Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 304
Filtrar
1.
J Nanobiotechnology ; 22(1): 473, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39135024

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly malignant tumor known for its hypoxic environment, which contributes to resistance against the anticancer drug Sorafenib (SF). Addressing SF resistance in HCC requires innovative strategies to improve tumor oxygenation and effectively deliver therapeutics. RESULTS: In our study, we explored the role of KPNA4 in mediating hypoxia-induced SF resistance in HCC. We developed hemoglobin nanoclusters (Hb-NCs) capable of carrying oxygen, loaded with indocyanine green (ICG) and SF, named HPRG@SF. In vitro, HPRG@SF targeted HCC cells, alleviated hypoxia, suppressed KPNA4 expression, and enhanced the cytotoxicity of PDT against hypoxic, SF-resistant HCC cells. In vivo experiments supported these findings, showing that HPRG@SF effectively improved the oxygenation within the tumor microenvironment and countered SF resistance through combined photodynamic therapy (PDT). CONCLUSION: The combination of Hb-NCs with ICG and SF, forming HPRG@SF, presents a potent strategy to overcome drug resistance in hepatocellular carcinoma by improving hypoxia and employing PDT. This approach not only targets the hypoxic conditions that underlie resistance but also provides a synergistic anticancer effect, highlighting its potential for clinical applications in treating resistant HCC.


Assuntos
Carcinoma Hepatocelular , Hemoglobinas , Verde de Indocianina , Neoplasias Hepáticas , Fotoquimioterapia , Sorafenibe , Microambiente Tumoral , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Humanos , Fotoquimioterapia/métodos , Animais , Hemoglobinas/farmacologia , Linhagem Celular Tumoral , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Camundongos , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Camundongos Nus , Camundongos Endogâmicos BALB C , Antineoplásicos/farmacologia , Antineoplásicos/química , alfa Carioferinas/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nanopartículas/química
2.
Nano Lett ; 24(31): 9561-9568, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39042325

RESUMO

The perfect integration of microbubbles for efficient ultrasound imaging and nanocarriers for intelligent tumor-targeting delivery remains a challenge in precise tumor theranostics. Herein, we exquisitely fabricated laser-activated and targeted polymersomes (abbreviated as FIP-NPs) for simultaneously encapsulating the photosensitizer indocyanine green (ICG) and the phase change agent perfluorohexane (PFH). The formulated FIP-NPs were nanosize and effectively accumulated into tumors as observed by ICG fluorescence imaging. When the temperature rose above 56 °C, the encapsulated PFH transformed from liquid to gas and the FIP-NPs underwent balloon-like enlargement without structure destruction. Impressively, the enlarged FIP-NPs fused with adjacent polymersomes to form even larger microparticles. This temperature-responsive "nano-to-micro" transformation and fusion process was clearly demonstrated, and FIP-NPs showed greatly improved ultrasound signals. More importantly, FIP-NPs achieved dramatic antitumor efficacy through ICG-mediated phototherapy. Taken together, the novel polymersomes achieved excellent ultrasound/fluorescence dual imaging-guided tumor phototherapy, providing an optimistic candidate for the application of tumor theranostics.


Assuntos
Verde de Indocianina , Imagem Óptica , Fototerapia , Polímeros , Verde de Indocianina/química , Verde de Indocianina/uso terapêutico , Animais , Camundongos , Fototerapia/métodos , Humanos , Imagem Óptica/métodos , Polímeros/química , Nanopartículas/química , Nanopartículas/uso terapêutico , Fluorocarbonos/química , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Temperatura , Ultrassonografia/métodos , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Nanomedicina Teranóstica/métodos , Microbolhas/uso terapêutico
3.
Nano Lett ; 24(28): 8752-8762, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38953881

