Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 339
Filtrar
1.
Sci Adv ; 10(20): eadl0633, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38748804

RESUMO

Biomechanical forces, and their molecular transducers, including key mechanosensitive transcription factor genes, such as KLF2, are required for cardiac valve morphogenesis. However, klf2 mutants fail to completely recapitulate the valveless phenotype observed under no-flow conditions. Here, we identify the transcription factor EGR3 as a conserved biomechanical force transducer critical for cardiac valve formation. We first show that egr3 null zebrafish display a complete and highly penetrant loss of valve leaflets, leading to severe blood regurgitation. Using tissue-specific loss- and gain-of-function tools, we find that during cardiac valve formation, Egr3 functions cell-autonomously in endothelial cells, and identify one of its effectors, the nuclear receptor Nr4a2b. We further find that mechanical forces up-regulate egr3/EGR3 expression in the developing zebrafish heart and in porcine valvular endothelial cells, as well as during human aortic valve remodeling. Altogether, these findings reveal that EGR3 is necessary to transduce the biomechanical cues required for zebrafish cardiac valve morphogenesis, and potentially for pathological aortic valve remodeling in humans.


Assuntos
Proteína 3 de Resposta de Crescimento Precoce , Valvas Cardíacas , Morfogênese , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Valvas Cardíacas/metabolismo , Valvas Cardíacas/embriologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Morfogênese/genética , Humanos , Proteína 3 de Resposta de Crescimento Precoce/metabolismo , Proteína 3 de Resposta de Crescimento Precoce/genética , Regulação da Expressão Gênica no Desenvolvimento , Células Endoteliais/metabolismo , Mecanotransdução Celular , Suínos
2.
Circulation ; 149(18): 1435-1456, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38357822

RESUMO

BACKGROUND: A main obstacle in current valvular heart disease research is the lack of high-quality homogeneous functional heart valve cells. Human induced pluripotent stem cells (hiPSCs)-derived heart valve cells may help with this dilemma. However, there are no well-established protocols to induce hiPSCs to differentiate into functional heart valve cells, and the networks that mediate the differentiation have not been fully elucidated. METHODS: To generate heart valve cells from hiPSCs, we sequentially activated the Wnt, BMP4, VEGF (vascular endothelial growth factor), and NFATc1 signaling pathways using CHIR-99021, BMP4, VEGF-165, and forskolin, respectively. The transcriptional and functional similarity of hiPSC-derived heart valve cells compared with primary heart valve cells were characterized. Longitudinal single-cell RNA sequencing was used to uncover the trajectory, switch genes, pathways, and transcription factors of the differentiation. RESULTS: An efficient protocol was developed to induce hiPSCs to differentiate into functional hiPSC-derived valve endothelial-like cells and hiPSC-derived valve interstitial-like cells. After 6-day differentiation and CD144 magnetic bead sorting, ≈70% CD144+ cells and 30% CD144- cells were obtained. On the basis of single-cell RNA sequencing data, the CD144+ cells and CD144- cells were found to be highly similar to primary heart valve endothelial cells and primary heart valve interstitial cells in gene expression profile. Furthermore, CD144+ cells had the typical function of primary heart valve endothelial cells, including tube formation, uptake of low-density lipoprotein, generation of endothelial nitric oxide synthase, and response to shear stress. Meanwhile, CD144- cells could secret collagen and matrix metalloproteinases, and differentiate into osteogenic or adipogenic lineages like primary heart valve interstitial cells. Therefore, we identified CD144+ cells and CD144- cells as hiPSC-derived valve endothelial-like cells and hiPSC-derived valve interstitial-like cells, respectively. Using single-cell RNA sequencing analysis, we demonstrated that the trajectory of heart valve cell differentiation was consistent with embryonic valve development. We identified the main switch genes (NOTCH1, HEY1, and MEF2C), signaling pathways (TGF-ß, Wnt, and NOTCH), and transcription factors (MSX1, SP5, and MECOM) that mediated the differentiation. Finally, we found that hiPSC-derived valve interstitial-like cells might derive from hiPSC-derived valve endothelial-like cells undergoing endocardial-mesenchymal transition. CONCLUSIONS: In summary, this is the first study to report an efficient strategy to generate functional hiPSC-derived valve endothelial-like cells and hiPSC-derived valve interstitial-like cells from hiPSCs, as well as to elucidate the differentiation trajectory and transcriptional dynamics of hiPSCs differentiated into heart valve cells.


