. Antibody-dependent-cellular-phagocytosis (ADCP) and complement deposition (ADCD) of anti-spike (S) IgG antibodies were measured by flow cytometry. IgG1 and 3 reached the highest anti-S IgG subclass level. IgG1, 2, and 4 subclass levels significantly increased in mRNA- and Medigen-vaccinated individuals. Fc-glycosylation was stable, except in female BNT vaccinees, who showed increased bisection and decreased galactosylation. Female BNT vaccinees had a higher anti-S IgG titer than that of males. ADCP declined in all groups. ADCD was significantly lower in AstraZeneca-vaccinated individuals. Each vaccine produced specific long-term changes in Fc structure and function. This finding is critical when selecting a vaccine platform or combination to achieve the desired immune response.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunoglobulina G , SARS-CoV-2 , Vacinas de Subunidades Antigênicas , Vacinas de mRNA , Humanos , Imunoglobulina G/sangue , Feminino , Anticorpos Antivirais/sangue , Masculino , COVID-19/prevenção & controle , COVID-19/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Adulto , Pessoa de Meia-Idade , Vacinas contra COVID-19/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/administração & dosagem , Glicosilação , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Idoso , RNA Mensageiro/genética , Adulto Jovem , Vacinas de Subunidades Proteicas
18.
Methods Mol Biol ; 2821: 111-127, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38997484

RESUMO

Immune stimulants (adjuvants) enhance immune system recognition to provide an effective and individualized immune response when delivered with an antigen. Synthetic cyclic deca-peptides, co-administered with a toll-like receptor targeting lipopeptide, have shown self-adjuvant properties, dramatically boosting the immune response in a murine model as a subunit peptide-based vaccine containing group A Streptococcus peptide antigens.Here, we designed a novel peptide and lipid adjuvant system for the delivery of group A Streptococcus peptide antigen and a T helper peptide epitope. Following linear peptide synthesis on 2-chlorotrityl chloride resin, the linear peptide was cleaved and head-to-tail cyclized in solution. The selective arrangement of amino acids in the deca-peptide allowed for selective conjugation of lipids and/or peptide antigens following cyclisation. Using both solution-phase peptide chemistry and copper-catalyzed azide-alkyne cycloaddition reaction were covalently (and selectively) ligated lipid and/or peptide antigens onto the cyclic deca-peptide core. Subcutaneous administration of the vaccine design to mice resulted in the generation of a large number of serum immunoglobulin (Ig) G antibodies.


Assuntos
Adjuvantes Imunológicos , Imunização , Peptídeos Cíclicos , Vacinas Conjugadas , Animais , Camundongos , Peptídeos Cíclicos/imunologia , Peptídeos Cíclicos/química , Vacinas Conjugadas/imunologia , Vacinas Conjugadas/química , Vacinas Conjugadas/administração & dosagem , Imunização/métodos , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/administração & dosagem , Injeções Subcutâneas , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/química , Streptococcus pyogenes/imunologia , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/química , Vacinas de Subunidades Proteicas
19.
Viruses ; 16(7)2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39066297

RESUMO

Rotavirus remains a significant public health threat, especially in low-income countries, where it is the leading cause of severe acute childhood gastroenteritis, contributing to over 128,500 deaths annually. Although the introduction of the Rotarix and RotaTeq vaccines in 2006 marked a milestone in reducing mortality rates, approximately 83,158 preventable deaths persisted, showing ongoing challenges in vaccine accessibility and effectiveness. To address these issues, a novel subcutaneous vaccine formulation targeting multiple rotavirus genotypes has been developed. This vaccine consists of nine VP8* proteins from nine distinct rotavirus genotypes and sub-genotypes (P[4], P[6], P[8]LI, P[8]LIII, P[8]LIV, P[9], P[11], P[14], and P[25]) expressed in E. coli. Two groups of mice were immunized either with a single immunogen, the VP8* from the rotavirus Wa strain (P[8]LI), or with the nonavalent formulation. Preliminary results from mouse immunization studies showed promising outcomes, eliciting antibody responses against six of the nine immunogens. Notably, significantly higher antibody titers against VP8* P[8]LI were observed in the group immunized with the nonavalent vaccine compared to mice specifically immunized against this genotype alone. Overall, the development of parenteral vaccines targeting multiple rotavirus genotypes represents a promising strategy in mitigating the global burden of rotavirus-related morbidity and mortality, offering new avenues for disease prevention and control.


Assuntos
Anticorpos Antivirais , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Vacinas de Subunidades Antigênicas , Animais , Vacinas contra Rotavirus/imunologia , Vacinas contra Rotavirus/administração & dosagem , Camundongos , Rotavirus/imunologia , Rotavirus/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Feminino , Camundongos Endogâmicos BALB C , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/genética , Imunogenicidade da Vacina , Genótipo , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/genética
20.
Braz J Med Biol Res ; 57: e13409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38958367

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains the leading cause of mortality by a single infectious agent in the world. M. tuberculosis infection could also result in clinical chronic infection, known as latent TB infection (LTBI). Compared to the current limited treatment, several subunit vaccines showed immunotherapeutic effects and were included in clinical trials. In this study, a subunit vaccine of Ag85B with a novel mucosal adjuvant c-di-AMP (Ag85B:c-di-AMP) was delivered intranasally to a persistent M. tuberculosis H37Ra infection mouse model, which also presented the asymptomatic characteristics of LTBI. Compared with Ag85B immunization, Ag85B:c-di-AMP vaccination induced stronger humoral immune responses, significantly higher CD4+ T cells recruitment, enhanced Th1/Th2/Th17 profile response in the lung, decreased pathological lesions of the lung, and reduced M. tuberculosis load in mice. Taken together, Ag85B:c-di-AMP mucosal route immunization provided an immunotherapeutic effect on persistent M. tuberculosis H37Ra infection, and c-di-AMP, as a promising potential mucosal adjuvant, could be further used in therapeutic or prophylactic vaccine strategies for persistent M. tuberculosis infection as well as LTBI.


Assuntos
Adjuvantes Imunológicos , Modelos Animais de Doenças , Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Animais , Adjuvantes Imunológicos/administração & dosagem , Vacinas contra a Tuberculose/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Mycobacterium tuberculosis/imunologia , Camundongos , Feminino , Antígenos de Bactérias/imunologia , Aciltransferases/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Proteínas de Bactérias/imunologia , Tuberculose/imunologia , Tuberculose/prevenção & controle , Tuberculose Latente/imunologia , Camundongos Endogâmicos BALB C , Administração Intranasal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...