Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 830
Filtrar
1.
Sci Rep ; 14(1): 20630, 2024 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-39232024

RESUMO

We implemented a crossover study design exposing 15 participants to two indoor air quality conditions in the Well Living Lab. The first condition, the Standard Control Condition, resembled the ventilation and air supply of a typical home in the USA with a manually operated stove hood. The second condition, Advanced Control, had an automated: (i) stove hood, (ii) two portable air cleaners (PAC), and (iii) bathroom exhaust. The PM2.5 sensors were placed in the kitchen, living room, bedroom, and bathroom. Once the sensor detected a PM2.5 level of 15 µg/m3 or higher, an air quality intervention (stove hood, PAC or bathroom exhaust) in that space was activated and turned off when the corresponding PM2.5 sensor had three consecutive readings below 6 µg/m3. Advanced Control in the overall apartment reduced PM2.5 concentration by 40% compared to the Standard Control. The PM2.5 concentration difference between Advanced and Standard Control was ~ 20% in the kitchen. This can be attributed to using the stove hood manually in 66.5% of cooking PM2.5 emission events for 323.6 h compared to 88 h stove hood used in automated mode alongside 61.9 h and 33.7 h of PAC use in living room and bedroom, respectively.


Assuntos
Poluição do Ar em Ambientes Fechados , Culinária , Habitação , Material Particulado , Ventilação , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Culinária/métodos , Culinária/instrumentação , Humanos , Material Particulado/análise , Ventilação/métodos , Estudos Cross-Over , Automação , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise
2.
Sci Rep ; 14(1): 18671, 2024 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134580

RESUMO

Ventilation systems of operating rooms (ORs) are significantly important in preventing postoperative wound infections that can cause morbidity and mortality after surgery in or out of the hospital. This study aims to identify the optimum overpressure for efficient operation while reducing the risk of surgical site infections (SSIs) based on the actual OR with the help of computational fluid dynamics. The species transport model, Lagrangian discrete phase model, and turbulent standard k- ε model are mainly used for the transient numerical study to improve the performance of the OR and reduce SSI cases. Four OR schemes were initially calculated for the best location of the patient on the surgical table. The results revealed that the modified position 90˚ is the best location with the minimum CO2 and BCP concentrations. The investigated operating room could host up to ten surgical members with the optimum overpressure of 5.89 Pa and 0.56 m/s of supply velocity under the standard cleanliness level. Modifying the supply surface area will enhance the performance of the operating room by providing a cleaner zone and maintaining the desired room pressure, even with a low airflow rate. This optimization scheme could guide practical applications in all positively pressurized operating rooms to address issues related to overpressure effects.


Assuntos
Salas Cirúrgicas , Infecção da Ferida Cirúrgica , Ventilação , Ventilação/métodos , Humanos , Infecção da Ferida Cirúrgica/prevenção & controle , Pressão , Modelos Teóricos , Hidrodinâmica
3.
Am J Infect Control ; 52(10): 1219-1222, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38969068

RESUMO

We report a large outbreak of severe acute respiratory syndrome coronavirus 2 in a residential living facility. Measurements of carbon dioxide levels, aerosol particle clearance, and airflow were used to identify and remediate areas with suboptimal ventilation. A simple intervention involving continuous operation of bathroom fans was effective in significantly improving ventilation in resident rooms.


Assuntos
COVID-19 , Surtos de Doenças , SARS-CoV-2 , Ventilação , Humanos , COVID-19/epidemiologia , Ventilação/métodos , Surtos de Doenças/prevenção & controle , Instituições Residenciais , Dióxido de Carbono/análise , Idoso , Masculino
4.
Environ Health Perspect ; 132(5): 55001, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728219