Assuntos
Diferenciação Celular , Valvas Cardíacas , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Valvas Cardíacas/citologia , Valvas Cardíacas/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Transdução de Sinais
3.
Genesis ; 61(1-2): e23506, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36546531

RESUMO

In Drosophila larvae, the direction of blood flow within the heart tube, as well as the diastolic filling of the posterior heart chamber, is regulated by a single cardiac valve. This valve is sufficient to close the heart tube at the junction of the ventricle and the aorta and is formed by only two cells; both are integral parts of the heart tube. The valve cells regulate hemolymph flow by oscillating between a spherical and a flattened cell shape during heartbeats. At the spherical stage, the opposing valve cells close the heart lumen. The dynamic cell shape changes of valve cells are supported by a dense, criss-cross orientation of myofibrils and the presence of the valvosomal compartment, a large intracellular cavity. Both structures are essential for the valve cells' function. In a screen for factors specifically expressed in cardiac valve cells, we identified the transcription factor Tailup. Knockdown of tailup causes abnormal orientation and differentiation of cardiac muscle fibers in the larval aorta and inhibits the formation of the ventral longitudinal muscle layer located underneath the heart tube in the adult fly and affects myofibrillar orientation of valve cells. Furthermore, we have identified regulatory sequences of tup that control the expression of tailup in the larval and adult valve cells.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Coração , Valvas Cardíacas/metabolismo , Larva/genética , Larva/metabolismo , Miócitos Cardíacos/metabolismo
4.
J Am Heart Assoc ; 12(1): e028215, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36565196

RESUMO

Background Whereas the risk factors for structural valve degeneration (SVD) of glutaraldehyde-treated bioprosthetic heart valves (BHVs) are well studied, those responsible for the failure of BHVs fixed with alternative next-generation chemicals remain largely unknown. This study aimed to investigate the reasons behind the development of SVD in ethylene glycol diglycidyl ether-treated BHVs. Methods and Results Ten ethylene glycol diglycidyl ether-treated BHVs excised because of SVD, and 5 calcified aortic valves (AVs) replaced with BHVs because of calcific AV disease were collected and their proteomic profile was deciphered. Then, BHVs and AVs were interrogated for immune cell infiltration, microbial contamination, distribution of matrix-degrading enzymes and their tissue inhibitors, lipid deposition, and calcification. In contrast with dysfunctional AVs, failing BHVs suffered from complement-driven neutrophil invasion, excessive proteolysis, unwanted coagulation, and lipid deposition. Neutrophil infiltration was triggered by an asymptomatic bacterial colonization of the prosthetic tissue. Neutrophil elastase, myeloblastin/proteinase 3, cathepsin G, and matrix metalloproteinases (MMPs; neutrophil-derived MMP-8 and plasma-derived MMP-9), were significantly overexpressed, while tissue inhibitors of metalloproteinases 1/2 were downregulated in the BHVs as compared with AVs, together indicative of unbalanced proteolysis in the failing BHVs. As opposed to other proteases, MMP-9 was mostly expressed in the disorganized prosthetic extracellular matrix, suggesting plasma-derived proteases as the primary culprit of SVD in ethylene glycol diglycidyl ether-treated BHVs. Hence, hemodynamic stress and progressive accumulation of proteases led to the extracellular matrix degeneration and dystrophic calcification, ultimately resulting in SVD. Conclusions Neutrophil- and plasma-derived proteases are responsible for the loss of BHV mechanical competence and need to be thwarted to prevent SVD.


