Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros












Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1260439, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863700

RESUMO

Dengue virus (DENV), transmitted by infected mosquitoes, is a major public health concern, with approximately half the world's population at risk for infection. Recent decades have increasing incidence of dengue-associated disease alongside growing frequency of outbreaks. Although promising progress has been made in anti-DENV immunizations, post-infection treatment remains limited to non-specific supportive treatments. Development of antiviral therapeutics is thus required to limit DENV dissemination in humans and to help control the severity of outbreaks. Dendritic cells (DCs) are amongst the first cells to encounter DENV upon injection into the human skin mucosa, and thereafter promote systemic viral dissemination to additional human target cells. Autophagy is a vesicle trafficking pathway involving the formation of cytosolic autophagosomes, and recent reports have highlighted the extensive manipulation of autophagy by flaviviruses, including DENV, for viral replication. However, the temporal profiling and function of autophagy activity in DENV infection and transmission by human primary DCs remains poorly understood. Herein, we demonstrate that mechanisms of autophagosome formation and extracellular vesicle (EV) release have a pro-viral role in DC-mediated DENV transmission. We show that DENV exploits early-stage canonical autophagy to establish infection in primary human DCs. DENV replication enhanced autophagosome formation in primary human DCs, and intrinsically-heightened autophagosome biogenesis correlated with relatively higher rates of DC susceptibility to DENV. Furthermore, our data suggest that viral replication intermediates co-localize with autophagosomes, while productive DENV infection introduces a block at the late degradative stages of autophagy in infected DCs but not in uninfected bystander cells. Notably, we identify for the first time that approximately one-fourth of DC-derived CD9/CD81/CD63+ EVs co-express canonical autophagy marker LC3, and demonstrate that DC-derived EV populations are an alternative, cell-free mechanism by which DCs promote DENV transmission to additional target sites. Taken together, our study highlights intersections between autophagy and secretory pathways during viral infection, and puts forward autophagosome accumulation and viral RNA-laden EVs as host determinants of DC-mediated DENV infection in humans. Host-directed therapeutics targeting autophagy and exocytosis pathways thus have potential to enhance DC-driven resistance to DENV acquisition and thereby limit viral dissemination by initial human target cells following mosquito-to-human transmission of DENV.


Assuntos
Autofagossomos , Autofagia , Células Dendríticas , Vírus da Dengue , Dengue , Via Secretória , Replicação Viral , Humanos , Vírus da Dengue/fisiologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Células Dendríticas/metabolismo , Dengue/transmissão , Dengue/virologia , Dengue/imunologia , Autofagossomos/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/virologia , Células Cultivadas
2.
Plant Cell Rep ; 43(7): 173, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877163

RESUMO

KEY MESSAGE: The investigation of MYMIV-infected mung bean leaf apoplast revealed viral genome presence, increased EVs secretion, and altered stress-related metabolite composition, providing comprehensive insights into plant-virus interactions. The apoplast, an extracellular space around plant cells, plays a vital role in plant-microbe interactions, influencing signaling, defense, and nutrient transport. While the involvement of apoplast and extracellular vesicles (EVs) in RNA virus infection is documented, the role of the apoplast in plant DNA viruses remains unclear. This study explores the apoplast's role in mungbean yellow mosaic India virus (MYMIV) infection. Our findings demonstrate the presence of MYMIV genomic components in apoplastic fluid, suggesting potential begomovirus cell-to-cell movement via the apoplast. Moreover, MYMIV infection induces increased EVs secretion into the apoplast. NMR-based metabolomics reveals altered metabolic profiles in both apoplast and symplast in response to MYMIV infection, highlighting key metabolites associated with stress and defense mechanisms. The data show an elevation of α- and ß-glucose in both apoplast and symplast, suggesting a shift in glucose utilization. Interestingly, this increase in glucose does not contribute to the synthesis of phenolic compounds, potentially influencing the susceptibility of mung bean to MYMIV. Fructose levels increase in the symplast, while apoplastic sucrose levels rise significantly. Symplastic aspartate levels increase, while proline exhibits elevated concentration in the apoplast and reduced concentration in the cytosol, suggesting a role in triggering a hypersensitive response. These findings underscore the critical role of the apoplast in begomovirus infection, providing insights for targeted viral disease management strategies.


