Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
1.
PLoS One ; 19(7): e0305417, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39042625

RESUMO

Hantaviruses are single-stranded RNA viruses belonging to the family Bunyaviridae that causes hantavirus cardiopulmonary syndrome (HCPS) and hemorrhagic fever with renal syndrome (HFRS) worldwide. Currently, there is no effective vaccination or therapy available for the treatment of hantavirus, hence there is a dire need for research to formulate therapeutics for the disease. Computational vaccine designing is currently a highly accurate, time and cost-effective approach for designing effective vaccines against different diseases. In the current study, we shortlisted highly antigenic proteins i.e., envelope, and nucleoprotein from the proteome of hantavirus and subjected to the selection of highly antigenic epitopes to design of next-generation multi-epitope vaccine constructs. A highly antigenic and stable adjuvant was attached to the immune epitopes (T-cell, B-cell, and HTL) to design Env-Vac, NP-Vac, and Com-Vac constructs, which exhibit stronger antigenic, non-allergenic, and favorable physiochemical properties. Moreover, the 3D structures were predicted and docking analysis revealed robust interactions with the human Toll-like receptor 3 (TLR3) to initiate the immune cascade. The total free energy calculated for Env-Vac, NP-Vac, and Com-Vac was -50.02 kcal/mol, -24.13 kcal/mol, and -62.30 kcal/mol, respectively. In silico cloning, results demonstrated a CAI value for the Env-Vac, NP-Vac, and Com-Vac of 0.957, 0.954, and 0.956, respectively, while their corresponding GC contents were 65.1%, 64.0%, and 63.6%. In addition, the immune simulation results from three doses of shots released significant levels of IgG, IgM, interleukins, and cytokines, as well as antigen clearance over time, after receiving the vaccine and two booster doses. Our vaccines against Hantavirus were found to be highly immunogenic, inducing a robust immune response that demands experimental validation for clinical usage.


Assuntos
Orthohantavírus , Vacinas Virais , Orthohantavírus/imunologia , Vacinas Virais/imunologia , Humanos , Vacinologia/métodos , Simulação de Acoplamento Molecular , Simulação por Computador , Epitopos/imunologia , Epitopos/química , Modelos Moleculares , Infecções por Hantavirus/prevenção & controle , Infecções por Hantavirus/imunologia
2.
BMC Immunol ; 25(1): 46, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39034396

RESUMO

OBJECTIVES: The pathogenic microorganisms that cause intestinal diseases can significantly jeopardize people's health. Currently, there are no authorized treatments or vaccinations available to combat the germs responsible for intestinal disease. METHODS: Using immunoinformatics, we developed a potent multi-epitope Combination (combo) vaccine versus Salmonella and enterohemorrhagic E. coli. The B and T cell epitopes were identified by performing a conservancy assessment, population coverage analysis, physicochemical attributes assessment, and secondary and tertiary structure assessment of the chosen antigenic polypeptide. The selection process for vaccine development included using several bioinformatics tools and approaches to finally choose two linear B-cell epitopes, five CTL epitopes, and two HTL epitopes. RESULTS: The vaccine had strong immunogenicity, cytokine production, immunological properties, non-toxicity, non-allergenicity, stability, and potential efficacy against infections. Disulfide bonding, codon modification, and computational cloning were also used to enhance the stability and efficacy of expression in the host E. coli. The vaccine's structure has a strong affinity for the TLR4 ligand and is very durable, as shown by molecular docking and molecular modeling. The results of the immunological simulation demonstrated that both B and T cells had a heightened response to the vaccination component. CONCLUSIONS: The comprehensive in silico analysis reveals that the proposed vaccine will likely elicit a robust immune response against pathogenic bacteria that cause intestinal diseases. Therefore, it is a promising option for further experimental testing.


Assuntos
Epitopos de Linfócito B , Epitopos de Linfócito T , Vacinologia , Humanos , Epitopos de Linfócito T/imunologia , Vacinologia/métodos , Epitopos de Linfócito B/imunologia , Vacinas Combinadas/imunologia , Genômica/métodos , Escherichia coli Êntero-Hemorrágica/imunologia , Salmonella/imunologia , Animais , Biologia Computacional/métodos , Simulação de Acoplamento Molecular , Vacinas contra Escherichia coli/imunologia , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/imunologia , Infecções por Salmonella/imunologia , Infecções por Salmonella/prevenção & controle , Antígenos de Bactérias/imunologia , Desenvolvimento de Vacinas/métodos , Vacinas Bacterianas/imunologia
3.
PLoS One ; 19(7): e0305413, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38976715