Assuntos
Bioprótese , Insuficiência Cardíaca , Próteses Valvulares Cardíacas , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Próteses Valvulares Cardíacas/efeitos adversos , Proteólise , Proteômica , Valvas Cardíacas/metabolismo , Valva Aórtica/cirurgia , Valva Aórtica/metabolismo , Insuficiência Cardíaca/etiologia , Peptídeo Hidrolases/metabolismo , Lipídeos , Bioprótese/efeitos adversos
5.
Development ; 149(19)2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36189830

RESUMO

Within a cell, vesicles play a crucial role in the transport of membrane material and proteins to a given target membrane, and thus regulate a variety of cellular functions. Vesicular transport occurs by means of, among others, endocytosis, where cargoes are taken up by the cell and are processed further upon vesicular trafficking, i.e. transported back to the plasma membrane via recycling endosomes or the degraded by fusion of the vesicles with lysosomes. During evolution, a variety of vesicles with individual functions arose, with some of them building up highly specialised subcellular compartments. In this study, we have analysed the biosynthesis of a new vesicular compartment present in the valve cells of Drosophila melanogaster. We show that the compartment is formed by invaginations of the plasma membrane and grows via re-routing of the recycling endosomal pathway. This is achieved by inactivation of other membrane-consuming pathways and a plasma membrane-like molecular signature of the compartment in these highly specialised heart cells.


Assuntos
Drosophila melanogaster , Endossomos , Animais , Membrana Celular/metabolismo , Drosophila melanogaster/metabolismo , Endocitose , Endossomos/metabolismo , Valvas Cardíacas/metabolismo , Transporte Proteico , Proteínas rab de Ligação ao GTP/metabolismo
6.
Dev Biol ; 486: 81-95, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35364055

RESUMO

Endothelial cells (ECs) are critical to proper heart valve development, directly contributing to the mesenchyme of the cardiac cushions, which progressively transform into mature valves. To date, investigators have lacked sufficient markers of valve ECs to evaluate their contributions during valve morphogenesis fully. As a result, it has been unclear whether the well-characterized regional differentiation of valves correlates with any endothelial domains in the heart. Furthermore, it has been difficult to ascertain whether endothelial heterogeneity in the heart influences underlying mesenchymal zones in an angiocrine manner. To identify regionally expressed EC genes in the heart valves, we screened publicly available databases and assembled a toolkit of endothelial-enriched genes. We identified Cyp26b1 as one of many endothelial enriched genes found to be expressed in the endocardium of the developing cushions and valves. Here, we show that Cyp26b1 is required for normal heart valve development. Genetic ablation of Cyp26b1 in mouse embryos leads to abnormally thickened aortic valve leaflets, which is due in part to increased endothelial and mesenchymal cell proliferation in the remodeling valves. In addition, Cyp26b1 mutant hearts display ventricular septal defects (VSDs) in a portion of null embryos. We show that loss of Cyp26b1 results in upregulation of retinoic acid (RA) target genes, supporting the observation that Cyp26b1 has RA-dependent roles. Together, this work identifies a novel role for Cyp26b1 in heart valve morphogenesis and points to a role of RA in this process. Understanding the spatiotemporal expression dynamics of cardiac EC genes will pave the way for investigation of both normal and dysfunctional heart valve development.


Assuntos
Células Endoteliais , Valvas Cardíacas , Animais , Valva Aórtica , Valvas Cardíacas/metabolismo , Camundongos , Morfogênese , Organogênese , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Tretinoína/metabolismo
7.
Dev Cell ; 57(5): 598-609.e5, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35245444

RESUMO

Organ morphogenesis involves dynamic changes of tissue properties while cells adapt to their mechanical environment through mechanosensitive pathways. How mechanical cues influence cell behaviors during morphogenesis remains unclear. Here, we studied the formation of the zebrafish atrioventricular canal (AVC) where cardiac valves develop. We show that the AVC forms within a zone of tissue convergence associated with the increased activation of the actomyosin meshwork and cell-orientation changes. We demonstrate that tissue convergence occurs with a reduction of cell volume triggered by mechanical forces and the mechanosensitive channel TRPP2/TRPV4. Finally, we show that the extracellular matrix component hyaluronic acid controls cell volume changes. Together, our data suggest that multiple force-sensitive signaling pathways converge to modulate cell volume. We conclude that cell volume reduction is a key cellular feature activated by mechanotransduction during cardiovascular morphogenesis. This work further identifies how mechanical forces and extracellular matrix influence tissue remodeling in developing organs.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Tamanho Celular , Valvas Cardíacas/metabolismo , Mecanotransdução Celular , Morfogênese , Canais de Cátion TRPV/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
8.
Cell Rep ; 37(1): 109782, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610316

