Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.048
Filtrar
1.
Ecol Lett ; 27(10): e14519, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39400424

RESUMO

The performance of herbivorous animals depends on the nutritional and defensive traits of the plants they consume. The uptake and deposition of biogenic silicon in plant tissues is arguably the most basic and ubiquitous anti-herbivore defence used by plants, especially grasses. We conducted meta-analyses of 150 studies reporting how vertebrate and invertebrate herbivores performed when feeding on silicon-rich plants relative to those feeding on low-silicon plants. Silicon levels were 52% higher and 32% more variable in silicon-rich plants compared to plants with low silicon, which resulted in an overall 33% decline in herbivore performance. Fluid-feeding herbivore performance was less adversely impacted (-14%) than tissue-chewing herbivores, including mammals (-45%), chewing arthropods (-33%) and plant-boring arthropods (-39%). Fluid-feeding arthropods with a wide diet breadth or those feeding on perennial plant species were mostly unaffected by silicon defences. Unlike many other plant defences, where diet specialisation often helps herbivores overcome their effects, silicon negatively impacts chewing herbivores regardless of diet breadth. We conclude that silicon defences primarily target chewing herbivores and impact vertebrate and invertebrate herbivores to a similar degree.


Assuntos
Herbivoria , Silício , Animais , Plantas , Artrópodes/fisiologia , Invertebrados/fisiologia , Comportamento Alimentar , Vertebrados/fisiologia
2.
J Exp Biol ; 227(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39221623

RESUMO

Development of the heart is a very intricate and multiplex process as it involves not only the three spatial dimensions but also the fourth or time dimension. Over time, the heart of an embryo needs to adapt its function to serve the increasing complexity of differentiation and growth towards adulthood. It becomes even more perplexing by expanding time into millions of years, allocating related species in the tree of life. As the evolution of soft tissues can hardly be studied, we have to rely on comparative embryology, supported heavily by genetic and molecular approaches. These techniques provide insight into relationships, not only between species, but also between cell populations, signaling mechanisms, molecular interactions and physical factors such as hemodynamics. Heart development depends on differentiation of a mesodermal cell population that - in more derived taxa - continues in segmentation of the first and second heart field. These fields deliver not only the cardiomyocytes, forming the three-dimensionally looping cardiac tube as a basis for the chambered heart, but also the enveloping epicardium. The synchronized beating of the heart is then organized by the conduction system. In this Review, the epicardium is introduced as an important player in cardiac differentiation, including the conduction system.


Assuntos
Evolução Biológica , Sistema de Condução Cardíaco , Hemodinâmica , Pericárdio , Vertebrados , Animais , Pericárdio/fisiologia , Pericárdio/embriologia , Vertebrados/fisiologia , Sistema de Condução Cardíaco/fisiologia , Coração/fisiologia , Coração/embriologia
3.
Nat Commun ; 15(1): 7876, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251605

RESUMO

Much of what we know about terrestrial life during the Carboniferous Period comes from Middle Pennsylvanian (~315-307 Mya) Coal Measures deposited in low-lying wetland environments1-5. We know relatively little about terrestrial ecosystems from the Early Pennsylvanian, which was a critical interval for the diversification of insects, arachnids, tetrapods, and seed plants6-10. Here we report a diverse Early Pennsylvanian trace and body fossil Lagerstätte (~320-318 Mya) from the Wamsutta Formation of eastern North America, distinct from coal-bearing deposits, preserved in clastic substrates within basin margin conglomerates. The exceptionally preserved trace fossils and body fossils document a range of vertebrates, invertebrates and plant taxa (n = 131), with 83 distinct foliage morphotypes. Plant-insect interactions include what may be the earliest evidence of insect oviposition. This site expands our knowledge of early terrestrial ecosystems and organismal interactions and provides ground truth for future phylogenetic reconstructions of key plant, arthropod, and vertebrate groups.