RESUMO

BACKGROUND: In response to the COVID-19 pandemic, new evidence-based strategies have emerged for reducing transmission of respiratory infections through management of indoor air. OBJECTIVES: This paper reviews critical advances that could reduce the burden of disease from inhaled pathogens and describes challenges in their implementation. DISCUSSION: Proven strategies include assuring sufficient ventilation, air cleaning by filtration, and air disinfection by germicidal ultraviolet (UV) light. Layered intervention strategies are needed to maximize risk reduction. Case studies demonstrate how to implement these tools while also revealing barriers to implementation. Future needs include standards designed with infection resilience and equity in mind, buildings optimized for infection resilience among other drivers, new approaches and technologies to improve ventilation, scientific consensus on the amount of ventilation needed to achieve a desired level of risk, methods for evaluating new air-cleaning technologies, studies of their long-term health effects, workforce training on ventilation systems, easier access to federal funds, demonstration projects in schools, and communication with the public about the importance of indoor air quality and actions people can take to improve it. https://doi.org/10.1289/EHP13878.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , SARS-CoV-2 , Ventilação , COVID-19/transmissão , COVID-19/prevenção & controle , Humanos , Poluição do Ar em Ambientes Fechados/prevenção & controle , Ventilação/métodos , Microbiologia do Ar , Desinfecção/métodos , Infecções Respiratórias/prevenção & controle , Infecções Respiratórias/transmissão
5.
Ann Work Expo Health ; 68(7): 770-776, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38785326

RESUMO

BACKGROUND: The public order and safety (POS) sector remains susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks, as workplace attendance is typically compulsory and close physical contact is often needed. Here, we report on a SARS-CoV-2 outbreak with an attack rate of 39% (9/23), which occurred between 19 and 29 June 2021 among a cohort of new POS recruits participating in a mandatory 18-week training programme in England. METHODS: The COVID-OUT (COVID-19 Outbreak investigation to Understand Transmission) study team undertook a multidisciplinary outbreak investigation, including viral surface sampling, workplace environmental assessment, participant viral and antibody testing, and questionnaires, at the two associated training facilities between 5 July and 24 August 2021. RESULTS: Environmental factors, such as ventilation, were deemed inadequate in some areas of the workplace, with carbon dioxide (CO2) levels exceeding 1,500 ppm on multiple occasions within naturally ventilated classrooms. Activities during safety training required close contact, with some necessitating physical contact, physical exertion, and shouting. Furthermore, most participants reported having physical contact with colleagues (67%) and more than one close work contact daily (97%). CONCLUSIONS: Our investigation suggests that site- and activity-specific factors likely contributed to the transmission risks within the POS trainee cohort. Potential interventions for mitigating SARS-CoV-2 transmission in this POS training context could include implementing regular rapid lateral flow testing, optimizing natural ventilation, using portable air cleaning devices in classrooms, and expanding use of well-fitted FFP2/FFP3 respirators during activities where prolonged close physical contact is required.


Assuntos
COVID-19 , Surtos de Doenças , SARS-CoV-2 , Local de Trabalho , Humanos , COVID-19/transmissão , COVID-19/epidemiologia , Inglaterra/epidemiologia , Surtos de Doenças/prevenção & controle , Masculino , Adulto , Feminino , Exposição Ocupacional/prevenção & controle , Ventilação/métodos
7.
J Occup Environ Hyg ; 21(6): 379-388, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38652919

RESUMO

Residents of long-term care facilities are particularly vulnerable to communicable diseases. Low-cost interventions to increase air exchange rates (AERs) may be useful in reducing the transmission of airborne communicable diseases between long-term care residents and staff. In this study, carbon dioxide gas was used as a tracer to evaluate the AER associated with the implementation of low-cost ventilation interventions. Under baseline conditions with the room's door closed, the mean AER was 0.67 ACH; while baseline conditions with the door open had a significantly higher mean AER of 3.87 ACH (p < 0.001). Subsequently opening a window with the door open increased mean AER by 1.49 ACH (p = 0.012) and adding a fan in the window further increased mean AER by 1.87 ACH (p < 0.001). Regression analyses indicated that the flow rate of air entering through the window, both passively and through the use of a fan, was significantly associated with an increase in AER (p < 0.001). These results indicate that low-cost interventions that pull outside air into resident rooms were effective in improving the air exchange rates in these facilities. While implementation of these interventions is dependent on facility rules and isolation requirements of residents with airborne communicable diseases, these interventions remain viable options for long-term care facilities to improve resident room ventilation without requiring costly ventilation system upgrades.