RESUMO

In the zebrafish embryo, the onset of blood flow generates fluid shear stress on endocardial cells, which are specialized endothelial cells that line the interior of the heart. High levels of fluid shear stress activate both Notch and Klf2 signaling, which play crucial roles in atrioventricular valvulogenesis. However, it remains unclear why only individual endocardial cells ingress into the cardiac jelly and initiate valvulogenesis. Here, we show that lateral inhibition between endocardial cells, mediated by Notch, singles out Delta-like-4-positive endocardial cells. These cells ingress into the cardiac jelly, where they form an abluminal cell population. Delta-like-4-positive cells ingress in response to Wnt9a, which is produced in parallel through an Erk5-Klf2-Wnt9a signaling cascade also activated by blood flow. Hence, mechanical stimulation activates parallel mechanosensitive signaling pathways that produce binary effects by driving endocardial cells toward either luminal or abluminal fates. Ultimately, these cell fate decisions sculpt cardiac valve leaflets.


Assuntos
Endocárdio/metabolismo , Mecanotransdução Celular , Transdução de Sinais , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Embrião não Mamífero/metabolismo , Embrião não Mamífero/patologia , Desenvolvimento Embrionário , Endocárdio/citologia , Valvas Cardíacas/crescimento & desenvolvimento , Valvas Cardíacas/metabolismo , Valvas Cardíacas/patologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Morfolinos/metabolismo , Receptores de Neurotransmissores/antagonistas & inibidores , Receptores de Neurotransmissores/genética , Receptores de Neurotransmissores/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
9.
Science ; 374(6565): 351-354, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34648325

RESUMO

Developing cardiovascular systems use mechanical forces to take shape, but how ubiquitous blood flow forces instruct local cardiac cell identity is still unclear. By manipulating mechanical forces in vivo, we show here that shear stress is necessary and sufficient to promote valvulogenesis. We found that valve formation is associated with the activation of an extracellular adenosine triphosphate (ATP)­dependent purinergic receptor pathway, specifically triggering calcium ion (Ca2+) pulses and nuclear factor of activated T cells 1 (Nfatc1) activation. Thus, mechanical forces are converted into discrete bioelectric signals by an ATP-Ca2+-Nfatc1­mechanosensitive pathway to generate positional information and control valve formation.


Assuntos
Valvas Cardíacas/crescimento & desenvolvimento , Resistência ao Cisalhamento , Estresse Mecânico , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Fenômenos Eletrofisiológicos , Células Endoteliais/fisiologia , Valvas Cardíacas/citologia , Valvas Cardíacas/metabolismo , Fatores de Transcrição NFATC/metabolismo , Receptores Purinérgicos P2/metabolismo , Peixe-Zebra
11.
Glycobiology ; 31(11): 1582-1595, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34459483

RESUMO

Streptococcus gordonii and Streptococcus sanguinis are primary colonizers of tooth surfaces and are generally associated with oral health, but can also cause infective endocarditis (IE). These species express "Siglec-like" adhesins that bind sialylated glycans on host glycoproteins, which can aid the formation of infected platelet-fibrin thrombi (vegetations) on cardiac valve surfaces. We previously determined that the ability of S. gordonii to bind sialyl T-antigen (sTa) increased pathogenicity, relative to recognition of sialylated core 2 O-glycan structures, in an animal model of IE. However, it is unclear when and where the sTa structure is displayed, and which sTa-modified host factors promote valve colonization. In this study, we identified sialylated glycoproteins in the aortic valve vegetations and plasma of rat and rabbit models of this disease. Glycoproteins that display sTa vs. core 2 O-glycan structures were identified by using recombinant forms of the streptococcal Siglec-like adhesins for lectin blotting and affinity capture, and the O-linked glycans were profiled by mass spectrometry. Proteoglycan 4 (PRG4), also known as lubricin, was a major carrier of sTa in the infected vegetations. Moreover, plasma PRG4 levels were significantly higher in animals with damaged or infected valves, as compared with healthy animals. The combined results demonstrate that, in addition to platelet GPIbα, PRG4 is a highly sialylated mucin-like glycoprotein found in aortic valve vegetations and may contribute to the persistence of oral streptococci in this protected endovascular niche. Moreover, plasma PRG4 could serve as a biomarker for endocardial injury and infection.