Assuntos
Ecossistema , Fósseis , Insetos , Animais , Insetos/fisiologia , Insetos/anatomia & histologia , Insetos/classificação , Plantas/classificação , Filogenia , Áreas Alagadas , América do Norte , Biodiversidade , Vertebrados/anatomia & histologia , Vertebrados/fisiologia
4.
J Exp Biol ; 227(20)2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39109475

RESUMO

Animals at early life stages are generally more sensitive to environmental stress than adults. This is especially true of oviparous vertebrates that develop in variable environments with little or no parental care. These organisms regularly experience environmental fluctuations as part of their natural development, but climate change is increasing the frequency and intensity of these events. The developmental plasticity of oviparous vertebrates will therefore play a critical role in determining their future fitness and survival. In this Review, we discuss and compare the phenotypic consequences of chronic developmental hypoxia on the cardiovascular system of oviparous vertebrates. In particular, we focus on species-specific responses, critical windows, thresholds for responses and the interactive effects of other stressors, such as temperature and hypercapnia. Although important progress has been made, our Review identifies knowledge gaps that need to be addressed if we are to fully understand the impact of climate change on the developmental plasticity of the oviparous vertebrate cardiovascular system.


Assuntos
Sistema Cardiovascular , Mudança Climática , Hipóxia , Estresse Fisiológico , Vertebrados , Animais , Hipóxia/fisiopatologia , Vertebrados/fisiologia , Vertebrados/crescimento & desenvolvimento , Sistema Cardiovascular/crescimento & desenvolvimento , Sistema Cardiovascular/fisiopatologia , Oviparidade , Adaptação Fisiológica
5.
Curr Biol ; 34(15): R714-R716, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39106824

RESUMO

Osmar Luiz and colleagues introduce the parental care strategy of some vertebrates to brood eggs in their mouths.


Assuntos
Comportamento de Nidação , Animais , Comportamento de Nidação/fisiologia , Boca/fisiologia , Vertebrados/fisiologia
6.
Commun Biol ; 7(1): 993, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143195

RESUMO

The pupillary light reflex (PLR) adapts the amount of light reaching the retina, protecting it and improving image formation. Two PLR mechanisms have been described in vertebrates. First, the pretectum receives retinal inputs and projects to the Edinger-Westphal nucleus (EWN), which targets the ciliary ganglion through the oculomotor nerve (nIII). Postganglionic fibers enter the eye-globe, traveling to the iris sphincter muscle. Additionally, some vertebrates exhibit an iris-intrinsic PLR mechanism mediated by sphincter muscle cells that express melanopsin inducing muscle contraction. Given the high degree of conservation of the lamprey visual system, we investigated the mechanisms underlying the PLR to shed light onto their evolutionary origins. Recently, a PLR mediated by melanopsin was demonstrated in lampreys, suggested to be brain mediated. Remarkably, we found that PLR is instead mediated by direct retino-iridal cholinergic projections. This retina-mediated PLR acts synergistically with an iris-intrinsic mechanism that, as in other vertebrates, is mediated by melanopsin and has contribution of gap junctions between muscle fibers. In contrast, we show that lampreys lack the brain-mediated PLR. Our results suggest that two eye-intrinsic PLR mechanisms were present in early vertebrate evolution, whereas the brain-mediated PLR has a more recent origin.


Assuntos
Iris , Reflexo Pupilar , Retina , Animais , Reflexo Pupilar/fisiologia , Iris/fisiologia , Iris/metabolismo , Retina/fisiologia , Retina/metabolismo , Lampreias/fisiologia , Contração Muscular/fisiologia , Opsinas de Bastonetes/metabolismo , Opsinas de Bastonetes/genética , Luz , Vertebrados/fisiologia
7.
Curr Biol ; 34(16): R751-R752, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39163830

RESUMO

Interview with Jennifer Botha, who studies the life history responses of extinct vertebrates to extreme environmental changes and is the Director of GENUS at the University of the Witwatersrand, South Africa.


Assuntos
Vertebrados , Animais , África do Sul , História do Século XXI , Vertebrados/fisiologia , História do Século XX
8.
Biogerontology ; 25(6): 1301-1314, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39168928

RESUMO

While the main role of phagocytic scavenger cells consists of the neutralization and elimination of pathogens, they also keep the body fluids clean by taking up and breaking down waste material. Since a build-up of waste is thought to contribute to the aging process, these cells become particularly pertinent in the research field of aging. Nevertheless, a direct link between their scavenging functions and the aging process has yet to be established. Integrative approaches involving various model organisms hold promise to elucidate this potential, but are lagging behind since the diversity and evolutionary relationship of these cells across animal species remain unclear. In this perspective, we review the current knowledge associating phagocytic scavenger cells with aging in vertebrate and invertebrate animals, as well as put forward important questions for further exploration. Additionally, we highlight future challenges and propose a constructive approach for tackling them.


Assuntos
Envelhecimento , Invertebrados , Fagócitos , Fagocitose , Animais , Envelhecimento/fisiologia , Envelhecimento/imunologia , Fagócitos/imunologia , Fagócitos/fisiologia , Fagocitose/fisiologia , Invertebrados/fisiologia , Invertebrados/imunologia , Humanos , Vertebrados/fisiologia , Modelos Animais
9.
Bioinspir Biomim ; 19(5)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39042109

RESUMO

This paper broadly summarizes the variation of design features found in vertebrate limbs and analyses the resultant versatility and multifunctionality in order to make recommendations for bioinspired robotics. The vertebrate limb pattern (e.g. shoulder, elbow, wrist and digits) has been proven to be very successful in many different applications in the animal kingdom. However, the actual level of optimality of the limb for each animal application is not clear because for some cases (e.g. whale flippers and bird wings), the basic skeletal layout is assumed to be highly constrained by evolutionary ancestry. This paper addresses this important and fundamental question of optimality by analysing six limbs with contrasting functions: human arm, whale flipper, bird wing, human leg, feline hindlimb and frog hindlimb. A central finding of this study is that the vertebrate limb pattern is highly versatile and optimal not just for arms and legs but also for flippers and wings. One key design feature of the vertebrate limb pattern is that of networks of segmented bones that enable smooth morphing of shapes as well as multifunctioning structures. Another key design feature is that of linkage mechanisms that fine-tune motions and mechanical advantage. A total of 52 biomechanical design features of the vertebrate limb are identified and tabulated for these applications. These tables can be a helpful reference for designers of bioinspired robotic and prosthetic limbs. The vertebrate limb has significant potential for the bioinspired design of robotic and prosthetic limbs, especially because of progress in the development of soft actuators.


Assuntos
Biomimética , Extremidades , Robótica , Animais , Humanos , Robótica/métodos , Robótica/instrumentação , Biomimética/métodos , Extremidades/fisiologia , Vertebrados/fisiologia , Vertebrados/anatomia & histologia , Membros Artificiais , Fenômenos Biomecânicos , Modelos Biológicos
10.
Eur J Neurosci ; 60(4): 4552-4568, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38978308

RESUMO

In humans and other adult mammals, axon regeneration is difficult in axotomized neurons. Therefore, spinal cord injury (SCI) is a devastating event that can lead to permanent loss of locomotor and sensory functions. Moreover, the molecular mechanisms of axon regeneration in vertebrates are not very well understood, and currently, no effective treatment is available for SCI. In striking contrast to adult mammals, many nonmammalian vertebrates such as reptiles, amphibians, bony fishes and lampreys can spontaneously resume locomotion even after complete SCI. In recent years, rapid progress in the development of next-generation sequencing technologies has offered valuable information on SCI. In this review, we aimed to provide a comparison of axon regeneration process across classical model organisms, focusing on crucial genes and signalling pathways that play significant roles in the regeneration of individually identifiable descending neurons after SCI. Considering the special evolutionary location and powerful regenerative ability of lamprey and zebrafish, they will be the key model organisms for ongoing studies on spinal cord regeneration. Detailed study of SCI in these model organisms will help in the elucidation of molecular mechanisms of neuron regeneration across species.


Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Vertebrados , Animais , Traumatismos da Medula Espinal/fisiopatologia , Vertebrados/fisiologia , Regeneração da Medula Espinal/fisiologia , Lampreias , Humanos , Regeneração Nervosa/fisiologia
11.
Philos Trans R Soc Lond B Biol Sci ; 379(1909): 20230179, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39034699

RESUMO

Rapid urbanization is a major cause of habitat and biodiversity loss and human-animal conflict. While urbanization is inevitable, we need to develop a good understanding of the urban ecosystem and the urban-adapted species, in order to ensure sustainable cities for our future. Scavengers play a major role in urban ecosystems, and often, urban adaptation involves a shift towards scavenging behaviour in wild animals. We experimented at different sites in the state of West Bengal, India, to identify the scavenging guild within urban habitats, in response to human-provided food. Our study found a total of 17 different vertebrate species across 15 sites, over 498 sessions of observations. We carried out network analysis to understand the dynamics of the system and found that the free-ranging dog and common myna were key species within the scavenging networks. This study revealed the complexity of scavenging networks within human-dominated habitats. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.


Assuntos
Ecossistema , Animais , Índia , Cadeia Alimentar , Urbanização , Humanos , Biodiversidade , Comportamento Alimentar , Cidades , Vertebrados/fisiologia , Animais Selvagens/fisiologia
12.
Curr Biol ; 34(16): 3673-3684.e4, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39067452

RESUMO

Mining is a key driver of land-use change and environmental degradation globally, with the variety of mineral extraction methods used impacting biodiversity across scales. We use IUCN Red List threat assessments of all vertebrates to quantify the current biodiversity threat from mineral extraction, map the global hotspots of threatened biodiversity, and investigate the links between species' habitat use and life-history traits and threat from mineral extraction. Nearly 8% (4,642) of vertebrates are assessed as threatened by mineral extraction, especially mining and quarrying, with fish at particularly high risk. The hotspots of mineral extraction-induced threat are pantropical, as well as a large proportion of regional diversity threatened in northern South America, West Africa, and the Arctic. Species using freshwater habitats are particularly at risk, while the effects of other ecological traits vary between taxa. As the industry expands, it is vital that mineral resources in vulnerable biodiversity regions are managed in accordance with sustainable development goals.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Mineração , Vertebrados , Animais , Vertebrados/fisiologia , Conservação dos Recursos Naturais/métodos , Espécies em Perigo de Extinção , Ecossistema , Peixes/fisiologia
13.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230127, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38913065

RESUMO

Context-dependent dispersal allows organisms to seek and settle in habitats improving their fitness. Despite the importance of species interactions in determining fitness, a quantitative synthesis of how they affect dispersal is lacking. We present a meta-analysis asking (i) whether the interaction experienced and/or perceived by a focal species (detrimental interaction with predators, competitors, parasites or beneficial interaction with resources, hosts, mutualists) affects its dispersal; and (ii) how the species' ecological and biological background affects the direction and strength of this interaction-dependent dispersal. After a systematic search focusing on actively dispersing species, we extracted 397 effect sizes from 118 empirical studies encompassing 221 species pairs; arthropods were best represented, followed by vertebrates, protists and others. Detrimental species interactions increased the focal species' dispersal (adjusted effect: 0.33 [0.06, 0.60]), while beneficial interactions decreased it (-0.55 [-0.92, -0.17]). The effect depended on the dispersal phase, with detrimental interactors having opposite impacts on emigration and transience. Interaction-dependent dispersal was negatively related to species' interaction strength, and depended on the global community composition, with cues of presence having stronger effects than the presence of the interactor and the ecological complexity of the community. Our work demonstrates the importance of interspecific interactions on dispersal plasticity, with consequences for metacommunity dynamics.This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Assuntos
Distribuição Animal , Animais , Ecossistema , Vertebrados/fisiologia
14.
Ecol Evol Physiol ; 97(3): 157-163, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38875139

RESUMO

AbstractTwo prominent theories of aging, one based on telomere dynamics and the other on mass-specific energy flux, propose biological time clocks of senescence. The relationship between these two theories, and the biological clocks proposed by each, remains unclear. Here, we examine the relationships between telomere shortening rate, mass-specific metabolic rate, and lifespan among vertebrates (mammals, birds, fishes). Results show that telomere shortening rate increases linearly with mass-specific metabolic rate and decreases nonlinearly with increasing body mass in the same way as mass-specific metabolic rate. Results also show that both telomere shortening rate and mass-specific metabolic rate are similarly related to lifespan and that both strongly predict differences in lifespan, although the slopes of the relationships are less than linear. On average, then, telomeres shorten a fixed amount per unit of mass-specific energy flux. So the mitotic clock of telomere shortening and the energetics-based clock described by metabolic rate can be viewed as alternative measures of the same biological clock. These two processes may be linked, we speculate, through the process of cell division.


Assuntos
Envelhecimento , Relógios Biológicos , Telômero , Animais , Telômero/metabolismo , Envelhecimento/genética , Envelhecimento/fisiologia , Relógios Biológicos/fisiologia , Relógios Biológicos/genética , Encurtamento do Telômero , Longevidade/genética , Longevidade/fisiologia , Metabolismo Energético/fisiologia , Vertebrados/genética , Vertebrados/fisiologia
15.
Front Endocrinol (Lausanne) ; 15: 1422711, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915898

RESUMO

Spexin (SPX, NPQ) is a 14-amino acid neuroactive peptide identified using bioinformatics. This amino acid sequence of the mature spexin peptide has been highly conserved during species evolution and is widely distributed in the central nervous system and peripheral tissues and organs. Therefore, spexin may play a role in various biological functions. Spexin, the cognate ligand for GALR2/3, acting as a neuromodulator or endocrine signaling factor, can inhibit reproductive performance. However, controversies and gaps in knowledge persist regarding spexin-mediated regulation of animal reproductive functions. This review focuses on the hypothalamic-pituitary-gonadal axis and provides a comprehensive overview of the impact of spexin on reproduction. Through this review, we aim to enhance understanding and obtain in-depth insights into the regulation of reproduction by spexin peptides, thereby providing a scientific basis for future investigations into the molecular mechanisms underlying the influence of spexin on reproductive function. Such investigations hold potential benefits for optimizing farming practices in livestock, poultry, and fish industries.


Assuntos
Hormônios Peptídicos , Reprodução , Vertebrados , Animais , Reprodução/fisiologia , Hormônios Peptídicos/metabolismo , Hormônios Peptídicos/fisiologia , Vertebrados/fisiologia , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiologia
16.
Proc Biol Sci ; 291(2024): 20232847, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864338

RESUMO

Gene loss is an important mechanism for evolution in low-light or cave environments where visual adaptations often involve a reduction or loss of eyesight. The plaat gene family encodes phospholipases essential for the degradation of organelles in the lens of the eye. These phospholipases translocate to damaged organelle membranes, inducing them to rupture. This rupture is required for lens transparency and is essential for developing a functioning eye. Plaat3 is thought to be responsible for this role in mammals, while plaat1 is thought to be responsible in other vertebrates. We used a macroevolutionary approach and comparative genomics to examine the origin, loss, synteny and selection of plaat1 across bony fishes and tetrapods. We showed that plaat1 (probably ancestral to all bony fish + tetrapods) has been lost in squamates and is significantly degraded in lineages of low-visual-acuity and blind mammals and fishes. Our findings suggest that plaat1 is important for visual acuity across bony vertebrates, and that its loss through relaxed selection and pseudogenization may have played a role in the repeated evolution of visual systems in low-light environments. Our study sheds light on the importance of gene-loss in trait evolution and provides insights into the mechanisms underlying visual acuity in low-light environments.


Assuntos
Vertebrados , Animais , Vertebrados/genética , Vertebrados/fisiologia , Seleção Genética , Deleção de Genes , Peixes/genética , Peixes/fisiologia , Filogenia , Evolução Biológica , Luz , Evolução Molecular
17.
Proc Natl Acad Sci U S A ; 121(24): e2318189121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38814876

RESUMO

Fluorescence, the optical phenomenon whereby short-wavelength light is absorbed and emitted at longer wavelengths, has been widely described in aquatic habitats, in both invertebrates and fish. Recent years have seen a stream of articles reporting fluorescence, ranging from frogs, platypus, to even fully terrestrial organisms such as flying squirrels, often explicitly or implicitly linking the presence of fluorescence with sexual selection and communication. However, many of these studies fail to consider the physiological requirements of evolutionary stable signaling systems, the environmental dependence of perception, or the possible adaptive role of fluorescent coloration in a noncommunicative context. More importantly, the idea that fluorescence may simply constitute an indirect by-product of selection on other traits is often not explored. This is especially true for terrestrial systems where environmental light conditions are often not amenable for fluorescent signaling in contrast to, for example, aquatic habitats in which spectral properties of water promote functional roles for fluorescence. Despite the appeal of previously unknown ways in which coloration may drive evolution, the investigation of a putative role of fluorescence in communication must be tempered by a realistic understanding of its limitations. Here, we not only highlight and discuss the key body of literature but also address the potential pitfalls when reporting fluorescence and how to solve them. In addition, we propose exciting different research avenues to advance the field of tetrapod fluorescence.


Assuntos
Evolução Biológica , Animais , Fluorescência , Vertebrados/fisiologia , Comunicação Animal , Ecossistema
18.
Nat Rev Neurosci ; 25(7): 453-472, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806946

RESUMO

The olfactory system is an ideal and tractable system for exploring how the brain transforms sensory inputs into behaviour. The basic tasks of any olfactory system include odour detection, discrimination and categorization. The challenge for the olfactory system is to transform the high-dimensional space of olfactory stimuli into the much smaller space of perceived objects and valence that endows odours with meaning. Our current understanding of how neural circuits address this challenge has come primarily from observations of the mechanisms of the brain for processing other sensory modalities, such as vision and hearing, in which optimized deep hierarchical circuits are used to extract sensory features that vary along continuous physical dimensions. The olfactory system, by contrast, contends with an ill-defined, high-dimensional stimulus space and discrete stimuli using a circuit architecture that is shallow and parallelized. Here, we present recent observations in vertebrate and invertebrate systems that relate the statistical structure and state-dependent modulation of olfactory codes to mechanisms of perception and odour-guided behaviour.


Assuntos
Invertebrados , Odorantes , Condutos Olfatórios , Olfato , Vertebrados , Animais , Invertebrados/fisiologia , Vertebrados/fisiologia , Olfato/fisiologia , Humanos , Condutos Olfatórios/fisiologia , Percepção Olfatória/fisiologia
19.
Curr Top Dev Biol ; 159: 132-167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729675

RESUMO

The primary senses-touch, taste, sight, smell, and hearing-connect animals with their environments and with one another. Aside from the eyes, the primary sense organs of vertebrates and the peripheral sensory pathways that relay their inputs arise from two transient stem cell populations: the neural crest and the cranial placodes. In this chapter we consider the senses from historical and cultural perspectives, and discuss the senses as biological faculties. We begin with the embryonic origin of the neural crest and cranial placodes from within the neural plate border of the ectodermal germ layer. Then, we describe the major chemical (i.e. olfactory and gustatory) and mechanical (i.e. vestibulo-auditory and somatosensory) senses, with an emphasis on the developmental interactions between neural crest and cranial placodes that shape their structures and functions.


Assuntos
Crista Neural , Animais , Crista Neural/citologia , Crista Neural/embriologia , Crista Neural/fisiologia , Humanos , Sensação/fisiologia , Órgãos dos Sentidos/embriologia , Órgãos dos Sentidos/fisiologia , Órgãos dos Sentidos/citologia , Vertebrados/embriologia , Vertebrados/fisiologia
20.
Curr Top Dev Biol ; 159: 30-58, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38729679

RESUMO

Morphogenesis from cells to tissue gives rise to the complex architectures that make our organs. How cells and their dynamic behavior are translated into functional spatial patterns is only starting to be understood. Recent advances in quantitative imaging revealed that, although highly heterogeneous, cellular behaviors make reproducible tissue patterns. Emerging evidence suggests that mechanisms of cellular coordination, intrinsic variability and plasticity are critical for robust pattern formation. While pattern development shows a high level of fidelity, tissue organization has undergone drastic changes throughout the course of evolution. In addition, alterations in cell behavior, if unregulated, can cause developmental malformations that disrupt function. Therefore, comparative studies of different species and of disease models offer a powerful approach for understanding how novel spatial configurations arise from variations in cell behavior and the fundamentals of successful pattern formation. In this chapter, I dive into the development of the vertebrate nervous system to explore efforts to dissect pattern formation beyond molecules, the emerging core principles and open questions.


Assuntos
Sistema Nervoso , Vertebrados , Animais , Vertebrados/fisiologia , Vertebrados/embriologia , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/embriologia , Padronização Corporal , Humanos , Morfogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...