RESUMO

Acute methicillin-resistant Staphylococcus aureus (MRSA) pneumonia is a common and serious lung infection with high morbidity and mortality rates. Due to the increasing antibiotic resistance, toxicity, and pathogenicity of MRSA, there is an urgent need to explore effective antibacterial strategies. In this study, we developed a dry powder inhalable formulation which is composed of porous microspheres prepared from poly(lactic-co-glycolic acid) (PLGA), internally loaded with indocyanine green (ICG)-modified, heat-resistant phages that we screened for their high efficacy against MRSA. This formulation can deliver therapeutic doses of ICG-modified active phages to the deep lung tissue infection sites, avoiding rapid clearance by alveolar macrophages. Combined with the synergistic treatment of phage therapy and photothermal therapy, the formulation demonstrates potent bactericidal effects in acute MRSA pneumonia. With its long-term stability at room temperature and inhalable characteristics, this formulation has the potential to be a promising drug for the clinical treatment of MRSA pneumonia.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Microesferas , Terapia Fototérmica , Pneumonia Estafilocócica/terapia , Terapia por Fagos/métodos , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Verde de Indocianina/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Administração por Inalação , Humanos , Bacteriófagos/química
4.
ACS Appl Mater Interfaces ; 16(28): 36142-36156, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38968001

RESUMO

There is an urgent need to develop phototherapeutic agents with imaging capabilities to assess the treatment process and efficacy in real-time during cancer phototherapy for precision cancer therapy. The safe near-infrared (NIR) fluorescent dyes have garnered significant attention and are desirable for theranostics agents. However, until now, achieving excellent photostability and fluorescence (FL) imaging capability in aggregation-caused quenching (ACQ) dyes remains a big challenge. Here, for the only FDA-approved NIR dye, indocyanine green (ICG), we developed a dual-ferrocene (Fc) chimeric nanonetwork ICG@HFFC based on the rigid-flexible strategy through one-step self-assembly, which uses rigid Fc-modified hyaluronic acid (HA) copolymer (HA-Fc) and flexible octadecylamine (ODA) bonded Fc (Fc-C18) as the delivery system. HA-Fc reserved the ability of HA to target the CD44 receptor of the tumor cell surface, and the dual-Fc region provided a rigid space for securely binding ICG through metal-ligand interaction and π-π conjugation, ensuring excellent photostability. Additionally, the alkyl chain provided flexible confinement for the remaining ICG through hydrophobic forces, preserving its FL. Thereby, a balance is achieved between outstanding photostability and FL imaging capability. In vitro studies showed improved photobleaching resistance, enhanced FL stability, and increased singlet oxygen (1O2) production efficiency in ICG@HFFC. Further in vivo results display that ICG@HFFC had good tumor tracing ability and significant tumor inhibition which also exhibited good biocompatibility.. Therefore, ICG@HFFC provides an encouraging strategy to realize simultaneous enhanced tumor tracing and photothermal/photodynamic therapy (PTT/PDT) and offers a novel approach to address the limitations of ACQ dyes.


Assuntos
Compostos Ferrosos , Ácido Hialurônico , Verde de Indocianina , Metalocenos , Fotoquimioterapia , Compostos Ferrosos/química , Humanos , Metalocenos/química , Animais , Camundongos , Verde de Indocianina/química , Verde de Indocianina/uso terapêutico , Verde de Indocianina/farmacologia , Ácido Hialurônico/química , Terapia Fototérmica , Feminino , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Camundongos Endogâmicos BALB C , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Camundongos Nus , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Neoplasias/patologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Nanopartículas/química , Nanopartículas/uso terapêutico
5.
Clin Oral Investig ; 28(8): 426, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38992200

RESUMO

OBJECTIVES: To assess the short-term efficacy of multiple sessions of antimicrobial photodynamic therapy (aPDT), light-emitting-diode (LED) photobiomodulation, and topical ozone therapy applications following surgical regenerative treatments on clinical parameters, patient-centered outcomes, and mRNA expression levels of VEGF, IL-6, RunX2, Nell-1, and osterix in gingival crevicular fluid samples in patients with stage III/IV, grade C periodontitis. MATERIALS AND METHODS: Forty-eight systemically healthy patients were assigned into four groups to receive adjunctive modalities with regenerative periodontal surgical treatment. A 970 ± 15 nm diode laser plus indocyanine-green for aPDT group, a 626 nm LED for photobiomodulation group, and topical gaseous ozone were applied at 0, 1, 3, and 7 postoperative days and compared to control group. The clinical periodontal parameters, early wound healing index (EHI), and postoperative patients' morbidity were evaluated. The mRNA levels of biomarkers were assessed by real-time polymerase chain reaction. RESULTS: No significant difference in the clinical parameters except gingival recession (GR) was identified among the groups. For group-by-time interactions, plaque index (PI) and probing pocket depths (PD) showed significant differences (p = 0.034; p = 0.022). In sites with initial PD > 7 mm, significant differences were observed between control and photobiomodulation groups in PD (p = 0.011), between control and aPDT, and control and photobiomodulation groups in CAL at 6-month follow-up (p = 0.007; p = 0.022). The relative osterix mRNA levels showed a statistically significant difference among the treatment groups (p = 0.014). CONCLUSIONS: The additional applications of aPDT and LED after regenerative treatment of stage III/IV grade C periodontitis exhibited a more pronounced beneficial effect on clinical outcomes in deep periodontal pockets.