Assuntos
Modelos Animais de Doenças , Endocardite Bacteriana/metabolismo , Valvas Cardíacas/metabolismo , Proteoglicanas/metabolismo , Streptococcus gordonii/isolamento & purificação , Animais , Endocardite Bacteriana/microbiologia , Endocardite Bacteriana/patologia , Feminino , Valvas Cardíacas/microbiologia , Valvas Cardíacas/patologia , Humanos , Coelhos , Ratos , Ratos Sprague-Dawley
12.
Front Immunol ; 12: 731361, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447390

RESUMO

Immune privilege is an evolutionary adaptation that protects vital tissues with limited regenerative capacity from collateral damage by the immune response. Classical examples include the anterior chamber of the eye and the brain. More recently, the placenta, testes and articular cartilage were found to have similar immune privilege. What all of these tissues have in common is their vital function for evolutionary fitness and a limited regenerative capacity. Immune privilege is clinically relevant, because corneal transplantation and meniscal transplantation do not require immunosuppression. The heart valves also serve a vital function and have limited regenerative capacity after damage. Moreover, experimental and clinical evidence from heart valve transplantation suggests that the heart valves are spared from alloimmune injury. Here we review this evidence and propose the concept of heart valves as immune privileged sites. This concept has important clinical implications for heart valve transplantation.


Assuntos
Evolução Biológica , Valvas Cardíacas/imunologia , Privilégio Imunológico , Animais , Proliferação de Células , Transplante de Coração , Valvas Cardíacas/metabolismo , Valvas Cardíacas/patologia , Valvas Cardíacas/transplante , Humanos , Regeneração
13.
Sci Rep ; 11(1): 12299, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112893

RESUMO

Freeze-drying can be used to ensure off-the-shelf availability of decellularized heart valves for cardiovascular surgery. In this study, decellularized porcine aortic heart valves were analyzed by nitroblue tetrazolium (NBT) staining and Fourier transform infrared spectroscopy (FTIR) to identify oxidative damage during freeze-drying and subsequent storage as well as after treatment with H2O2 and FeCl3. NBT staining revealed that sucrose at a concentration of at least 40% (w/v) is needed to prevent oxidative damage during freeze-drying. Dried specimens that were stored at 4 °C depict little to no oxidative damage during storage for up to 2 months. FTIR analysis shows that fresh control, freeze-dried and stored heart valve specimens cannot be distinguished from one another, whereas H2O2- and FeCl3-treated samples could be distinguished in some tissue section. A feed forward artificial neural network model could accurately classify H2O2 and FeCl3 treated samples. However, fresh control, freeze-dried and stored samples could not be distinguished from one another, which implies that these groups are very similar in terms of their biomolecular fingerprints. Taken together, we conclude that sucrose can minimize oxidative damage caused by freeze-drying, and that subsequent dried storage has little effects on the overall biochemical composition of heart valve scaffolds.


Assuntos
Liofilização/métodos , Próteses Valvulares Cardíacas/normas , Valvas Cardíacas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Valvas Cardíacas/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Aprendizado de Máquina , Espectroscopia de Infravermelho com Transformada de Fourier , Suínos
14.
Dev Dyn ; 250(10): 1432-1449, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33811421