RESUMO

Pancreatic ductal adenocarcinoma is the most prevalent pancreatic cancer, which is considered a significant global health concern. Chemotherapy and surgery are the mainstays of current pancreatic cancer treatments; however, a few cases are suitable for surgery, and most of the cases will experience recurrent episodes. Compared to DNA or peptide vaccines, mRNA vaccines for pancreatic cancer have more promise because of their delivery, enhanced immune responses, and lower proneness to mutation. We constructed an mRNA vaccine by analyzing S100 family proteins, which are all major activators of receptors for advanced glycation end products. We applied immunoinformatic approaches, including physicochemical properties analysis, structural prediction and validation, molecular docking study, in silico cloning, and immune simulations. The designed mRNA vaccine was estimated to have a molecular weight of 165023.50 Da and was highly soluble (grand average of hydropathicity of -0.440). In the structural assessment, the vaccine seemed to be a well-stable and functioning protein (Z score of -8.94). Also, the docking analysis suggested that the vaccine had a high affinity for TLR-2 and TLR-4 receptors. Additionally, the molecular mechanics with generalized Born and surface area solvation analysis of the "Vaccine-TLR-2" (-141.07 kcal/mol) and "Vaccine-TLR-4" (-271.72 kcal/mol) complexes also suggests a strong binding affinity for the receptors. Codon optimization also provided a high expression level with a GC content of 47.04% and a codon adaptation index score 1.0. The appearance of memory B-cells and T-cells was also observed over a while, with an increased level of helper T-cells and immunoglobulins (IgM and IgG). Moreover, the minimum free energy of the mRNA vaccine was predicted at -1760.00 kcal/mol, indicating the stability of the vaccine following its entry, transcription, and expression. This hypothetical vaccine offers a groundbreaking tool for future research and therapeutic development of pancreatic cancer.


Assuntos
Vacinas Anticâncer , Simulação de Acoplamento Molecular , Neoplasias Pancreáticas , Neoplasias Pancreáticas/imunologia , Humanos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Vacinas de mRNA/imunologia , Biologia Computacional/métodos , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo , Vacinologia/métodos , Receptor 2 Toll-Like/imunologia , Simulação por Computador , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Imunoinformática
4.
Microb Pathog ; 193: 106775, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960216

RESUMO

Rotavirus, a primary contributor to severe cases of infantile gastroenteritis on a global scale, results in significant morbidity and mortality in the under-five population, particularly in middle to low-income countries, including India. WHO-approved live-attenuated vaccines are linked to a heightened susceptibility to intussusception and exhibit low efficacy, primarily attributed to the high genetic diversity of rotavirus, varying over time and across different geographic regions. Herein, molecular data on Indian rotavirus A (RVA) has been reviewed through phylogenetic analysis, revealing G1P[8] to be the prevalent strain of RVA in India. The conserved capsid protein sequences of VP7, VP4 and VP6 were used to examine helper T lymphocyte, cytotoxic T lymphocyte and linear B-cell epitopes. Twenty epitopes were identified after evaluation of factors such as antigenicity, non-allergenicity, non-toxicity, and stability. These epitopes were then interconnected using suitable linkers and an N-terminal beta defensin adjuvant. The in silico designed vaccine exhibited structural stability and interactions with integrins (αvß3 and αIIbß3) and toll-like receptors (TLR2 and TLR4) indicated by docking and normal mode analyses. The immune simulation profile of the designed RVA multiepitope vaccine exhibited its potential to trigger humoral as well as cell-mediated immunity, indicating that it is a promising immunogen. These computational findings indicate potential efficacy of the designed vaccine against rotavirus infection.


Assuntos
Antígenos Virais , Proteínas do Capsídeo , Epitopos de Linfócito T , Infecções por Rotavirus , Vacinas contra Rotavirus , Rotavirus , Rotavirus/imunologia , Rotavirus/genética , Vacinas contra Rotavirus/imunologia , Vacinas contra Rotavirus/administração & dosagem , Vacinas contra Rotavirus/genética , Infecções por Rotavirus/prevenção & controle , Infecções por Rotavirus/imunologia , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/química , Antígenos Virais/imunologia , Antígenos Virais/genética , Humanos , Índia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Vacinologia/métodos , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/genética , Filogenia , Simulação de Acoplamento Molecular , Epitopos/imunologia , Epitopos/genética , Desenvolvimento de Vacinas
5.
Comput Biol Med ; 178: 108738, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38870724