Assuntos
Assistência de Longa Duração , Ventilação , Ventilação/métodos , Humanos , Assistência de Longa Duração/economia , Poluição do Ar em Ambientes Fechados/prevenção & controle , Casas de Saúde , Dióxido de Carbono/análise
8.
Br J Anaesth ; 133(1): 19-23, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677948

RESUMO

The COVID-19 pandemic has transformed our understanding of aerosol transmissible disease and the measures required to minimise transmission. Anaesthesia providers are often in close proximity to patients and other hospital staff for prolonged periods while working in operating and procedure rooms. Although enhanced ventilation provides some protection from aerosol transmissible disease in these work areas, close proximity and long duration of exposure have the opposite effect. Surgical masks provide only minimal additional protection. Surgical patients are also at risk from viral and bacterial aerosols. Despite having recently experienced the most significant pandemic in 100 yr, we continue to lack adequate understanding of the true risks encountered from aerosol transmissible diseases in the operating room, and the best course of action to protect patients and healthcare workers from them in the future. Nevertheless, hospitals can take specific actions now by providing respirators for routine use, encouraging staff to utilise respirators routinely, establishing triggers for situations that require respirator use, educating staff concerning the prevention of aerosol transmissible diseases, and providing portable air purifiers for perioperative spaces with low levels of ventilation.


Assuntos
Aerossóis , COVID-19 , Salas Cirúrgicas , Humanos , COVID-19/prevenção & controle , COVID-19/transmissão , Controle de Infecções/métodos , Exposição Ocupacional/prevenção & controle , Microbiologia do Ar , Transmissão de Doença Infecciosa do Paciente para o Profissional/prevenção & controle , Dispositivos de Proteção Respiratória , Ventilação/métodos , Máscaras
9.
J Hosp Infect ; 148: 51-57, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537748

RESUMO

BACKGROUND: Surgical site infection (SSI) in the form of postoperative deep sternal wound infection (DSWI) after cardiac surgery is a rare, but potentially fatal, complication. In addressing this, the focus is on preventive measures, as most risk factors for SSI are not controllable. Therefore, operating rooms are equipped with heating, ventilation and air conditioning (HVAC) systems to prevent airborne contamination of the wound, either through turbulent mixed air flow (TMA) or unidirectional air flow (UDAF). AIM: To investigate if the risk for SSI after cardiac surgery was decreased after changing from TMA to UDAF. METHODS: This observational retrospective single-centre cohort study collected data from 1288 patients who underwent open heart surgery over 2 years. During the two study periods, institutional SSI preventive measures remained the same, with the exception of the type of HVAC system that was used. FINDINGS: Using multi-variable logistic regression analysis that considered confounding factors (diabetes, obesity, duration of surgery, and re-operation), the hypothesis that TMA is an independent risk factor for SSI was rejected (odds ratio 0.9, 95% confidence interval 0.4-1.8; P>0.05). It was not possible to demonstrate the preventive effect of UDAF on the incidence of SSI in patients undergoing open heart surgery when compared with TMA. CONCLUSION: Based on these results, the use of UDAF in open heart surgery should be weighed against its low cost-effectiveness and negative environmental impact due to high electricity consumption. Reducing energy overuse by utilizing TMA for cardiac surgery can diminish the carbon footprint of operating rooms, and their contribution to climate-related health hazards.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Infecção da Ferida Cirúrgica , Ventilação , Humanos , Infecção da Ferida Cirúrgica/prevenção & controle , Infecção da Ferida Cirúrgica/epidemiologia , Estudos Retrospectivos , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Ventilação/métodos , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Salas Cirúrgicas , Idoso de 80 Anos ou mais , Ar Condicionado/efeitos adversos , Movimentos do Ar , Incidência , Controle de Infecções/métodos , Fatores de Risco , Adulto
10.
Sci Rep ; 14(1): 6843, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514758

RESUMO

The impact of mechanical ventilation on airborne diseases is not completely known. The recent pandemic of COVID-19 clearly showed that additional investigations are necessary. The use of computational tools is an advantage that needs to be included in the study of designing safe places. The current study focused on a hospital lift where two subjects were included: a healthy passenger and an infected one. The elevator was modelled with a fan placed on the middle of the ceiling and racks for supplying air at the bottom of the lateral wall. Three ventilation strategies were evaluated: a without ventilation case, an upwards-blowing exhausting fan case and a downwards-blowing fan case. Five seconds after the elevator journey began, the infected person coughed. For the risk assessment, the CO2 concentration, droplet removal performance and dispersion were examined and compared among the three cases. The results revealed some discrepancies in the selection of an optimal ventilation strategy. Depending on the evaluated parameter, downward-ventilation fan or no ventilation strategy could be the most appropriate approach.


Assuntos
COVID-19 , Dióxido de Carbono , Humanos , Respiração , Hospitais , Tosse , Ventilação/métodos
11.
Sci Total Environ ; 926: 171939, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527543

RESUMO

Source localization is significant for mitigating indoor air pollution and safeguarding the well-being and safety of occupants. While most study focuses on mechanical ventilation and static sources, this study explores the less-explored domain of locating time-varying sources in naturally ventilated spaces. We have developed an innovative 3D localization system that adjusts to varying heights, significantly enhancing capabilities beyond traditional fixed-height 2D systems. To ensure consistency in experimental conditions, we conducted comparative analyses of 2D and 3D methods, using a swinging fan to simulate natural ventilation. Our findings reveal a substantial disparity in performance: the 2D method had a success rate below 46.7% in cases of height mismatches, while our 3D methods consistently achieved success rates above 66.7%, demonstrating their superior effectiveness in complex environments. Furthermore, we validated the 3D strategies in real naturally ventilated settings, confirming their wider applicability. This research extends the scope of indoor source localization and offers valuable insights and strategies for more effective pollution control.


Assuntos
Poluição do Ar em Ambientes Fechados , Robótica , Olfato , Ventilação/métodos , Poluição do Ar em Ambientes Fechados/análise
12.
Ann Work Expo Health ; 68(4): 387-396, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38527239

RESUMO

Over the past 15 years, there have been numerous fatalities related to working with animal slurry. Working with cattle slurry releases toxic gases, in particular, hydrogen sulphide (H2S), which can cause acute central nervous system toxicity, breathing difficulties, and death if exposed to high concentrations. Real-time measurements of H2S gas were taken over distance and time, during the stirring of cattle slurry on farms. Gas was measured at eight slurry stores with differing typical configurations of indoor or outdoor stores and with or without slatted flooring. Highest H2S gas levels were measured from indoor stores under slatted floors, and generally at positions closest to the stirrer or the point of maximum stirring, with levels decreasing with distance from source. Most of the data indicate H2S gas levels increase very rapidly after stirring starts, and mostly decline to baseline levels within 30 min post start of stirring. There were, however, circumstances where gas levels remained high and only started to decline once the stirrer had stopped. H2S gas levels at all farms, at all positions measured were consistently below 10 ppm within 30 min of the stirrer being stopped. The current data highlight areas of the farm and ways of working that have the potential for workers and others to be at risk of exposure to toxic slurry gases. The area should be left to ventilate naturally for at least 30 min after the stirrer has been stopped before re-entering buildings. Influencing the design of stirring equipment and future slurry stores would likely reduce the risk of worker exposure to slurry gases.