Assuntos
Begomovirus , Doenças das Plantas , Folhas de Planta , Vigna , Begomovirus/fisiologia , Folhas de Planta/virologia , Folhas de Planta/metabolismo , Vigna/virologia , Vigna/metabolismo , Vigna/genética , Doenças das Plantas/virologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/virologia , Metabolômica/métodos , Genoma Viral
3.
Viruses ; 16(4)2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38675867

RESUMO

Extracellular vesicles (EVs) such as exosomes have been shown to play physiological roles in cell-to-cell communication by delivering various proteins and nucleic acids. In addition, several studies revealed that the EVs derived from the cells that are infected with certain viruses could transfer the full-length viral genomes, resulting in EVs-mediated virus propagation. However, the possibility cannot be excluded that the prepared EVs were contaminated with infectious viral particles. In this study, the cells that harbor subgenomic replicon derived from the Japanese encephalitis virus and dengue virus without producing any replication-competent viruses were employed as the EV donor. It was demonstrated that the EVs in the culture supernatants of those cells were able to transfer the replicon genome to other cells of various types. It was also shown that the EVs were incorporated by the recipient cells primarily through macropinocytosis after interaction with CD33 and Tim-1/Tim-4 on HeLa and K562 cells, respectively. Since the methods used in this study are free from contamination with infectious viral particles, it is unequivocally indicated that the flavivirus genome can be transferred by EVs from cell to cell, suggesting that this pathway, in addition to the classical receptor-mediated infection, may play some roles in the viral propagation and pathogenesis.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Vesículas Extracelulares , Genoma Viral , Replicon , Proteínas Virais , Vesículas Extracelulares/virologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Humanos , Replicon/genética , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral , Flavivirus/genética , Flavivirus/fisiologia , Vírus da Dengue/genética , Vírus da Dengue/fisiologia , Células HeLa , Células K562 , Animais , Linhagem Celular , RNA Subgenômico
4.
PLoS Pathog ; 20(4): e1012133, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662794

RESUMO

The discovery that extracellular vesicles (EVs) serve as carriers of virus particles calls for a reevaluation of the release strategies of non-enveloped viruses. Little is currently known about the molecular mechanisms that determine the release and composition of EVs produced by virus-infected cells, as well as conservation of these mechanisms among viruses. We previously described an important role for the Leader protein of the picornavirus encephalomyocarditis virus (EMCV) in the induction of virus-carrying EV subsets with distinct molecular and physical properties. EMCV L acts as a 'viral security protein' by suppressing host antiviral stress and type-I interferon (IFN) responses. Here, we tested the ability of functionally related picornavirus proteins of Theilers murine encephalitis virus (TMEV L), Saffold virus (SAFV L), and coxsackievirus B3 (CVB3 2Apro), to rescue EV and EV-enclosed virus release when introduced in Leader-deficient EMCV. We show that all viral security proteins tested were able to promote virus packaging in EVs, but that only the expression of EMCV L and CVB3 2Apro increased overall EV production. We provide evidence that one of the main antiviral pathways counteracted by this class of picornaviral proteins, i.e. the inhibition of PKR-mediated stress responses, affected EV and EV-enclosed virus release during infection. Moreover, we show that the enhanced capacity of the viral proteins EMCV L and CVB3 2Apro to promote EV-enclosed virus release is linked to their ability to simultaneously promote the activation of the stress kinase P38 MAPK. Taken together, we demonstrate that cellular stress pathways involving the kinases PKR and P38 are modulated by the activity of non-structural viral proteins to increase the release EV-enclosed viruses during picornavirus infections. These data shed new light on the molecular regulation of EV production in response to virus infection.


Assuntos
Vesículas Extracelulares , Picornaviridae , Proteínas Virais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/virologia , Humanos , Picornaviridae/metabolismo , Picornaviridae/fisiologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Animais , eIF-2 Quinase/metabolismo , Liberação de Vírus/fisiologia , Camundongos , Theilovirus/metabolismo , Infecções por Cardiovirus/virologia , Infecções por Cardiovirus/metabolismo , Vírus da Encefalomiocardite/metabolismo , Vírus da Encefalomiocardite/fisiologia
5.
Nucleic Acid Ther ; 34(3): 101-108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38530082

RESUMO

Long antisense RNAs (asRNAs) have been observed to repress HIV and other virus expression in a manner that is refractory to viral evolution. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) disease, has a distinct ability to evolve resistance around antibody targeting, as was evident from the emergence of various SARS-CoV-2 spike antibody variants. Importantly, the effectiveness of current antivirals is waning due to the rapid emergence of new variants of concern, more recently the omicron variant. One means of avoiding the emergence of viral resistance is by using long asRNA to target SARS-CoV-2. Similar work has proven successful with HIV targeting by long asRNA. In this study, we describe a long asRNA targeting SARS-CoV-2 RNA-dependent RNA polymerase gene and the ability to deliver this RNA in extracellular vesicles (EVs) to repress virus expression. The observations presented in this study suggest that EV-delivered asRNAs are one means to targeting SARS-CoV-2 infection, which is both effective and broadly applicable as a means to control viral expression in the absence of mutation. This is the first demonstration of the use of engineered EVs to deliver long asRNA payloads for antiviral therapy.