RESUMO

Neisseria meningitidis, commonly known as the meningococcus, leads to substantial illness and death among children and young adults globally, revealing as either epidemic or sporadic meningitis and/or septicemia. In this study, we have designed a novel peptide-based chimeric vaccine candidate against the N. meningitidis strain 331,401 serogroup X. Through rigorous analysis of subtractive genomics, two essential cytoplasmic proteins, namely UPI000012E8E0(UDP-3-O-acyl-GlcNAc deacetylase) and UPI0000ECF4A9(UDP-N-acetylglucosamine acyltransferase) emerged as potential drug targets. Additionally, using reverse vaccinology, the outer membrane protein UPI0001F4D537 (Membrane fusion protein MtrC) identified by subcellular localization and recognized for its known indispensable role in bacterial survival was identified as a novel chimeric vaccine target. Following a careful comparison of MHC-I, MHC-II, T-cell, and B-cell epitopes, three epitopes derived from UPI0001F4D537 were linked with three types of linkers-GGGS, EAAAK, and the essential PADRE-for vaccine construction. This resulted in eight distinct vaccine models (V1-V8). Among them V1 model was selected as the final vaccine construct. It exhibits exceptional immunogenicity, safety, and enhanced antigenicity, with 97.7 % of its residues in the Ramachandran plot's most favored region. Subsequently, the vaccine structure was docked with the TLR4/MD2 complex and six different HLA allele receptors using the HADDOCK server. The docking resulted in the lowest HADDOCK score of 39.3 ± 9.0 for TLR/MD2. Immune stimulation showed a strong immune response, including antibodies creation and the activation of B-cells, T Cytotoxic cells, T Helper cells, Natural Killer cells, and interleukins. Furthermore, the vaccine construct was successfully expressed in the Escherichia coli system by reverse transcription, optimization, and ligation in the pET-28a (+) vector for the expression study. The current study proposes V1 construct has the potential to elicit both cellular and humoral responses, crucial for the developing an epitope-based vaccine against N. meningitidis strain 331,401 serogroup X.


Assuntos
Vacinas Meningocócicas , Neisseria meningitidis , Neisseria meningitidis/imunologia , Neisseria meningitidis/genética , Humanos , Vacinas Meningocócicas/imunologia , Vacinologia/métodos , Genômica , Simulação por Computador , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética
6.
Fish Shellfish Immunol ; 151: 109688, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38857817

RESUMO

This study marks the first utilization of reverse vaccinology to develop recombinant subunit vaccines against Pseudomonas koreensis infection in Empurau (Tor tambroides). The proteome (5538 proteins) was screened against various filters to prioritize proteins based on features that are associated with virulence, subcellular localization, transmembrane helical structure, antigenicity, essentiality, non-homology with the host proteome, molecular weight, and stability, which led to the identification of eight potential vaccine candidates. These potential vaccine candidates were cloned and expressed, with six achieving successful expression and purification. The antigens were formulated into two distinct vaccine mixtures, Vac A and Vac B, and their protective efficacy was assessed through in vivo challenge experiments. Vac A and Vac B demonstrated high protective efficacies of 100 % and 81.2 %, respectively. Histological analyses revealed reduced tissue damage in vaccinated fish after experimental infection, with Vac A showing no adverse effects, whereas Vac B exhibited mild degenerative changes. Quantitative real-time PCR results showed a significant upregulation of TNF-α and downregulation of IL-1ß in the kidneys, spleen, gills, and intestine in both Vac A- and Vac B-immunized fish after challenged with P. koreensis. Additionally, IL-8 exhibits tissue-specific differential expression, with significant upregulation in the kidney, gills, and intestine, and downregulation in the spleen, particularly notable in Vac A-immunized fish. The research underscores the effectiveness of the reverse vaccinology approach in fish and demonstrates the promising potential of Vac A and Vac B as recombinant subunit vaccines.