RESUMO

BACKGROUND: Mitral valve prolapse (MVP) is a common and progressive cardiovascular disease with developmental origins. How developmental errors contribute to disease pathogenesis are not well understood. RESULTS: A multimeric complex was identified that consists of the MVP gene Dzip1, Cby1, and ß-catenin. Co-expression during valve development revealed overlap at the basal body of the primary cilia. Biochemical studies revealed a DZIP1 peptide required for stabilization of the complex and suppression of ß-catenin activities. Decoy peptides generated against this interaction motif altered nuclear vs cytosolic levels of ß-catenin with effects on transcriptional activity. A mutation within this domain was identified in a family with inherited non-syndromic MVP. This novel mutation and our previously identified DZIP1S24R variant resulted in reduced DZIP1 and CBY1 stability and increased ß-catenin activities. The ß-catenin target gene, MMP2 was up-regulated in the Dzip1S14R/+ valves and correlated with loss of collagenous ECM matrix and myxomatous phenotype. CONCLUSION: Dzip1 functions to restrain ß-catenin signaling through a CBY1 linker during cardiac development. Loss of these interactions results in increased nuclear ß-catenin/Lef1 and excess MMP2 production, which correlates with developmental and postnatal changes in ECM and generation of a myxomatous phenotype.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Transporte/metabolismo , Valvas Cardíacas/embriologia , Prolapso da Valva Mitral/metabolismo , Organogênese/fisiologia , beta Catenina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células HEK293 , Valvas Cardíacas/metabolismo , Humanos , Camundongos , Camundongos Knockout , Prolapso da Valva Mitral/genética , Fenótipo , Transdução de Sinais/fisiologia
15.
Cardiovasc Res ; 117(9): 2016-2029, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-33576771

RESUMO

Calcification of the arterial wall and valves is an important part of the pathophysiological process of peripheral and coronary atherosclerosis, aortic stenosis, ageing, diabetes, and chronic kidney disease. This review aims to better understand how extracellular phosphates and their ability to be retained as calcium phosphates on the extracellular matrix initiate the mineralization process of arteries and valves. In this context, the physiological process of bone mineralization remains a human model for pathological soft tissue mineralization. Soluble (ionized) calcium precipitation occurs on extracellular phosphates; either with inorganic or on exposed organic phosphates. Organic phosphates are classified as either structural (phospholipids, nucleic acids) or energetic (corresponding to phosphoryl transfer activities). Extracellular phosphates promote a phenotypic shift in vascular smooth muscle and valvular interstitial cells towards an osteoblast gene expression pattern, which provokes the active phase of mineralization. A line of defense systems protects arterial and valvular tissue calcifications. Given the major roles of phosphate in soft tissue calcification, phosphate mimetics, and/or prevention of phosphate dissipation represent novel potential therapeutic approaches for arterial and valvular calcification.


Assuntos
Artérias/metabolismo , Calcinose/metabolismo , Doenças das Valvas Cardíacas/metabolismo , Valvas Cardíacas/metabolismo , Organofosfatos/metabolismo , Osteogênese , Fosfatos/metabolismo , Calcificação Vascular/metabolismo , Animais , Artérias/efeitos dos fármacos , Artérias/patologia , Conservadores da Densidade Óssea/uso terapêutico , Calcinose/tratamento farmacológico , Calcinose/patologia , Quelantes/uso terapêutico , Doenças das Valvas Cardíacas/tratamento farmacológico , Doenças das Valvas Cardíacas/patologia , Valvas Cardíacas/efeitos dos fármacos , Valvas Cardíacas/patologia , Humanos , Osteogênese/efeitos dos fármacos , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/patologia
16.
Sci Rep ; 11(1): 2464, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510256

RESUMO

Progressive stenosis is one of the main factors that limit the lifetime of bioprosthetic valved conduits. To improve long-term performance we aimed to identify targets that inhibit pannus formation on conduit walls. From 11 explanted, obstructed, RNAlater presevered pulmonary valved conduits, we dissected the thickened conduit wall and the thin leaflet to determine gene expression-profiles using ultra deep sequencing. Differential gene expression between pannus and leaflet provided the dataset that was screened for potential targets. Promising target candidates were immunohistologically stained to see protein abundance and the expressing cell type(s). While immunostainings for DDR2 and FGFR2 remained inconclusive, EGFR, ErbB4 and FLT4 were specifically expressed in a subset of tissue macrophages, a cell type known to regulate the initiation, maintenance, and resolution of tissue repair. Taken toghether, our data suggest EGFR, ErbB4 and FLT4 as potential target candidates to limit pannus formation in bioprosthestic replacement valves.