Assuntos
Sulfeto de Hidrogênio , Exposição Ocupacional , Sulfeto de Hidrogênio/análise , Animais , Bovinos , Exposição Ocupacional/análise , Humanos , Poluentes Ocupacionais do Ar/análise , Criação de Animais Domésticos/métodos , Esterco/análise , Fazendas , Monitoramento Ambiental/métodos , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Ventilação/métodos
13.
Environ Sci Technol ; 58(10): 4704-4715, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38326946

RESUMO

Ozone reaction with human surfaces is an important source of ultrafine particles indoors. However, 1-20 nm particles generated from ozone-human chemistry, which mark the first step of particle formation and growth, remain understudied. Ventilation and indoor air movement could have important implications for these processes. Therefore, in a controlled-climate chamber, we measured ultrafine particles initiated from ozone-human chemistry and their dependence on the air change rate (ACR, 0.5, 1.5, and 3 h-1) and operation of mixing fans (on and off). Concurrently, we measured volatile organic compounds (VOCs) and explored the correlation between particles and gas-phase products. At 25-30 ppb ozone levels, humans generated 0.2-7.7 × 1012 of 1-3 nm, 0-7.2 × 1012 of 3-10 nm, and 0-1.3 × 1012 of 10-20 nm particles per person per hour depending on the ACR and mixing fan operation. Size-dependent particle growth and formation rates increased with higher ACR. The operation of mixing fans suppressed the particle formation and growth, owing to enhanced surface deposition of the newly formed particles and their precursors. Correlation analyses revealed complex interactions between the particles and VOCs initiated by ozone-human chemistry. The results imply that ventilation and indoor air movement may have a more significant influence on particle dynamics and fate relative to indoor chemistry.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Ozônio , Compostos Orgânicos Voláteis , Humanos , Tamanho da Partícula , Ozônio/análise , Ventilação/métodos , Material Particulado/análise , Compostos Orgânicos Voláteis/análise , Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise
14.
J Hosp Infect ; 147: 115-122, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38423130

RESUMO

BACKGROUND: The operating room (OR) department is one of the most energy-intensive departments of a hospital. The majority of ORs in the Netherlands have an air-handling installation with an ultra-clean ventilation system. However, not all surgeries require an ultra-clean OR. AIM: To determine the effect of reducing the air change rate on the ventilation effectiveness in ultra-clean ORs. METHODS: Lower air volume ventilation effectiveness (VELv) of conventional ventilation (CV), controlled dilution ventilation (cDV), temperature-controlled airflow (TcAF) and unidirectional airflow (UDAF) systems were evaluated within a 4 × 4 m measuring grid of 1 × 1 m. The VELv was defined as the recovery degree (RD), cleanliness recovery rate (CRR) and air change effectiveness (ACE). FINDINGS: The CV, cDVLv and TcAFLv ventilation systems showed a comparable mixing character in all areas (A, B and AB) when reducing the air change rate to 20/h. Ventilation effectiveness decreased when the air change rate was reduced, with the exception of the ACE. At all points for the UDAF-2Lv and at the centre point (C3) of the TcAFLv, higher RD10Lv and CRRLv were measured when compared with the other examined ventilation systems. CONCLUSIONS: The ventilation effectiveness decreased when an ultra-clean OR with an ultra-clean ventilation air-supply system was switched to an air change rate of 20/h. Reducing the air change rate in the OR from an ultra-clean OR to a generic OR will reduce the recovery degree (RD10) by a factor of 10-100 and the local air change rate (CRR) by between 42% and 81%.


Assuntos
Salas Cirúrgicas , Ventilação , Ventilação/métodos , Humanos , Países Baixos , Ar Condicionado
15.
Int J Environ Health Res ; 34(10): 3349-3362, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38357756

RESUMO

We conducted simultaneous real-time measurements for particles on the premises of four schools, two of which were naturally ventilated (NV) and two mechanically ventilated (MV) in Kanpur, India. Health to school children from reduced particle levels inside classrooms simulated to the lowest acceptable levels (ISHRAE Class C: PM10 ≤ 100 µg/m3 & PM2.5 ≤ 25 µg/m3) using air filters were examined. Lung deposition of particles was used as a proxy for health impacts and calculated using the MPPD model. The particle levels in all classrooms were above the baseline, with NV classrooms having higher particle masses than MV classrooms: 72.16% for PM1, 74.66% for PM2.5, and 85.17% for PM10. Our calculation reveals a whooping reduction in particles deposited in the lungs (1512% for PM10 and 1485% for PM2.5) in the case of the NV classrooms. Results highlight unhealthy air inside classrooms and suggest urgent interventions, such as simple filtration techniques, to achieve acceptable levels of particles inside schools.