Assuntos
Lasers Semicondutores , Terapia com Luz de Baixa Intensidade , Ozônio , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Masculino , Feminino , Ozônio/uso terapêutico , Adulto , Terapia com Luz de Baixa Intensidade/métodos , Lasers Semicondutores/uso terapêutico , Resultado do Tratamento , Pessoa de Meia-Idade , Periodontite/terapia , Verde de Indocianina/uso terapêutico , Terapia Combinada , Reação em Cadeia da Polimerase em Tempo Real , Líquido do Sulco Gengival , Biomarcadores , Fármacos Fotossensibilizantes/uso terapêutico , Cicatrização/efeitos dos fármacos , Índice Periodontal , Interleucina-6 , Fator A de Crescimento do Endotélio Vascular/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core , Fator de Transcrição Sp7
6.
ACS Appl Mater Interfaces ; 16(26): 32945-32956, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38912948

RESUMO

Photothermal therapy (PTT) is a promising cancer therapeutic approach due to its spatial selectivity and high potency. Indocyanine green (ICG) has been considered a biocompatible PTT agent. However, ICG has several challenges to hinder its clinical use including rapid blood clearance and instability to heat, light, and solvent, leading to a loss of photoactivation property and PTT efficacy. Herein, we leveraged stabilizing components, methyl-ß-cyclodextrin and liposomes, in one nanoplatform (ICD lipo) to enhance ICG stability and the photothermal therapeutic effect against cancer. Compared to ICG, ICD lipo displayed a 4.8-fold reduction in degradation in PBS solvent after 30 days and a 3.4-fold reduction in photobleaching after near-infrared laser irradiation. Moreover, in tumor-bearing mice, ICD lipo presented a 2.7-fold increase in tumor targetability and inhibited tumor growth 9.6 times more effectively than did ICG without any serious toxicity. We believe that ICD lipo could be a potential PTT agent for cancer therapeutics.


Assuntos
Verde de Indocianina , Lipossomos , Terapia Fototérmica , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Animais , Camundongos , Lipossomos/química , Humanos , beta-Ciclodextrinas/química , Linhagem Celular Tumoral , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Feminino , Camundongos Endogâmicos BALB C , Fototerapia
7.
Int J Nanomedicine ; 19: 4263-4278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766663

RESUMO

Introduction: Photodynamic Therapy (PDT) is a promising, minimally invasive treatment for cancer with high immunostimulatory potential, no reported drug resistance, and reduced side effects. Indocyanine Green (ICG) has been used as a photosensitizer (PS) for PDT, although its poor stability and low tumor-target specificity strongly limit its efficacy. To overcome these limitations, ICG can be formulated as a tumor-targeting nanoparticle (NP). Methods: We nanoformulated ICG into recombinant heavy-ferritin nanocages (HFn-ICG). HFn has a specific interaction with transferrin receptor 1 (TfR1), which is overexpressed in most tumors, thus increasing HFn tumor tropism. First, we tested the properties of HFn-ICG as a PS upon irradiation with a continuous-wave diode laser. Then, we evaluated PDT efficacy in two breast cancer (BC) cell lines with different TfR1 expression levels. Finally, we measured the levels of intracellular endogenous heavy ferritin (H-Fn) after PDT treatment. In fact, it is known that cells undergoing ROS-induced autophagy, as in PDT, tend to increase their ferritin levels as a defence mechanism. By measuring intracellular H-Fn, we verified whether this interplay between internalized HFn and endogenous H-Fn could be used to maximize HFn uptake and PDT efficacy. Results: We previously demonstrated that HFn-ICG stabilized ICG molecules and increased their delivery to the target site in vitro and in vivo for fluorescence guided surgery. Here, with the aim of using HFn-ICG for PDT, we showed that HFn-ICG improved treatment efficacy in BC cells, depending on their TfR1 expression. Our data revealed that endogenous H-Fn levels were increased after PDT treatment, suggesting that this defence reaction against oxidative stress could be used to enhance HFn-ICG uptake in cells, increasing treatment efficacy. Conclusion: The strong PDT efficacy and peculiar Trojan horse-like mechanism, that we revealed for the first time in literature, confirmed the promising application of HFn-ICG in PDT.