Assuntos
COVID-19 , Vesículas Extracelulares , RNA Antissenso , SARS-CoV-2 , Vesículas Extracelulares/genética , Vesículas Extracelulares/virologia , Vesículas Extracelulares/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/efeitos dos fármacos , Humanos , RNA Antissenso/genética , RNA Antissenso/uso terapêutico , COVID-19/virologia , COVID-19/genética , COVID-19/terapia , Animais , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Células Vero , Chlorocebus aethiops , Antivirais/uso terapêutico , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19
6.
J Virol ; 96(14): e0084822, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35762754

RESUMO

Viral gastroenteritis has a global distribution and represents a high risk for vulnerable population and children under 5 years due to acute diarrhea, fever and dehydration. Human astroviruses (HAstV) have been identified as the third most important cause of viral gastroenteritis in pediatric and immunocompromised patients. Furthermore, HAstV has been reported in biopsies taken from patients with encephalitis, meningitis and acute respiratory infection, yet it is not clear how the virus reaches these organs. In this work we have tested the possibility that the released astrovirus particles could be associated with extracellular vesicles. Comparison between vesicles purified from HAstV Yuc8 infected and mock-infected cells showed that infection enhances production of vesicles larger than 150 nm. These vesicles contain CD63 and Alix, two markers of vesicular structures. Almost 70% of the extracellular virus present in clarified supernatant at 18 h postinfection was found associated with vesicular membranes, and this association facilitates cell infection in the absence of trypsin activation and protects virions from neutralizing antibodies. Our findings suggest a new pathway for HAstV spread and might represent an explanation for the extra-intestinal presence of some astrovirus strains. IMPORTANCE Astroviruses are an important cause of diarrhea in vulnerable population, particularly children; recently some reports have found these viruses in extra-intestinal organs, including the central nervous system, causing unexpected clinical disease. In this work, we found that human astrovirus strain Yuc8 associates with extracellular vesicles, possibly during or after their cell egress. The association with vesicles doubled astrovirus infectivity in less susceptible cells and rendered virus particles insensitive to neutralization by antibodies. These data suggest that extracellular vesicles could represent a novel pathway for astrovirus to disseminate outside the gastrointestinal tract.


Assuntos
Infecções por Astroviridae , Vesículas Extracelulares , Gastroenterite , Mamastrovirus , Anticorpos Neutralizantes , Infecções por Astroviridae/imunologia , Infecções por Astroviridae/virologia , Vesículas Extracelulares/virologia , Gastroenterite/virologia , Humanos , Mamastrovirus/imunologia
7.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35163475

RESUMO

Duchenne muscular dystrophy (DMD) is caused by loss-of-function mutations in the dystrophin gene on chromosome Xp21. Disruption of the dystrophin-glycoprotein complex (DGC) on the cell membrane causes cytosolic Ca2+ influx, resulting in protease activation, mitochondrial dysfunction, and progressive myofiber degeneration, leading to muscle wasting and fragility. In addition to the function of dystrophin in the structural integrity of myofibers, a novel function of asymmetric cell division in muscular stem cells (satellite cells) has been reported. Therefore, it has been suggested that myofiber instability may not be the only cause of dystrophic degeneration, but rather that the phenotype might be caused by multiple factors, including stem cell and myofiber functions. Furthermore, it has been focused functional regulation of satellite cells by intracellular communication of extracellular vesicles (EVs) in DMD pathology. Recently, a novel molecular mechanism of DMD pathogenesis-circulating RNA molecules-has been revealed through the study of target pathways modulated by the Neutral sphingomyelinase2/Neutral sphingomyelinase3 (nSMase2/Smpd3) protein. In addition, adeno-associated virus (AAV) has been clinically applied for DMD therapy owing to the safety and long-term expression of transduction genes. Furthermore, the EV-capsulated AAV vector (EV-AAV) has been shown to be a useful tool for the intervention of DMD, because of the high efficacy of the transgene and avoidance of neutralizing antibodies. Thus, we review application of AAV and EV-AAV vectors for DMD as novel therapeutic strategy.


Assuntos
Vesículas Extracelulares/virologia , Distrofia Muscular de Duchenne/terapia , Células Satélites de Músculo Esquelético/metabolismo , Esfingomielina Fosfodiesterase/genética , Animais , Ácidos Nucleicos Livres/genética , Dependovirus/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/transplante , Terapia Genética , Vetores Genéticos , Humanos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/imunologia , Transdução Genética
8.
Viruses ; 13(12)2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34960632

RESUMO

To date, no vaccines or antivirals are available against Zika virus (ZIKV). In addition, the mechanisms underlying ZIKV-associated pathogenesis of the central nervous system (CNS) are largely unexplored. Getting more insight into the cellular pathways that ZIKV recruits to facilitate infection of susceptible cells will be crucial for establishing an effective treatment strategy. In general, cells secrete a number of vesicles, known as extracellular vesicles (EVs), in response to viral infections. These EVs serve as intercellular communicators. Here, we investigated the role of EVs derived from ZIKV-infected human brain microvascular endothelial cells on the blood-brain barrier (BBB) system. We demonstrated that ZIKV-infected EVs (IEVs) can incorporate viral components, including ZIKV RNA, NS1, and E-protein, and further transfer them to several types of CNS cells. Using label-free impedance-based biosensing, we observed that ZIKV and IEVs can temporally disturb the monolayer integrity of BBB-mimicking cells, possibly by inducing structural rearrangements of the adherent protein VE-cadherin (immunofluorescence staining). Finally, differences in the lipidomic profile between EVs and their parental cells possibly suggest a preferential sorting mechanism of specific lipid species into the vesicles. To conclude, these data suggest that IEVs could be postulated as vehicles (Trojan horse) for ZIKV transmission via the BBB.