Assuntos
Poluição do Ar em Ambientes Fechados , Material Particulado , Instituições Acadêmicas , Ventilação , Ventilação/métodos , Material Particulado/análise , Humanos , Poluição do Ar em Ambientes Fechados/análise , Índia , Criança , Tamanho da Partícula , Poluentes Atmosféricos/análise , Populações Vulneráveis , Monitoramento Ambiental/métodos
16.
Int J Environ Health Res ; 34(10): 3413-3477, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38385569

RESUMO

The Coronavirus Disease 2019 (COVID-19) has caused massive losses for the global economy. Scholars have used different methods to study the transmission mode and influencing factors of the virus to find effective methods to provide people with a healthy built environment. However, these studies arrived at different or even contradictory conclusions. This review presents the main research methodologies utilized in this field, summarizes the main investigation methods, and critically discusses their related conclusions. Data statistical analysis, sample collection, simulation models, and replication transmission scenarios are the main research methods. The summarized conclusion for prevention from all reviewed papers are: adequate ventilation and proper location of return air vents, proper use of personal protective equipment, as well as the reasonable and strict enforcement of policies are the main methods for reducing the transmission. Recommendations including standardized databases, causation clarification, rigorous experiment design, improved simulation accuracy and verification are provided.


Assuntos
Ambiente Construído , COVID-19 , SARS-CoV-2 , COVID-19/transmissão , COVID-19/prevenção & controle , COVID-19/epidemiologia , Humanos , Ventilação/métodos , Projetos de Pesquisa , Equipamento de Proteção Individual
17.
Environ Sci Pollut Res Int ; 31(9): 14135-14155, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270763

RESUMO

COVID-19 and other respiratory infectious viruses are highly contagious, and patients need to be treated in negative pressure wards. At present, many negative pressure wards use independent air conditioning equipment, but independent air conditioning equipment has problems such as indoor air circulation flow, condensate water accumulation, and improper filter maintenance, which increase the risk of infection for healthcare workers and patients. The radiation air conditioning system relies on the radiation ceiling to control the indoor temperature and uses new air to control the indoor humidity and air quality. The problems caused by the use of independent air conditioning equipment should be avoided. This paper studies the thermal comfort, contaminant distribution characteristics, contaminant removal efficiency, and accessibility of supply air in a negative pressure ward with a radiation air conditioning system under three airflow patterns. In addition, the negative pressure ward was divided into 12 areas, and the infection probability of healthcare workers in different areas was analyzed. The results show that the application of radiation air conditioning systems in negative pressure wards can ensure the thermal comfort of patients. Stratum ventilation and ceiling-attached jets have similar effects in protecting healthcare workers; both can effectively reduce the contaminant concentrations and the risk of infection of healthcare workers. Ceiling-attached jets decreases the contaminant concentrations by 10.73%, increases the contaminant removal efficiency by 12.50%, and decreases the infection probability of healthcare workers staying indoors for 10 min by 23.18%, compared with downward ventilation.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluição do Ar , Humanos , Poluição do Ar em Ambientes Fechados/análise , Isoladores de Pacientes , Ar Condicionado , Temperatura , Ventilação/métodos
18.
J Hosp Infect ; 141: 33-40, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37640266

RESUMO

Guidelines for heating, ventilation, and air-conditioning systems have been developed for different settings. However, there is a lack of up-to-date evidence providing concrete recommendations for the heating, ventilation, and air-conditioning systems of an isolation room, which is essential to appropriately guide infection control policies. To highlight the guidelines for heating, ventilation, and air-conditioning systems in isolation rooms to inform relevant stakeholders and policymakers. A systematic search was performed based on Joanna Briggs Methodology using five databases (CINAHL, Embase, Joanna Briggs Institute, Medline, and Web of Science) and websites. Eight articles published by government departments were included in this review. Most studies recommended controlled airflow without recirculation, 12 air changes per hour, high-efficiency particulate air filtrate to exhaust contaminated air from the airborne isolation room, humidity ≤60%, and temperature in the range of 18-30 °C. This review provides further evidence that there is a need for interdisciplinary collaborative research to quantify the optimum range for heating, ventilation, and air conditioning system parameters, considering door types, anterooms, and bed management, to effectively reduce the transmission of infection in isolation rooms.