Assuntos
Neoplasias da Mama , Verde de Indocianina , Nanopartículas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Feminino , Humanos , Antígenos CD/metabolismo , Apoferritinas/química , Neoplasias da Mama/terapia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Ferritinas/química , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Células MCF-7 , Nanopartículas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Receptores da Transferrina/metabolismo
8.
J Nanobiotechnology ; 22(1): 224, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702709

RESUMO

Poorly identified tumor boundaries and nontargeted therapies lead to the high recurrence rates and poor quality of life of prostate cancer patients. Near-infrared-II (NIR-II) fluorescence imaging provides certain advantages, including high resolution and the sensitive detection of tumor boundaries. Herein, a cyanine agent (CY7-4) with significantly greater tumor affinity and blood circulation time than indocyanine green was screened. By binding albumin, the absorbance of CY7-4 in an aqueous solution showed no effects from aggregation, with a peak absorbance at 830 nm and a strong fluorescence emission tail beyond 1000 nm. Due to its extended circulation time (half-life of 2.5 h) and high affinity for tumor cells, this fluorophore was used for primary and metastatic tumor diagnosis and continuous monitoring. Moreover, a high tumor signal-to-noise ratio (up to ~ 10) and excellent preferential mitochondrial accumulation ensured the efficacy of this molecule for photothermal therapy. Therefore, we integrated NIR-II fluorescence-guided surgery and intraoperative photothermal therapy to overcome the shortcomings of a single treatment modality. A significant reduction in recurrence and an improved survival rate were observed, indicating that the concept of intraoperative combination therapy has potential for the precise clinical treatment of prostate cancer.


Assuntos
Carbocianinas , Mitocôndrias , Recidiva Local de Neoplasia , Terapia Fototérmica , Neoplasias da Próstata , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Terapia Fototérmica/métodos , Humanos , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Linhagem Celular Tumoral , Carbocianinas/química , Imagem Óptica/métodos , Camundongos , Cirurgia Assistida por Computador/métodos , Corantes Fluorescentes/química , Camundongos Nus , Camundongos Endogâmicos BALB C , Raios Infravermelhos , Verde de Indocianina/química , Verde de Indocianina/uso terapêutico , Verde de Indocianina/farmacologia
9.
J Nanobiotechnology ; 22(1): 146, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38566213

RESUMO

Thrombotic diseases impose a significant global health burden, and conventional drug-based thrombolytic therapies are encumbered by the risk of bleeding complications. In this study, we introduce a novel drug-free nanomedicine founded on tea polyphenols nanoparticles (TPNs), which exhibits multifaceted capabilities for localized photothermal thrombolysis. TPNs were synthesized through a one-pot process under mild conditions, deriving from the monomeric epigallocatechin-3-gallate (EGCG). Within this process, indocyanine green (ICG) was effectively encapsulated, exploiting multiple intermolecular interactions between EGCG and ICG. While both TPNs and ICG inherently possessed photothermal potential, their synergy significantly enhanced photothermal conversion and stability. Furthermore, the nanomedicine was functionalized with cRGD for targeted delivery to activated platelets within thrombus sites, eliciting robust thrombolysis upon laser irradiation across diverse thrombus types. Importantly, the nanomedicine's potent free radical scavenging abilities concurrently mitigated vascular inflammation, thus diminishing the risk of disease recurrence. In summary, this highly biocompatible multifunctional nanomaterial holds promise as a comprehensive approach that combines thrombolysis with anti-inflammatory actions, offering precision in thrombosis treatment.