Assuntos
Bioprótese , Regulação da Expressão Gênica , Próteses Valvulares Cardíacas , Valvas Cardíacas , Adulto , Criança , Pré-Escolar , Feminino , Valvas Cardíacas/metabolismo , Valvas Cardíacas/patologia , Valvas Cardíacas/cirurgia , Humanos , Lactente , Masculino
17.
Cardiovasc Res ; 117(3): 663-673, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32170926

RESUMO

Heterogeneous macrophage lineages are present in the aortic and mitral valves of the heart during development and disease. These populations include resident macrophages of embryonic origins and recruited monocyte-derived macrophages prevalent in disease. Soon after birth, macrophages from haematopoietic lineages are recruited to the heart valves, and bone marrow transplantation studies in mice demonstrate that haematopoietic-derived macrophages continue to invest adult valves. During myxomatous heart valve disease, monocyte-derived macrophages are recruited to the heart valves and they contribute to valve degeneration in a mouse model of Marfan syndrome. Here, we review recent studies of macrophage lineages in heart valve development and disease with discussion of clinical significance and therapeutic applications.


Assuntos
Linhagem da Célula , Doenças das Valvas Cardíacas/patologia , Valvas Cardíacas/patologia , Macrófagos/patologia , Animais , Fármacos Cardiovasculares/uso terapêutico , Regulação da Expressão Gênica no Desenvolvimento , Doenças das Valvas Cardíacas/tratamento farmacológico , Doenças das Valvas Cardíacas/genética , Doenças das Valvas Cardíacas/metabolismo , Valvas Cardíacas/efeitos dos fármacos , Valvas Cardíacas/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Terapia de Alvo Molecular , Morfogênese , Fenótipo , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/metabolismo
18.
Sci Rep ; 10(1): 20094, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208886

RESUMO

Protein kinase R-like endoplasmic reticulum kinase (PERK) is one of the endoplasmic reticulum (ER) stress sensors. PERK loss-of-function mutations are known to cause Wolcott-Rallison syndrome. This disease is characterized by early-onset diabetes mellitus, skeletal dysplasia, and cardiac valve malformation. To understand the role of PERK in valve formation in vivo, we used an endothelial-specific PERK conditional knockout mice as well as in vitro PERK inhibition assays. We used ProteoStat dyes to visualize the accumulation of misfolded proteins in the endocardial cushion and valve mesenchymal cells (VMCs). Then, VMCs were isolated from E12.5 fetal mice, by fluorescence assisted cell sorting. Proteomic analysis of PERK-deleted VMCs identified the suppression of proteins related to fatty acid oxidation (FAO), especially carnitine palmitoyltransferase II (CPT2). CPT2 is a critical regulator of endocardial-mesenchymal transformation (EndoMT); however how TGF-ß downstream signaling controls CPT2 expression remains unclear. Here, we showed that PERK inhibition suppressed, not only EndoMT but also CPT2 protein expression in human umbilical vein endothelial cells (HUVECs) under TGF-ß1 stimulation. As a result, PERK inhibition suppressed mitochondrial metabolic activity. Taken together, these results demonstrate that PERK signaling is required for cardiac valve formation via FAO and EndoMT.


Assuntos
Endocárdio/embriologia , Ácidos Graxos/química , Valvas Cardíacas/embriologia , Valvas Cardíacas/metabolismo , Mesoderma/embriologia , Organogênese , eIF-2 Quinase/fisiologia , Animais , Endocárdio/metabolismo , Ácidos Graxos/metabolismo , Feminino , Masculino , Mesoderma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução
19.
Biosci Rep ; 40(11)2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33073840