Assuntos
Doenças dos Peixes , Infecções por Pseudomonas , Pseudomonas , Animais , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Pseudomonas/imunologia , Infecções por Pseudomonas/veterinária , Infecções por Pseudomonas/prevenção & controle , Infecções por Pseudomonas/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Vacinologia , Vacinas Sintéticas/imunologia , Cyprinidae/imunologia , Vacinas contra Pseudomonas/imunologia , Proteoma/imunologia
7.
Sci Rep ; 14(1): 10842, 2024 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735993

RESUMO

Yellow fever outbreaks are prevalent, particularly in endemic regions. Given the lack of an established treatment for this disease, significant attention has been directed toward managing this arbovirus. In response, we developed a multiepitope vaccine designed to elicit an immune response, utilizing advanced immunoinformatic and molecular modeling techniques. To achieve this, we predicted B- and T-cell epitopes using the sequences from all structural (E, prM, and C) and nonstructural proteins of 196 YFV strains. Through comprehensive analysis, we identified 10 cytotoxic T-lymphocyte (CTL) and 5T-helper (Th) epitopes that exhibited overlap with B-lymphocyte epitopes. These epitopes were further evaluated for their affinity to a wide range of human leukocyte antigen system alleles and were rigorously tested for antigenicity, immunogenicity, allergenicity, toxicity, and conservation. These epitopes were linked to an adjuvant ( ß -defensin) and to each other using ligands, resulting in a vaccine sequence with appropriate physicochemical properties. The 3D structure of this sequence was created, improved, and quality checked; then it was anchored to the Toll-like receptor. Molecular Dynamics and Quantum Mechanics/Molecular Mechanics simulations were employed to enhance the accuracy of docking calculations, with the QM portion of the simulations carried out utilizing the density functional theory formalism. Moreover, the inoculation model was able to provide an optimal codon sequence that was inserted into the pET-28a( +) vector for in silico cloning and could even stimulate highly relevant humoral and cellular immunological responses. Overall, these results suggest that the designed multi-epitope vaccine can serve as prophylaxis against the yellow fever virus.


Assuntos
Epitopos de Linfócito T , Vacina contra Febre Amarela , Febre Amarela , Vírus da Febre Amarela , Vacina contra Febre Amarela/imunologia , Vírus da Febre Amarela/imunologia , Vírus da Febre Amarela/genética , Humanos , Febre Amarela/prevenção & controle , Febre Amarela/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito B/imunologia , Vacinologia/métodos , Modelos Moleculares , Desenvolvimento de Vacinas , Simulação de Dinâmica Molecular , Linfócitos T Citotóxicos/imunologia
8.
Vaccine ; 42(18): 3874-3882, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38704249

RESUMO

Reverse vaccinology (RV) is a significant step in sensible vaccine design. In recent years, many machine learning (ML) methods have been used to improve RV prediction accuracy. However, there are still issues with prediction accuracy and programme accessibility in ML-based RV. This paper presents a supervised ML-based method to classify bacterial protective antigens (BPAgs) and identify the model(s) that consistently perform well for the training dataset. Six ML classifiers are used for testing with physiochemical features extracted from a comprehensive training dataset. Selecting the best performing model from different performance metrics (accuracy, precision, recall, F1-score, and AUC-ROC) has not been easy, because all the metrics has the same importance to predict BPAgs. To fix this issue, we propose a soft and hard ranking model based on multi-criteria decision-making (MCDM) approach for selecting the best performing ML method that classifies BPAgs. First, our proposed model uses homologous proteins (positive and negative samples) from Protegen and Uniprot databases. Second, we applied four strategies of Synthetic Minority Oversampling Technique and Edited Nearest Neighbour (SMOTE-ENN) to handle the data imbalance problem and train the model using ML methods. Third, we consider MCDM-based technique for order preference by similarity to the ideal solution (TOPSIS) method integrated with soft and hard ranking model. The entropy is used to obtain weighted evaluation criteria for ranking the models. Our experimental evaluations show that the proposed method with best performing models (Random Forest and Extreme Gradient Boosting) outperforms compared to existing open-source RV methods using benchmark datasets.


Assuntos
Antígenos de Bactérias , Vacinologia , Antígenos de Bactérias/imunologia , Vacinologia/métodos , Aprendizado de Máquina , Humanos , Vacinas Bacterianas/imunologia
10.
Int Immunopharmacol ; 133: 112120, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657497

RESUMO

Despite the efforts of global programme to eliminate lymphatic filariasis (GPELF), the threat of lymphatic filariasis (LF) still looms over humanity in terms of long-term disabilities, and morbidities across the globe. In light of this situation, investigators have chosen to focus on the development of immunotherapeutics targeting the physiologically important filarial-specific proteins. Glutaredoxin (16.43 kDa) plays a pivotal role in filarial redox biology, serving as a vital contributor. In the context of the intra-host survival of filarial parasites, this antioxidant helps in mitigating the oxidative stress imposed by the host immune system. Given its significant contribution, the development of a vaccine targeting glutaredoxin holds promise as a new avenue for achieving a filaria-free world. Herein, multi-epitope-based vaccine was designed using advanced immunoinformatics approach. Initially, 4B-cell epitopes and 6 T-cell epitopes (4 MHC I and 2 MHC II) were identified from the 146 amino acid long sequence of glutaredoxin of the human filarid, Wuchereria bancrofti. Subsequent clustering of these epitopes with linker peptides finalized the vaccine structure. To boost TLR-mediated innate immunity, TLR-specific adjuvants were incorporated into the designed vaccine. After that, experimental analyses confirm the designed vaccine, Vac4 as anefficient ligand of human TLR5 to elicit protective innate immunity against filarial glutaredoxin. Immune simulation further demonstrated abundant levels of IgG and IgM as crucial contributors in triggering vaccine-induced adaptive responses in the recipients. Hence, to facilitate the validation of immunogenicity of the designed vaccine, Vac4 was cloned in silico in pET28a(+) expression vector for recombinant production. Taken together, our findings suggest that vaccine-mediated targeting of filarial glutaredoxin could be a future option for intervening LF on a global scale.


Assuntos
Filariose Linfática , Glutarredoxinas , Wuchereria bancrofti , Glutarredoxinas/imunologia , Glutarredoxinas/metabolismo , Animais , Filariose Linfática/prevenção & controle , Filariose Linfática/imunologia , Humanos , Wuchereria bancrofti/imunologia , Epitopos de Linfócito T/imunologia , Vacinologia/métodos , Epitopos de Linfócito B/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Camundongos , Antígenos de Helmintos/imunologia , Feminino , Camundongos Endogâmicos BALB C
11.
Expert Rev Vaccines ; 23(1): 535-545, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38664959

RESUMO

INTRODUCTION: Zebrafishes represent a proven model for human diseases and systems biology, exhibiting physiological and genetic similarities and having innate and adaptive immune systems. However, they are underexplored for human vaccinology, vaccine development, and testing. Here we summarize gaps and challenges. AREAS COVERED: Zebrafish models have four potential applications: 1) Vaccine safety: The past successes in using zebrafishes to test xenobiotics could extend to vaccine and adjuvant formulations for general safety or target organs due to the zebrafish embryos' optical transparency. 2) Innate immunity: The zebrafish offers refined ways to examine vaccine effects through signaling via Toll-like or NOD-like receptors in zebrafish myeloid cells. 3) Adaptive immunity: Zebrafishes produce IgM, IgD,and two IgZ immunoglobulins, but these are understudied, due to a lack of immunological reagents for challenge studies. 4) Systems vaccinology: Due to the availability of a well-referenced zebrafish genome, transcriptome, proteome, and epigenome, this model offers potential here. EXPERT OPINION: It remains unproven whether zebrafishes can be employed for testing and developing human vaccines. We are still at the hypothesis-generating stage, although it is possible to begin outlining experiments for this purpose. Through transgenic manipulation, zebrafish models could offer new paths for shaping animal models and systems vaccinology.


Assuntos
Imunidade Adaptativa , Adjuvantes Imunológicos , Imunidade Inata , Modelos Animais , Desenvolvimento de Vacinas , Vacinas , Peixe-Zebra , Peixe-Zebra/imunologia , Animais , Adjuvantes Imunológicos/administração & dosagem , Humanos , Vacinas/imunologia , Vacinas/administração & dosagem , Vacinologia/métodos
12.
Arch Microbiol ; 206(5): 217, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619666

RESUMO

The rodent-borne Arenavirus in humans has led to the emergence of regional endemic situations and has deeply emerged into pandemic-causing viruses. Arenavirus have a bisegmented ambisense RNA that produces four proteins: glycoprotein, nucleocapsid, RdRp and Z protein. The peptide-based vaccine targets the glycoprotein of the virus encountered by the immune system. Screening of B-Cell and T-Cell epitopes was done based on their immunological properties like antigenicity, allergenicity, toxicity and anti-inflammatory properties were performed. Selected epitopes were then clustered and epitopes were stitched using linker sequences. The immunological and physico-chemical properties of the vaccine construct was checked and modelled structure was validated by a 2-step MD simulation. The thermostability of the vaccine was checked followed by the immune simulation to test the immunogenicity of the vaccine upon introduction into the body over the course of the next 100 days and codon optimization was performed. Finally a 443 amino acid long peptide vaccine was designed which could provide protection against several members of the mammarenavirus family in a variety of population worldwide as denoted by the epitope conservancy and population coverage analysis. This study of designing a peptide vaccine targeting the glycoprotein of mammarenavirues may help develop novel therapeutics in near future.


Assuntos
Arenaviridae , Vacinas , Humanos , Arenaviridae/genética , Vacinologia , Peptídeos , Epitopos/genética , Glicoproteínas
13.
BMC Vet Res ; 20(1): 144, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641595

RESUMO

BACKGROUND: Bovine Genital Campylobacteriosis (BGC), a worldwide distributed venereal disease caused by Campylobacter fetus subsp. venerealis (Cfv), has a relevant negative economic impact in cattle herds. The control of BGC is hampered by the inexistence of globally available effective vaccines. The present in silico study aimed to develop a multi-epitope vaccine candidate against Cfv through reverse vaccinology. RESULTS: The analysis of Cfv strain NCTC 10354 proteome allowed the identification of 9 proteins suitable for vaccine development. From these, an outer membrane protein, OmpA, and a flagellar protein, FliK, were selected for prediction of B-cell and T-cell epitopes. The top-ranked epitopes conservancy was assessed in 31 Cfv strains. The selected epitopes were integrated to form a multi-epitope fragment of 241 amino acids, which included 2 epitopes from OmpA and 13 epitopes from FliK linked by GPGPG linkers and connected to the cholera toxin subunit B by an EAAAK linker. The vaccine candidate was predicted to be antigenic, non-toxic, non-allergenic, and soluble upon overexpression. The protein structure was predicted and optimized, and the sequence was successfully cloned in silico into a plasmid vector. Additionally, immunological simulations demonstrated the vaccine candidate's ability to stimulate an immune response. CONCLUSIONS: This study developed a novel vaccine candidate suitable for further in vitro and in vivo experimental validation, which may become a useful tool for the control of BGC.


Assuntos
Infecções por Campylobacter , Doenças dos Bovinos , Vacinas , Animais , Bovinos , Infecções por Campylobacter/prevenção & controle , Infecções por Campylobacter/veterinária , Vacinologia , Epitopos de Linfócito T/química , Genitália , Biologia Computacional , Doenças dos Bovinos/prevenção & controle
14.
Ann Ig ; 36(4): 446-461, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436081

RESUMO

Introduction: The COVID-19 pandemic had a profound impact on vaccines' Research and Development, on vaccines' market, and on immunization programmes and policies. The need to promptly respond to the health emergency boostered resources' al-location and innovation, while new technologies were made available. Regulatory procedures were revised and expedited, and global production and distribution capacities significantly increased. Aim of this review is to outline the trajectory of research in vaccinology and vaccines' pipeline, highlighting major challenges and opportunities, and projecting future perspectives in vaccine preventables diseases' prevention and control. Study Design: Narrative review. Methods: We comprehensively consulted key biomedical databases including "Medline" and "Embase", preprint platforms, including"MedRxiv" and "BioRxiv", clinical trial registries, selected grey literature sources and scientific reports. Further data and insights were collected from experts in the field. We first reflect on the impact that the COVID-19 had on vaccines' Research and Development, regulatory frameworks, and market, we then present updated figures of vaccines pipeline, by different technologies, comparatively highlighting advantages and disadvantages. We conclude summarizing future perspectives in vaccines' development and immunizations strategies, outlining key challenges, knowledge gaps and opportunities for prevention strategies. Results: COVID-19 vaccines' development has been largely supported by public funding. New technologies and expetited autho-rization and distribution processes allowed to control the pandemic, leading vaccines' market to grow exponentially. In the post-pandemic era investments in prevention are projected to decrease but advancements in technology offer great potential to future immunization strategies. As of 2023, the vaccine pipeline include almost 1,000 candidates, at different Research and Development phase, including innovative recombinant protein vaccines, nucleic acid vaccines and viral vector vaccines. Vaccines' technology platforms development varies by disease. Overall, vaccinology is progressing towards increasingly safe and effective products that are easily manufacturable and swiftly convertible. Conclusions: Vaccine research is rapidly evolving, emerging technologies and new immunization models offer public health new tools and large potential to fight vaccines preventables diseases, with promising new platforms and broadened target populations. Real-life data analysis and operational research is needed to evaluate how such potential is exploited in public health practice to improve population health.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Desenvolvimento de Vacinas , Humanos , COVID-19/prevenção & controle , COVID-19/epidemiologia , Vacinas contra COVID-19/administração & dosagem , Pandemias/prevenção & controle , Previsões , Pesquisa Biomédica/tendências , Vacinologia/tendências , Vacinologia/métodos , Programas de Imunização/tendências , Desenvolvimento de Medicamentos/tendências
16.
Front Immunol ; 15: 1282754, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444851

RESUMO

Introduction: Dengue virus infection is a global health problem lacking specific therapy, requiring an improved understanding of DENV immunity and vaccine responses. Considering the recent emerging of new dengue vaccines, here we performed an integrative systems vaccinology characterization of molecular signatures triggered by the natural DENV infection (NDI) and attenuated dengue virus infection models (DVTs). Methods and results: We analyzed 955 samples of transcriptomic datasets of patients with NDI and attenuated dengue virus infection trials (DVT1, DVT2, and DVT3) using a systems vaccinology approach. Differential expression analysis identified 237 common differentially expressed genes (DEGs) between DVTs and NDI. Among them, 28 and 60 DEGs were up or downregulated by dengue vaccination during DVT2 and DVT3, respectively, with 20 DEGs intersecting across all three DVTs. Enriched biological processes of these genes included type I/II interferon signaling, cytokine regulation, apoptosis, and T-cell differentiation. Principal component analysis based on 20 common DEGs (overlapping between DVTs and our NDI validation dataset) distinguished dengue patients by disease severity, particularly in the late acute phase. Machine learning analysis ranked the ten most critical predictors of disease severity in NDI, crucial for the anti-viral immune response. Conclusion: This work provides insights into the NDI and vaccine-induced overlapping immune response and suggests molecular markers (e.g., IFIT5, ISG15, and HERC5) for anti-dengue-specific therapies and effective vaccination development.


Assuntos
Dengue , Vacinas , Viroses , Humanos , Vacinologia , Vacinação , Dengue/prevenção & controle
17.
Int J Biol Macromol ; 265(Pt 2): 130754, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508555

RESUMO

The COVID-19 pandemic has emerged as a critical global health crisis, demanding urgent and effective strategies for containment. While some knowledge exists about epitope sequences recognized by human immune cells and their activation of CD8+ T cells within the HLA context, comprehensive information remains limited. This study employs reverse vaccinology to explore antigenic HLA-restricted T-cell epitopes capable of eliciting durable immunity. Screening reveals 187 consensus epitopes, with 23 offering broad population coverage worldwide, spanning over 5000 HLA alleles. Sequence alignment analysis highlights the genetic distinctiveness of these peptides from Homo sapiens and their intermediate to high TAP binding efficiency. Notably, these epitopes share 100 % sequence identity across strains from nine countries, indicating potential for a uniform protective immune response among diverse ethnic populations. Docking simulations further confirm their binding capacity with the HLA allele, validating them as promising targets for SARS-CoV-2 immune recognition. The anticipated epitopes are connected with suitable linkers and adjuvant, and then assessed for its translational efficacy within a bacterial expression vector through computational cloning. Through docking, it is observed that the chimeric vaccine construct forms lasting hydrogen bonds with Toll-like receptor (TLR4), while immune simulation illustrates an increased cytotoxic response aimed at CD8+ T cells. This comprehensive computational analysis suggests the chimeric vaccine construct's potential to provoke a robust immune response against SARS-CoV-2. By delineating these antigenic fragments, our study offers valuable insights into effective vaccine and immunotherapy development against COVID-19, contributing significantly to global efforts in combating this infectious threat.


Assuntos
COVID-19 , Vacinas Virais , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinologia , Pandemias/prevenção & controle , Simulação de Acoplamento Molecular , Epitopos de Linfócito T/química , Epitopos de Linfócito B , Biologia Computacional , Vacinas de Subunidades Antigênicas
18.
Vaccine ; 42(10): 2503-2518, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38523003