Assuntos
Nanomedicina , Trombose , Humanos , Polifenóis/farmacologia , Chá , Terapia Trombolítica , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Inflamação/tratamento farmacológico , Trombose/tratamento farmacológico
10.
Biomater Adv ; 158: 213792, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38281322

RESUMO

Posterior capsule opacification (PCO), as one of the most common late complications after intraocular lens (IOL) implantation in cataract surgery, seriously affects patients' postoperative vision and surgical satisfaction, and can only be treated by laser incision of the posterior capsule. Although drug eluting coating modification have been proved to inhibit PCO effectively, the complicated coating methods and the potential toxicity of the antiproliferative drugs hinders its actual application. In this study, an indocyanine green (ICG) loaded polydopamine (PDA) coating modified IOL (IP-IOL) was designed to prevented PCO. In vitro and in vivo studies have shown that IP-IOL can effectively eliminate lens epithelial cells and significantly reduce the degree of PCO. At the same time, it still has good imaging quality and optical properties. Furthermore, both the near-infrared irradiation and ICG loaded PDA coating modified IOLs have proved to possess high biological safety to eyes. Thus, with easy preparation and safer near-infrared irradiated photothermal/photodynamic synchronous properties, such ICG loaded PDA coating provides an effective yet easier and safer PCO prevention after IOL implantation.


Assuntos
Opacificação da Cápsula , Lentes Intraoculares , Polímeros , Humanos , Opacificação da Cápsula/prevenção & controle , Olho Artificial , Indóis/uso terapêutico , Verde de Indocianina/uso terapêutico
11.
J Burn Care Res ; 45(2): 373-383, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-37830308

RESUMO

Indocyanine green angiography (ICGA) has been widely employed for quantitative evaluation of the rat comb burn model, but the imaging equipment, imaging protocol, and fluorescence data interpretation of ICGA remain unsatisfactory. This study aims to provide better solutions for the application of ICGA in perfusion analysis. The rat comb burn model was established under a series of different comb contact durations, including 10, 20, 25, 30, 35, and 40 s. Indocyanine green angiography was used to analyze wound perfusion. In total, 16 rats were divided into ibuprofen and control groups for the burn model, and their perfusion was compared. A total of 16 identical models were divided into standard- and high-dose indocyanine green (ICG) groups, and ICGA was conducted to investigate the dynamic change in wound fluorescence. Escharectomy was performed under real-time fluorescence mapping and navigation. The results showed that a comb contact duration of 30 s was optimum for the burn model. Indocyanine green angiography could accurately evaluate the histologically determined depth of thermal injury and wound perfusion in the rat comb model. Digital subtraction of residual fluorescence was necessary for multiple comparisons of perfusion. Dynamic changes in fluorescence and necrotic tissues were observed more clearly by high-dose (0.5 mg/kg) ICG in angiography. In conclusion, perfusion analysis by ICGA can be used to assess the histologically determined depth of thermal injury and the impact of a specific treatment on wound perfusion. Indocyanine green angiography can help to identify necrotic tissue. The above findings and related imaging protocols lay the foundation for future research.


Assuntos
Queimaduras , Verde de Indocianina , Animais , Ratos , Verde de Indocianina/uso terapêutico , Queimaduras/diagnóstico por imagem , Queimaduras/tratamento farmacológico , Angiografia/métodos , Perfusão
12.
Acta Biomater ; 173: 482-494, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37981044

RESUMO

Acute kidney injury (AKI) is a prevalent condition in critically ill patients that is often associated with significant morbidity and mortality. As the lack of effective early diagnosis methods often delays AKI treatment, there is currently no definitive clinical intervention available. In this study, we aimed to address these challenges by developing a nano-system called Platelet membranes-ICG-SS31-PLGA (PISP), which was designed to selectively target to the kidney site, taking advantage of the natural tendency of platelets to accumulate at sites of vascular injury. This approach allowed for the accumulation of PISP within the kidney as the disease progresses. By incorporating ICG, the in vivo distribution of PISP can be observed for NIR diagnosis of AKI. This non-invasive imaging technique holds great promise for early detection and monitoring of AKI. Furthermore, Elamipretide (SS31) acts as a mitochondria-targeted antioxidant that protects against mitochondrial damage and reduces oxidative stress, inflammation, and apoptosis. The combination of diagnostic and therapeutic capabilities within a single nano-system makes the PISP approach a valuable tool for addressing AKI. This intervention helps to prevent the deterioration of AKI and promotes the recovery. STATEMENT OF SIGNIFICANCE.