Assuntos
Barreira Hematoencefálica/metabolismo , Vesículas Extracelulares/metabolismo , Infecção por Zika virus/transmissão , Zika virus/fisiologia , Barreira Hematoencefálica/virologia , Células Cultivadas , Sistema Nervoso Central/virologia , Células Endoteliais/virologia , Vesículas Extracelulares/virologia , Humanos , Lipidômica , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Infecção por Zika virus/virologia
9.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830279

RESUMO

About 8% of our genome is composed of sequences from Human Endogenous Retroviruses (HERVs). The HERV-K (HML.2) family, here abbreviated HML.2, is able to produce virus particles that were detected in cell lines, malignant tumors and in autoimmune diseases. Parameters and properties of HML.2 released from teratocarcinoma cell lines GH and Tera-1 were investigated in detail. In most experiments, analyzed viruses were purified by density gradient centrifugation. HML.2 structural proteins, reverse transcriptase (RT) activity, viral RNA (vRNA) and particle morphology were analyzed. The HML.2 markers were predominantly detected in fractions with a buoyant density of 1.16 g/cm3. Deglycosylation of TM revealed truncated forms of transmembrane (TM) protein. Free virions and extracellular vesicles (presumably microvesicles-MVs) with HML.2 elements, including budding intermediates, were detected by electron microscopy. Viral elements and assembled virions captured and exported by MVs can boost specific immune responses and trigger immunomodulation in recipient cells. Sequencing of cDNA clones demonstrated exclusive presence of HERV-K108 env in HML.2 from Tera-1 cells. Not counting two recombinant variants, four known env sequences were found in HML.2 from GH cells. Obtained results shed light on parameters and morphology of HML.2. A possible mechanism of HML.2-induced diseases is discussed.


Assuntos
Capsídeo/metabolismo , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Vesículas Extracelulares/virologia , Produtos do Gene env/metabolismo , Genes env , RNA Viral/genética , Teratocarcinoma/metabolismo , Teratocarcinoma/virologia , Envelope Viral/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/virologia , Centrifugação com Gradiente de Concentração/métodos , Retrovirus Endógenos/isolamento & purificação , Produtos do Gene env/genética , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , RNA Viral/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Teratocarcinoma/patologia , Transfecção , Montagem de Vírus/genética
10.
Retrovirology ; 18(1): 26, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34530855

RESUMO

BACKGROUND: Extracellular Vesicles (EV) recently have been implicated in the pathogenesis of HIV-1 syndromes, including neuroinflammation and HIV-1 associated neurological disorder (HAND). Cocaine, an illicit stimulant drug used worldwide is known to exacerbate these HIV-1 associated neurological syndromes. However, the effects of cocaine on EV biogenesis and roles of EVs in enhancing HIV-1 pathogenesis are not yet well defined. RESULTS: Here, we investigated the effects of cocaine on EV biogenesis and release in HIV-1 infected immune cells and explored their roles in elicitation of neuroinflammation. We found that cocaine significantly augmented the release of EVs from uninfected and HIV-1 infected T-cells, DCs and macrophages. Further analysis of the molecular components of EVs revealed enhanced expression of adhesion molecules integrin ß1 and LFA-1 in those EVs derived from cocaine treated cells. Intriguingly, in EVs derived from HIV-1 infected cells, cocaine treatment significantly increased the levels of viral genes in EVs released from macrophages and DCs, but not in T-cells. Exploring the molecular mechanism to account for this, we found that DCs and macrophages showed enhanced expression of the cocaine receptor Sigma 1-Receptor compared to T-cells. In addition, we found that cocaine significantly altered the integrity of the RNA-induced silencing complex (RISC) in HIV-1 infected macrophages and DCs compared to untreated HIV-1 infected cells. Characterizing further the molecular mechanisms involved in how cocaine increased EV release, we found that cocaine decreased the expression of the interferon-inducible protein BST-2; this resulted in altered trafficking of intracellular virus containing vesicles and EV biogenesis and release. We also observed EVs released from cocaine treated HIV-1 infected macrophages and DCs enhanced HIV-1 trans-infection to T-cells compared to those from untreated and HIV-1 infected cells. These EVs triggered release of proinflammatory cytokines in human brain microvascular endothelial cells (HBMECs) and altered monolayer integrity. CONCLUSIONS: Taken together, our results provide a novel mechanism which helps to elucidate the enhanced prevalence of neurological disorders in cocaine using HIV-1 infected individuals and offers insights into developing novel therapeutic strategies against HAND in these hosts.