RESUMO

Vaccines have significantly reduced the impact of numerous deadly viral infections. However, there is an increasing need to expedite vaccine development in light of the recurrent pandemics and epidemics. Also, identifying vaccines against certain viruses is challenging due to various factors, notably the inability to culture certain viruses in cell cultures and the wide-ranging diversity of MHC profiles in humans. Fortunately, reverse vaccinology (RV) efficiently overcomes these limitations and has simplified the identification of epitopes from antigenic proteins across the entire proteome, streamlining the vaccine development process. Furthermore, it enables the creation of multiepitope vaccines that can effectively account for the variations in MHC profiles within the human population. The RV approach offers numerous advantages in developing precise and effective vaccines against viral pathogens, including extensive proteome coverage, accurate epitope identification, cross-protection capabilities, and MHC compatibility. With the introduction of RV, there is a growing emphasis among researchers on creating multiepitope-based vaccines aiming to stimulate the host's immune responses against multiple serotypes, as opposed to single-component monovalent alternatives. Regardless of how promising the RV-based vaccine candidates may appear, they must undergo experimental validation to probe their protection efficacy for real-world applications. The time, effort, and resources allocated to the laborious epitope identification process can now be redirected toward validating vaccine candidates identified through the RV approach. However, to overcome failures in the RV-based approach, efforts must be made to incorporate immunological principles and consider targeting the epitope regions involved in disease pathogenesis, immune responses, and neutralizing antibody maturation. Integrating multi-omics and incorporating artificial intelligence and machine learning-based tools and techniques in RV would increase the chances of developing an effective vaccine. This review thoroughly explains the RV approach, ideal RV-based vaccine construct components, RV-based vaccines designed to combat viral pathogens, its challenges, and future perspectives.


Assuntos
Inteligência Artificial , Vacinas , Humanos , Proteoma , Vacinologia/métodos , Epitopos , Biologia Computacional/métodos , Vacinas de Subunidades Antigênicas , Epitopos de Linfócito T , Simulação de Acoplamento Molecular , Epitopos de Linfócito B
19.
Cell Rep Methods ; 4(3): 100731, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38490204

RESUMO

Systems vaccinology studies have identified factors affecting individual vaccine responses, but comparing these findings is challenging due to varying study designs. To address this lack of reproducibility, we established a community resource for comparing Bordetella pertussis booster responses and to host annual contests for predicting patients' vaccination outcomes. We report here on our experiences with the "dry-run" prediction contest. We found that, among 20+ models adopted from the literature, the most successful model predicting vaccination outcome was based on age alone. This confirms our concerns about the reproducibility of conclusions between different vaccinology studies. Further, we found that, for newly trained models, handling of baseline information on the target variables was crucial. Overall, multiple co-inertia analysis gave the best results of the tested modeling approaches. Our goal is to engage community in these prediction challenges by making data and models available and opening a public contest in August 2024.


Assuntos
Multiômica , Vacinas , Humanos , Vacinologia/métodos , Reprodutibilidade dos Testes , Simulação por Computador
20.
Microb Pathog ; 189: 106572, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354987

RESUMO

The JCV (John Cunningham Virus) is known to cause progressive multifocal leukoencephalopathy, a condition that results in the formation of tumors. Symptoms of this condition such as sensory defects, cognitive dysfunction, muscle weakness, homonosapobia, difficulties with coordination, and aphasia. To date, there is no specific and effective treatment to completely cure or prevent John Cunningham polyomavirus infections. Since the best way to control the disease is vaccination. In this study, the immunoinformatic tools were used to predict the high immunogenic and non-allergenic B cells, helper T cells (HTL), and cytotoxic T cells (CTL) epitopes from capsid, major capsid, and T antigen proteins of JC virus to design the highly efficient subunit vaccines. The specific immunogenic linkers were used to link together the predicted epitopes and subjected to 3D modeling by using the Robetta server. MD simulation was used to confirm that the newly constructed vaccines are stable and properly fold. Additionally, the molecular docking approach revealed that the vaccines have a strong binding affinity with human TLR-7. The codon adaptation index (CAI) and GC content values verified that the constructed vaccines would be highly expressed in E. coli pET28a (+) plasmid. The immune simulation analysis indicated that the human immune system would have a strong response to the vaccines, with a high titer of IgM and IgG antibodies being produced. In conclusion, this study will provide a pre-clinical concept to construct an effective, highly antigenic, non-allergenic, and thermostable vaccine to combat the infection of the John Cunningham virus.


Assuntos
Vírus JC , Vacinas , Humanos , Epitopos/genética , Simulação de Acoplamento Molecular , Escherichia coli , Vacinologia , Vacinas de Subunidades Antigênicas/genética , Epitopos de Linfócito T/genética , Biologia Computacional , Epitopos de Linfócito B , Simulação de Dinâmica Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...