Assuntos
Injúria Renal Aguda , Nanopartículas , Humanos , Antioxidantes/farmacologia , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/tratamento farmacológico , Rim , Nanopartículas/uso terapêutico
13.
Photodiagnosis Photodyn Ther ; 45: 103903, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37989473

RESUMO

BACKGROUND: Keloid, a prevalent pathological skin lesion, presents significant challenges in terms of treatment efficacy. Photodynamic therapy (PDT), an increasingly popular adjuvant treatment, has shown significant potential in the management of various disorders, including cancer. However, the therapeutic potential of indocyanine green-mediated photodynamic therapy (ICG-PDT) for keloids has not yet been demonstrated. METHODS: In this study, we divided the experimental groups into control group, Photothermal Therapy group, Photodynamic Therapy group, and Combined Therapy group. The in vitro investigation aimed to optimize the clinical application of PDT for keloid treatment by elucidating its underlying mechanism. Subsequently, on this basis, we endeavored to manage a clinical case of keloid by employing surgical intervention in conjunction with modified ICG-PDT. RESULTS: Our investigation revealed an unexpected outcome that ICG-PDT maximally inhibited the cellular activity and migration of keloid fibroblasts only when photodynamic mechanism took effect. Additionally, the induction of autophagy and apoptosis, as well as the inhibition of collagen synthesis, were particularly evident in this experimental group. Furthermore, the above therapeutic effect could be achieved at remarkably low drug concentrations. Building upon the aforementioned experimental findings, we successfully optimized the treatment modality for the latest case and obtained a more favorable treatment outcome. CONCLUSIONS: This study investigated the mechanism of ICG-PDT treatment and optimized the in vivo treatment regimen, demonstrating the significant therapeutic potential of ICG-PDT treatment in clinical keloid treatment.


Assuntos
Queloide , Fotoquimioterapia , Humanos , Adjuvantes Imunológicos , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Queloide/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico
14.
Adv Healthc Mater ; 13(5): e2302302, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38078359

RESUMO

Blood-brain-barrier (BBB) serves as a fatal guard of the central nervous system as well as a formidable obstacle for the treatment of brain diseases such as brain tumors. Cell membrane-derived nanomedicines are promising drug carriers to achieve BBB-penetrating and brain lesion targeting. However, the challenge of precise size control of such nanomedicines has severely limited their therapeutic effect and clinical application in brain diseases. To address this problem, this work develops a microfluidic mixing platform that enables the fabrication of cell membrane-derived nanovesicles with precise controllability and tunability in particle size and component. Sub-100 nm macrophage plasma membrane-derived vesicles as small as 51 nm (nanoscale macrophage vesicles, NMVs), with a narrow size distribution (polydispersity index, PDI: 0.27) and a high drug loading rate (up to 89% for indocyanine green-loaded NMVs, NMVs@ICG (ICG is indocyanine green)), are achieved through a one-step process. Compared to beyond-100 nm macrophage cell membrane vesicles (general macrophage vesicles, GMVs) prepared via the traditional methods, the new NMVs exhibits rapid (within 1 h post-injection) and enhanced orthotopic glioma targeting (up to 78% enhancement), with no extra surface modification. This work demonstrates the great potential of such real-nanoscale cell membrane-derived nanomedicines in targeted brain tumor theranostics.


Assuntos
Neoplasias Encefálicas , Nanopartículas , Humanos , Microfluídica , Verde de Indocianina/uso terapêutico , Biomimética , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia
15.
J Control Release ; 366: 142-159, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145660

RESUMO

Responsive heat resistance (by heat shock protein upregulation) and spontaneous reactive oxygen species (ROS) detoxification have been regarded as the major obstacles for photothermal/photodynamic therapy of cancer. To overcome the thermal resistance and improve ROS susceptibility in breast cancer therapy, Au ion-crosslinked hydrogels including indocyanine green (ICG) and polyphenol are devised. Au ion has been introduced for gel crosslinking (by catechol-Au3+ coordination), cellular glutathione depletion, and O2 production from cellular H2O2. ICG can generate singlet oxygen from O2 (for photodynamic therapy) and induce hyperthermia (for photothermal therapy) under the near-infrared laser exposure. (-)-Epigallocatechin gallate downregulates heat shock protein to overcome heat resistance during hyperthermia and exerts multiple anticancer functions in spite of its ironical antioxidant features. Those molecules are concinnously engaged in the hydrogel structure to offer fast gel transformation, syringe injection, self-restoration, and rheological tuning for augmented photo/chemotherapy of cancer. Intratumoral injection of multifunctional hydrogel efficiently suppressed the growth of primary breast cancer and completely eliminated the residual tumor mass. Proposed hydrogel system can be applied to tumor size reduction prior to surgery of breast cancer and the complete remission after its surgery.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Fotoquimioterapia , Humanos , Feminino , Espécies Reativas de Oxigênio/metabolismo , Hidrogéis/uso terapêutico , Peróxido de Hidrogênio , Verde de Indocianina/uso terapêutico , Verde de Indocianina/química , Neoplasias da Mama/tratamento farmacológico , Proteínas de Choque Térmico
16.
Analyst ; 148(24): 6334-6340, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37947486

RESUMO

Indocyanine green (ICG), as the only Federal Drug Administration (FDA) approved fluorescence imaging agent, has been widely applied in clinics for near-infrared (NIR) fluorescence imaging-guided surgery and photothermal therapy of cancers. However, its lack of target specificity and poor photo and photothermal stabilities seriously restrict its wide application in clinical practice. Herein, we developed ICG-derived NIR fluorescent probes consisting of a cypate fluorophore and one or two cyclic-(arginine-glycine-aspartic acid) (cRGD) peptides that can specifically target αvß3 integrin for accurate diagnosis and therapy of oral tumors. Probe Cy-2RGD has been demonstrated to possess bright NIR emission, great tumor targeting capability and a photothermal effect. Moreover, it could be successfully used for effective imaging-guided surgical resection as well as photothermal therapy of oral tumors. This work could provide a valuable tool for sensitive detection and accurate treatment of malignant tumors.


Assuntos
Verde de Indocianina , Neoplasias Bucais , Humanos , Verde de Indocianina/uso terapêutico , Terapia Fototérmica , Corantes Fluorescentes , Neoplasias Bucais/diagnóstico por imagem , Neoplasias Bucais/terapia , Imagem Óptica/métodos
17.
Photodiagnosis Photodyn Ther ; 44: 103790, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37696318

RESUMO

BACKGROUND: Indocyanine green (ICG) fluorescence guided surgery has been used to treat childhood hepatoblastoma (HB), but the advantages and disadvantages of this technique have not been fully discussed. The purpose of this study is to summarize the experience and to explore the clinical value of this technique for children with HB. METHODS: 45 children with HB who underwent ICG fluorescence guided surgery (n = 22) and general surgery (n = 23) in our center from January 2020 to December 2022 were enrolled retrospectively. RESULTS: All the liver tumors in the ICG group showed hyperfluorescence, including total and partial fluorescent types. With the help of ICG navigation, minimally invasive surgery was performed in 3 cases. 18.2 % of cases with tumors could not be accurately identified under white light, but could be identified by fluorescence imaging. The fluorescent cutting lines of 59.1 % of cases were consistent with the safe cutting lines. In 36.4 % of cases, the fluorescence boundary was not clear because of tumor necrosis. In 36.4 % of cases, the fluorescence could not be detected on the inner edge of the tumors because of the depth. A total of 29 ICG (+) suspicious lesions were found during the operations, of which 5 were true positive lesions. CONCLUSION: ICG fluorescence guided surgery is safe and feasible in children with HB. This technique is helpful for locating tumors, determining margin and finding small lesions with negative imaging, especially in minimally invasive surgery. However, preoperative chemotherapy, tumor necrosis, tumor depth, and ICG administration impact the effect of fluorescence imaging.


Assuntos
Hepatoblastoma , Fotoquimioterapia , Criança , Humanos , Hepatoblastoma/diagnóstico por imagem , Hepatoblastoma/cirurgia , Hepatoblastoma/tratamento farmacológico , Verde de Indocianina/uso terapêutico , Estudos Retrospectivos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Corantes , Imagem Óptica/métodos , Resultado do Tratamento , Necrose/tratamento farmacológico
18.
Adv Healthc Mater ; 12(28): e2301413, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37657182

RESUMO

The development of smart theranostic nanoplatforms has gained great interest in effective cancer treatment against the complex tumor microenvironment (TME), including weak acidity, hypoxia, and glutathione (GSH) overexpression. Herein, a TME-responsive nanoplatform named PMICApt /ICG, based on PB:Mn&Ir@CaCO3 Aptamer /ICG, is designed for the competent synergistic photothermal therapy and photodynamic therapy (PDT) under the guidance of photothermal and magnetic resonance imaging. The nanoplatform's aptamer modification targeting the transferrin receptor and the epithelial cell adhesion molecule on breast cancer cells, and the acid degradable CaCO3 shell allow for effective tumor accumulation and TME-responsive payload release in situ. The nanoplatform also exhibits excellent PDT properties due to its ability to generate O2 and consume antioxidant GSH in tumors. Additionally, the synergistic therapy is achieved by a single wavelength of near-infrared laser. RNA sequencing is performed to identify differentially expressed genes, which show that the expressions of proliferation and migration-associated genes are inhibited, while the apoptosis and immune response gene expressions are upregulated after the synergistic treatments. This multifunctional nanoplatform that responds to the TME to realize the on-demand payload release and enhance PDT induced by TME modulation holds great promise for clinical applications in tumor therapy.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Fotoquimioterapia/métodos , Microambiente Tumoral , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Glutationa/farmacologia , Linhagem Celular Tumoral
19.
J Radiat Res ; 64(5): 751-760, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37586714

RESUMO

Radiation therapy (RT) is the primary treatment for many cancers, but its effectiveness is reduced due to radioresistance and side effects. The study aims to investigate an emerging treatment for cancer, cold atmospheric plasma (CAP), as a selectable treatment between cancerous and healthy cells and its role in the occurrence of photodynamic therapy (PDT) utilizing indocyanine green (ICG) as a photosensitizer. We examined whether the efficiency of radiotherapy could be improved by combining CAP with ICG. The PDT effect induced by cold plasma irradiation and the radiosensitivity of ICG were investigated on DFW and HFF cell lines. Then, for combined treatment, ICG was introduced to the cells and treated with radiotherapy, followed by cold plasma treatment simultaneously and 24-h intervals. MTT and colony assays were used to determine the survival of treated cells, and flow cytometry was used to identify apoptotic cells. Despite a decrease in the survival of melanoma cells in CAP, ICG did not affect RT. Comparing the ICG + CAP group with CAP, a significant reduction in cell survival was observed, confirming the photodynamic properties of plasma utilizing ICG. The treatment outcome depends on the duration of CAP. The results for healthy and cancer cells also confirmed the selectivity of plasma function. Moreover, cold plasma sensitized melanoma cells to radiotherapy, increasing treatment efficiency. Treatment of CAP with RT can be effective in treating melanoma. The inclusion of ICG results in plasma treatment enhancement. These findings help to select an optimal strategy for a combination of plasma and radiotherapy.


Assuntos
Melanoma , Fotoquimioterapia , Gases em Plasma , Humanos , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Fotoquimioterapia/métodos , Melanoma/radioterapia , Tolerância a Radiação , Linhagem Celular Tumoral
20.
Macromol Rapid Commun ; 44(20): e2300298, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37548089

RESUMO

This work introduces a novel multifunctional system called UPIPF (upconversion-polydopamine-indocyanine-polyethylene-folic) for upconversion luminescent (UCL) imaging of cancer cells using near-infrared (NIR) illumination. The system demonstrates efficient inhibition of human hepatoma (HepG2) cancer cells through a combination of NIR-triggered photodynamic therapy (PDT) and enhanced photothermal therapy (PTT). Initially, upconversion nanoparticles (UCNP) are synthesized using a simple thermal decomposition method. To improve their biocompatibility and aqueous dispersibility, polydopamine (PDA) is introduced to the UCNP via a ligand exchange technique. Indocyanine green (ICG) molecules are electrostatically attached to the surface of the UCNP-polydopamine (UCNP@PDAs) complex to enhance the PDT and PTT effects. Moreover, polyethylene glycol (PEG)-modified folic acid (FA) is incorporated into the UCNP-polydopamine-indocyanine-green (UCNP@PDA-ICGs) nanoparticles to enhance their targeting capability against cancer cells. The excellent UCL properties of these UCNP enable the final UCNP@PDA-ICG-PEG-FA nanoparticles (referred to as UPIPF) to serve as a potential candidate for efficient anticancer drug delivery, real-time imaging, and early diagnosis of cancer cells. Furthermore, the UPIPF system exhibits PDT-assisted PTT effects, providing a convenient approach for efficient cancer cell inhibition (more than 99% of cells are killed). The prepared UPIPF system shows promise for early diagnosis and simultaneous treatment of malignant cancers.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Indóis/farmacologia , Polímeros/farmacologia , Polietilenoglicóis , Fotoquimioterapia/métodos , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...