Assuntos
Cocaína/efeitos adversos , Cocaína/imunologia , Células Dendríticas/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , HIV-1/imunologia , Macrófagos/efeitos dos fármacos , Doenças Neuroinflamatórias/complicações , Encéfalo/citologia , Cocaína/farmacologia , Citocinas/imunologia , Células Dendríticas/virologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Endoteliais/virologia , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/virologia , HIV-1/efeitos dos fármacos , HIV-1/patogenicidade , Humanos , Inflamação , Macrófagos/imunologia , Macrófagos/virologia , Biogênese de Organelas
11.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575975

RESUMO

Several classes of immunomodulators are used for treating relapsing-remitting multiple sclerosis (RRMS). Most of these disease-modifying therapies, except teriflunomide, carry the risk of progressive multifocal leukoencephalopathy (PML), a severely debilitating, often fatal virus-induced demyelinating disease. Because teriflunomide has been shown to have antiviral activity against DNA viruses, we investigated whether treatment of cells with teriflunomide inhibits infection and spread of JC polyomavirus (JCPyV), the causative agent of PML. Treatment of choroid plexus epithelial cells and astrocytes with teriflunomide reduced JCPyV infection and spread. We also used droplet digital PCR to quantify JCPyV DNA associated with extracellular vesicles isolated from RRMS patients. We detected JCPyV DNA in all patients with confirmed PML diagnosis (n = 2), and in six natalizumab-treated (n = 12), two teriflunomide-treated (n = 7), and two nonimmunomodulated (n = 2) patients. Of the 21 patients, 12 (57%) had detectable JCPyV in either plasma or serum. CSF was uniformly negative for JCPyV. Isolation of extracellular vesicles did not increase the level of detection of JCPyV DNA versus bulk unprocessed biofluid. Overall, our study demonstrated an effect of teriflunomide inhibiting JCPyV infection and spread in glial and choroid plexus epithelial cells. Larger studies using patient samples are needed to correlate these in vitro findings with patient data.


Assuntos
Crotonatos/farmacologia , Vírus de DNA/efeitos dos fármacos , Hidroxibutiratos/farmacologia , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Neuroglia/efeitos dos fármacos , Nitrilas/farmacologia , Toluidinas/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/virologia , Linhagem Celular , Plexo Corióideo/efeitos dos fármacos , Plexo Corióideo/virologia , Vírus de DNA/patogenicidade , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/virologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/virologia , Humanos , Fatores Imunológicos/efeitos adversos , Fatores Imunológicos/uso terapêutico , Vírus JC/efeitos dos fármacos , Vírus JC/patogenicidade , Leucoencefalopatia Multifocal Progressiva/induzido quimicamente , Leucoencefalopatia Multifocal Progressiva/patologia , Leucoencefalopatia Multifocal Progressiva/virologia , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/patologia , Esclerose Múltipla Recidivante-Remitente/virologia , Neuroglia/virologia , Viroses/tratamento farmacológico , Viroses/genética , Viroses/virologia
12.
Front Immunol ; 12: 697604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249000

RESUMO

HIV latency is a challenge to the success of antiretroviral therapy (ART). Hence patients may benefit from interventions that efficiently reactivate the latent virus to be eliminated by ARTs. Here we show that plasma extracellular vesicles (pEVs) can enhance HIV infection of activated CD4+ T cells and reactivate the virus in latently infected J-Lat 10.6 cells. Evaluation of the extravesicular miRNA cargo by a PCR array revealed that pEVs from HIV patients express miR-139-5p. Furthermore, we found that increased levels of miR-139-5p in J-Lat 10.6 cells incubated with pEVs corresponded with reduced expression of the transcription factor, FOXO1. pEV treatment also corresponded with increased miR-139-5p expression in stimulated PD1+ Jurkat cells, but with concomitant upregulation of FOXO1, Fos, Jun, PD-1 and PD-L1. However, J-Lat 10.6 cells incubated with miR-139-5p inhibitor-transfected pEVs from HIV ART-naïve and on-ART patients expressed reduced levels of miR-139-5p than cells treated with pEVs from healthy controls (HC). Collectively, our results indicate that pEV miR-139-5p belongs to a network of miRNAs that can promote cell activation, including latent HIV-infected cells by regulating the expression of FOXO1 and the PD1/PD-L1 promoters, Fos and Jun.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/patogenicidade , MicroRNAs/genética , MicroRNAs/imunologia , Antígeno B7-H1/imunologia , Estudos de Casos e Controles , Linhagem Celular , Vesículas Extracelulares/genética , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/virologia , Feminino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/imunologia , Regulação da Expressão Gênica , Infecções por HIV/genética , HIV-1/imunologia , Humanos , Células Jurkat , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Masculino , Receptor de Morte Celular Programada 1/imunologia , Ativação Viral/genética , Ativação Viral/imunologia , Latência Viral/genética , Latência Viral/imunologia
13.
Viruses ; 13(6)2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207152

RESUMO

This article reviews the current knowledge on how viruses may utilize Extracellular Vesicle Assisted Inflammatory Load (EVAIL) to exert pathologic activities. Viruses are classically considered to exert their pathologic actions through acute or chronic infection followed by the host response. This host response causes the release of cytokines leading to vascular endothelial cell dysfunction and cardiovascular complications. However, viruses may employ an alternative pathway to soluble cytokine-induced pathologies-by initiating the release of extracellular vesicles (EVs), including exosomes. The best-understood example of this alternative pathway is human immunodeficiency virus (HIV)-elicited EVs and their propensity to harm vascular endothelial cells. Specifically, an HIV-encoded accessory protein called the "negative factor" (Nef) was demonstrated in EVs from the body fluids of HIV patients on successful combined antiretroviral therapy (ART); it was also demonstrated to be sufficient in inducing endothelial and cardiovascular dysfunction. This review will highlight HIV-Nef as an example of how HIV can produce EVs loaded with proinflammatory cargo to disseminate cardiovascular pathologies. It will further discuss whether EV production can explain SARS-CoV-2-mediated pulmonary and cardiovascular pathologies.


Assuntos
Vesículas Extracelulares/imunologia , Vesículas Extracelulares/virologia , Inflamação/virologia , COVID-19/complicações , COVID-19/imunologia , COVID-19/fisiopatologia , Doenças Cardiovasculares/virologia , Células Endoteliais/patologia , Células Endoteliais/virologia , Exossomos/metabolismo , Infecções por HIV/complicações , Infecções por HIV/imunologia , Infecções por HIV/fisiopatologia , HIV-1/patogenicidade , Humanos , SARS-CoV-2/patogenicidade
14.
Am J Respir Cell Mol Biol ; 65(4): 413-429, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34014809

RESUMO

Extracellular vesicles (EVs) have emerged as important mediators in cell-cell communication; however, their relevance in pulmonary hypertension (PH) secondary to human immunodeficiency virus (HIV) infection is yet to be explored. Considering that circulating monocytes are the source of the increased number of perivascular macrophages surrounding the remodeled vessels in PH, this study aimed to identify the role of circulating small EVs and EVs released by HIV-infected human monocyte-derived macrophages in the development of PH. We report significantly higher numbers of plasma-derived EVs carrying higher levels of TGF-ß1 (transforming growth factor-ß1) in HIV-positive individuals with PH compared with individuals without PH. Importantly, levels of these TGF-ß1-loaded, plasma-derived EVs correlated with pulmonary arterial systolic pressures and CD4 counts but did not correlate with the Dl CO or viral load. Correspondingly, enhanced TGF-ß1-dependent pulmonary endothelial injury and smooth muscle hyperplasia were observed. HIV-1 infection of monocyte-derived macrophages in the presence of cocaine resulted in an increased number of TGF-ß1-high EVs, and intravenous injection of these EVs in rats led to increased right ventricle systolic pressure accompanied by myocardial injury and increased levels of serum ET-1 (endothelin-1), TNF-α, and cardiac troponin-I. Conversely, pretreatment of rats with TGF-ß receptor 1 inhibitor prevented these EV-mediated changes. Findings define the ability of macrophage-derived small EVs to cause pulmonary vascular modeling and PH via modulation of TGF-ß signaling and suggest clinical implications of circulating TGF-ß-high EVs as a potential biomarker of HIV-associated PH.


Assuntos
Infecções por HIV/complicações , HIV/patogenicidade , Fator de Crescimento Transformador beta1/metabolismo , Animais , Vesículas Extracelulares/virologia , Humanos , Hipertensão Pulmonar/virologia , Macrófagos/virologia , Masculino , Monócitos/virologia , Hipertensão Arterial Pulmonar/virologia , Ratos Endogâmicos F344 , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Remodelação Vascular/fisiologia
15.
Front Immunol ; 12: 617042, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968019

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic, caused by the SARS-CoV-2 virus, is wreaking havoc around the world. Considering that extracellular vesicles (EVs) released from SARS-CoV-2 infected cells might play a role in a viremic phase contributing to disease progression and that standard methods for EV isolation have been reported to co-isolate viral particles, we would like to recommend the use of heightened laboratory safety measures during the isolation of EVs derived from SARS-CoV-2 infected tissue and blood from COVID-19 patients. Research needs to be conducted to better understand the role of EVs in SARS-CoV-2 infectivity, disease progression, and transmission. EV isolation procedures should include approaches for protection from SARS-CoV-2 contamination. We recommend the EV and virology scientific communities develop collaborative projects where relationships between endogenous EVs and potentially lethal enveloped viruses are addressed to better understand the risks and pathobiology involved.


Assuntos
COVID-19/patologia , COVID-19/transmissão , Contenção de Riscos Biológicos/métodos , Vesículas Extracelulares/virologia , Endocitose/fisiologia , Humanos , RNA Viral/sangue , RNA Viral/genética , SARS-CoV-2 , Empacotamento do Genoma Viral , Viremia/patologia
16.
Neurobiol Dis ; 155: 105388, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33962010

RESUMO

Human immunodeficiency virus-1 (HIV-1) has been shown to cross the blood-brain barrier and cause HIV-associated neurocognitive disorders (HAND) through a process that may involve direct or indirect interactions with the central nervous system (CNS) cells and alterations of amyloid ß (Aß) homeostasis. The present study focused on the mechanisms of HIV-1 infecting human neural progenitor cells (hNPCs) and affecting NPC intercellular communications with human brain endothelial cells (HBMEC). Despite the lack of the CD4 receptor, hNPCs were effectively infected by HIV-1 via a mechanism involving the chemokine receptors, CXCR4 and CCR5. HIV-1 infection increased expression of connexin-43 (Cx43), phosphorylated Cx43 (pCx43), and pannexin 2 (Panx2) protein levels in hNPCs, suggesting alterations in gap-junction (GJ) and pannexin channel communication. Indeed, a functional GJ assay indicated an increase in communication between HIV-infected hNPCs and non-infected HBMEC. We next analyzed the impact of HBMEC-derived extracellular vesicles (EVs) and EVs carrying Aß (EV-Aß) on the expression of Cx43, pCx43, and Panx2 in HIV-1 infected and non-infected hNPCs. Exposure to EV-Aß resulted in significant reduction of Cx43 and pCx43 protein expression in non-infected hNPCs when compared to EV controls. Interestingly, EV-Aß treatment significantly increased levels of Cx43, pCx43, and Panx2 in HIV-1-infected hNPCs when compared to non-infected controls. These results were confirmed in a GJ functional assay and an ATP release assay, which is an indicator of connexin hemichannel and/or pannexin channel functions. Overall, the current study demonstrates the importance of hNPCs in HIV-1 infection and indicates that intercellular communications between infected hNPCs and HBMEC can be effectively modulated by EVs carrying Aß as their cargo.


Assuntos
Comunicação Celular/fisiologia , Vesículas Extracelulares/metabolismo , Junções Comunicantes/metabolismo , Infecções por HIV/metabolismo , HIV-1/metabolismo , Células-Tronco Neurais/metabolismo , Peptídeos beta-Amiloides/metabolismo , Linhagem Celular , Células Cultivadas , Endotélio Vascular/metabolismo , Endotélio Vascular/virologia , Vesículas Extracelulares/virologia , Junções Comunicantes/virologia , Humanos , Células-Tronco Neurais/virologia
17.
Mol Ther ; 29(10): 2920-2930, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34023506

RESUMO

Extracellular vesicles (EVs) play important roles in various intercellular communication processes. The abscopal effect is an interesting phenomenon in cancer treatment, in which immune activation is generally considered a main factor. We previously developed a telomerase-specific oncolytic adenovirus, Telomelysin (OBP-301), and occasionally observed therapeutic effects on distal tumors after local treatment in immunodeficient mice. In this study, we hypothesized that EVs may be involved in the abscopal effect of OBP-301. EVs isolated from the supernatant of HCT116 human colon carcinoma cells treated with OBP-301 were confirmed to contain OBP-301, and they showed cytotoxic activity (apoptosis and autophagy) similar to OBP-301. In bilateral subcutaneous HCT116 and CT26 tumor models, intratumoral administration of OBP-301 produced potent antitumor effects on tumors that were not directly treated with OBP-301, involving direct mediation by tumor-derived EVs containing OBP-301. This indicates that immune activation is not the main factor in this abscopal effect. Moreover, tumor-derived EVs exhibited high tumor tropism in orthotopic HCT116 rectal tumors, in which adenovirus E1A and adenovirus type 5 proteins were observed in metastatic liver tumors after localized rectal tumor treatment. In conclusion, local treatment with OBP-301 has the potential to produce abscopal effects via tumor-derived EVs.


Assuntos
Adenoviridae/genética , Neoplasias do Colo/terapia , Vesículas Extracelulares/transplante , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/terapia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Vesículas Extracelulares/virologia , Células HCT116 , Humanos , Camundongos , Vírus Oncolíticos/genética , Tropismo Viral , Ensaios Antitumorais Modelo de Xenoenxerto
18.
NPJ Biofilms Microbiomes ; 7(1): 25, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731696

RESUMO

Human respiratory syncytial virus (RSV) is a major cause of acute respiratory tract infections in children and immunocompromised adults worldwide. Here we report that amoebae-release respirable-sized vesicles containing high concentrations of infectious RSV that persisted for the duration of the experiment. Given the ubiquity of amoebae in moist environments, our results suggest that extracellular amoebal-vesicles could contribute to the environmental persistence of respiratory viruses, including potential resistance to disinfection processes and thereby offering novel pathways for viral dissemination and transmission.


Assuntos
Amoeba/virologia , Vesículas Extracelulares/virologia , Infecções por Vírus Respiratório Sincicial/transmissão , Vírus Sincicial Respiratório Humano/patogenicidade , Adulto , Amoeba/crescimento & desenvolvimento , Criança , Células HeLa , Humanos , Hospedeiro Imunocomprometido , Modelos Biológicos , Replicação Viral
19.
Immunology ; 163(4): 416-430, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33742451

RESUMO

The sudden outbreak of SARS-CoV-2-infected disease (COVID-19), initiated from Wuhan, China, has rapidly grown into a global pandemic. Emerging evidence has implicated extracellular vesicles (EVs), a key intercellular communicator, in the pathogenesis and treatment of COVID-19. In the pathogenesis of COVID-19, cells that express ACE2 and CD9 can transfer these viral receptors to other cells via EVs, making recipient cells more susceptible for SARS-CoV-2 infection. Once infected, cells release EVs packaged with viral particles that further facilitate viral spreading and immune evasion, aggravating COVID-19 and its complications. In contrast, EVs derived from stem cells, especially mesenchymal stromal/stem cells, alleviate severe inflammation (cytokine storm) and repair damaged lung cells in COVID-19 by delivery of anti-inflammatory molecules. These therapeutic beneficial EVs can also be engineered into drug delivery platforms or vaccines to fight against COVID-19. Therefore, EVs from diverse sources exhibit distinct effects in regulating viral infection, immune response, and tissue damage/repair, functioning as a double-edged sword in COVID-19. Here, we summarize the recent progress in understanding the pathological roles of EVs in COVID-19. A comprehensive discussion of the therapeutic effects/potentials of EVs is also provided.


Assuntos
COVID-19/virologia , Vesículas Extracelulares/virologia , Pulmão/virologia , Células-Tronco Mesenquimais/metabolismo , SARS-CoV-2/patogenicidade , Vírion/metabolismo , Animais , Antivirais/administração & dosagem , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/terapia , Vacinas contra COVID-19/administração & dosagem , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/metabolismo , Síndrome da Liberação de Citocina/virologia , Citocinas/metabolismo , Portadores de Fármacos , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Células-Tronco Mesenquimais/imunologia , SARS-CoV-2/imunologia , Vírion/imunologia , Tratamento Farmacológico da COVID-19
20.
Retrovirology ; 18(1): 6, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622348

RESUMO

BACKGROUND: The Human T-cell Lymphotropic Virus Type-1 (HTLV-1) is a blood-borne pathogen and etiological agent of Adult T-cell Leukemia/Lymphoma (ATLL) and HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). HTLV-1 has currently infected up to 10 million globally with highly endemic areas in Japan, Africa, the Caribbean and South America. We have previously shown that Extracellular Vesicles (EVs) enhance HTLV-1 transmission by promoting cell-cell contact. RESULTS: Here, we separated EVs into subpopulations using differential ultracentrifugation (DUC) at speeds of 2 k (2000×g), 10 k (10,000×g), and 100 k (100,000×g) from infected cell supernatants. Proteomic analysis revealed that EVs contain the highest viral/host protein abundance in the 2 k subpopulation (2 k > 10 k > 100 k). The 2 k and 10 k populations contained viral proteins (i.e., p19 and Tax), and autophagy proteins (i.e., LC3 and p62) suggesting presence of autophagosomes as well as core histones. Interestingly, the use of 2 k EVs in an angiogenesis assay (mesenchymal stem cells + endothelial cells) caused deterioration of vascular-like-tubules. Cells commonly associated with the neurovascular unit (i.e., astrocytes, neurons, and macrophages) in the blood-brain barrier (BBB) showed that HTLV-1 EVs may induce expression of cytokines involved in migration (i.e., IL-8; 100 k > 2 k > 10 k) from astrocytes and monocyte-derived macrophages (i.e., IL-8; 2 k > 10 k). Finally, we found that EVs were able to promote cell-cell contact and viral transmission in monocytic cell-derived dendritic cell. The EVs from both 2 k and 10 k increased HTLV-1 spread in a humanized mouse model, as evidenced by an increase in proviral DNA and RNA in the Blood, Lymph Node, and Spleen. CONCLUSIONS: Altogether, these data suggest that various EV subpopulations induce cytokine expression, tissue damage, and viral spread.


Assuntos
Células Endoteliais/virologia , Vesículas Extracelulares/virologia , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Animais , Comunicação Celular , Citocinas/análise , Citocinas/genética , Citocinas/imunologia , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/fisiologia , Feminino , Infecções por HTLV-I/virologia , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Proteômica , Células THP-1 , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...