Assuntos
Poluição do Ar em Ambientes Fechados , Calefação , Humanos , Ventilação/métodos , Ar Condicionado , Fenômenos Fisiológicos Respiratórios , Atenção à Saúde
19.
Sci Total Environ ; 899: 165454, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37467991

RESUMO

Upper-room ultraviolet germicidal irradiation (UVGI) system is recently in the limelight as a potentially effective method to mitigate the risk of airborne virus infection in indoor environments. However, few studies quantitatively evaluated the relationship between ventilation effectiveness and virus disinfection performance of a UVGI system. The objective of this study is to investigate the effects of ventilation strategy on detailed airflow distributions and UVGI disinfection performance in an occupied classroom. Three-dimensional computational fluid dynamics (CFD) simulations were performed for representative cooling, heating, and ventilation scenarios. The results show that when the ventilation rate is 1.1 h-1 (the minimum ventilation rate based on ASHRAE 62.1), enhancing indoor air circulation with the mixing fan notably improves the UVGI disinfection performance, especially for cooling with displacement ventilation and all-air-heating conditions. However, increasing indoor air mixing yields negligible effect on the disinfection performance for forced-convection cooling condition. The results also reveal that regardless of indoor thermal condition, disinfection effectiveness of a UVGI system increases as ventilation effectiveness is close to unity. Moreover, when the room average air speed is >0.1 m/s, upper-room UVGI system could yield about 90% disinfection effect for the aerosol size of 1 µm-10 µm. The findings of this study imply that upper-room UVGI systems in indoor environments (i.e., classrooms, hospitals) should be designed considering ventilation strategy and occupancy conditions, especially for occupied buildings with insufficient air mixing throughout the space.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , Ventilação/métodos , Raios Ultravioleta , Desinfecção/métodos , Respiração , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise
20.
Environ Pollut ; 335: 122239, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37482333

RESUMO

Tunnel construction often relies on drilling and blasting. High dust pollution is one of the primary problems of drilling and blasting construction. The level of secondary blown dust pollution caused by ventilation matches that of dust pollution caused by drilling construction. In this study, a critical flow model and blown dust rate model for deposited dust were established via force analysis, which was validated against the test data. The research results showed that the characteristic airflow velocity for blowing dust particles with a 100 µm diameter reached approximately 0.42 m/s for tunnel diameter is 10 m, and the ventilation Re values under smooth and rough conditions were 2.3 × 105 and 1.4 × 105, respectively. Furthermore, when ventilation Re reached 4 × 105, the blown dust pollution rate caused by ventilation under smooth conditions was approximately 1.8 × 10-2 kg/s. If dust particle size is more or less the critical dust particle size, the characteristic airflow velocity was increased. Moreover, the optimal velocity at which the deposited dust does not flow or move during tunnel construction was related to the tunnel size and roughness. For the smooth tunnel with a diameter of 10 m, the optimal ventilation velocity was 3.5 m/s. When the tunnel roughness was increased from 0.005 to 0.5 m, the optimal ventilation velocity decreased from 3.3 to 1.6 m/s. The deposited dust critical flow model and blown dust pollution rate model established in this study provide a sound theoretical basis for selecting the optimal velocity of tunnel ventilation and recognizing the risks of secondary blown dust pollution due to ventilation.


Assuntos
Poeira , Exposição Ocupacional , Poeira/análise , Ventilação/métodos , Tamanho da Partícula , Exposição Ocupacional/análise , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...