RESUMO

To determine whether up-regulation of miR-1183 targeting the gene for anti-apoptotic factor, B-cell lymphoma 2 (BCL-2) contributes to apoptosis in patients with rheumatic heart disease (RHD). Peripheral blood samples were isolated for miR-1183 characterization. The function of miRNA-1183 in RHD using miRNA mimic on PBMCs and THP-1 cell models. The binding of miR-1183 and Bcl-2 gene was confirmed by luciferase activity test. We also measured expression levels of BCL-2 in heart valve tissue from patients with RHD using ELISA and immunohistochemistry. In silico analysis and reporter gene assays indicated that miR-1183 directly targets the mRNA encoding BCL-2. It is found that miR-1183 binds directly to the 3'UTR of the BCL-2 mRNA and down-regulates the mRNA and protein levels of BCL-2. Overexpression of miR-1183 in RHD patients and cell lines down-regulated BCL-2 expression and induced apoptosis. With the progression of the disease, the expression of BCL-2 in the heart valve tissue of patients with RHD decreased. MiRNA-1183 is up-regulated in RHD and induces cardiac myocyte apoptosis through direct targeting and suppression of BCL-2, both of which might play important roles in RHD pathogenesis. During the compensatory period of RHD, up-regulated miR-1183 destroyed the balance of apoptosis proteins (Bax and BAK) in Bcl-2 family, enhance the apoptosis cascade reaction and reduce the anti apoptosis effect. The significantly higher expression levels of miR-1183 appear to play distinct roles in RHD pathogenesis by regulation BCL-2, possibly affecting myocardial apoptosis and remodeling in the context of RHD.


Assuntos
Apoptose , Valvas Cardíacas/metabolismo , Leucócitos Mononucleares/metabolismo , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Cardiopatia Reumática/metabolismo , Regiões 3' não Traduzidas , Adulto , Sítios de Ligação , Estudos de Casos e Controles , Feminino , Regulação da Expressão Gênica , Valvas Cardíacas/patologia , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Miócitos Cardíacos/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Cardiopatia Reumática/genética , Cardiopatia Reumática/patologia , Transdução de Sinais , Células THP-1
20.
Open Heart ; 7(2)2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32747455

RESUMO

BACKGROUND: Heart valves often undergo a degenerative process leading to mechanical dysfunction that requires valve replacement. This process has been compared with atherosclerosis because of shared pathology and risk factors. In this study, we aimed to elucidate the role of inflammation triggered by cholesterol infiltration and cholesterol crystals formation causing mechanical and biochemical injury in heart valves. METHODS: Human and atherosclerotic rabbit heart valves were evaluated. New Zealand White male rabbits were fed an enriched cholesterol diet alone or with simvastatin and ezetimibe simultaneous or after 6 months of initiating cholesterol diet. Inflammation was measured using C-reactive protein (CRP) and RAM 11 of tissue macrophage content. Cholesterol crystal presence and content in valves was evaluated using scanning electron microscopy. RESULTS: Cholesterol diet alone induced cholesterol infiltration of valves with associated increased inflammation. Tissue cholesterol, CRP levels and RAM 11 were significantly lower in simvastatin and ezetimibe rabbit groups compared with cholesterol diet alone. However, the treatment was effective only when initiated with a cholesterol diet but not after lipid infiltration in valves. Aortic valve cholesterol content was significantly greater than all other cardiac valves. Extensive amounts of cholesterol crystals were noted in rabbit valves on cholesterol diet and in diseased human valves. CONCLUSIONS: Prevention of valve infiltration with cholesterol and reduced inflammation by simvastatin and ezetimibe was effective only when given during the initiation of high cholesterol diet but was not effective when given following infiltration of cholesterol into the valve matrix.


Assuntos
Colesterol na Dieta , Endocardite/prevenção & controle , Combinação Ezetimiba e Simvastatina/farmacologia , Doenças das Valvas Cardíacas/prevenção & controle , Valvas Cardíacas/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Hipercolesterolemia/tratamento farmacológico , Animais , Modelos Animais de Doenças , Endocardite/etiologia , Endocardite/metabolismo , Endocardite/patologia , Doenças das Valvas Cardíacas/etiologia , Doenças das Valvas Cardíacas/metabolismo , Doenças das Valvas Cardíacas/patologia , Valvas Cardíacas/metabolismo , Valvas Cardíacas/ultraestrutura , Humanos , Hipercolesterolemia/etiologia , Hipercolesterolemia/metabolismo , Masculino , Coelhos , Esclerose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA