Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.358
Filtrar
1.
Invest Ophthalmol Vis Sci ; 65(10): 3, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087933

RESUMO

Purpose: Primary open-angle glaucoma (POAG) is a leading cause of blindness, and its primary risk factor is elevated intraocular pressure (IOP) due to pathologic changes in the trabecular meshwork (TM). We previously showed that there is a cross-inhibition between TGFß and Wnt signaling pathways in the TM. In this study, we determined if activation of the Wnt signaling pathway using small-molecule Wnt activators can inhibit TGFß2-induced TM changes and ocular hypertension (OHT). Methods: Primary human TM (pHTM) cells and transduced SBE-GTM3 cells were treated with or without Wnt and/or TGFß signaling activators and used for luciferase assays; for the extraction of whole-cell lysate, conditioned medium, cytosolic proteins, and nuclear proteins for Western immunoblotting (WB); or for immunofluorescent staining. Human donor eyes were perfusion cultured to study the effect of Wnt activators on IOP. Results: We found that the small-molecule Wnt activators (GSK3ß inhibitors) (BIO, SB216763, and CHIR99021) activated canonical Wnt signaling in pHTM cells without toxicity at tested concentrations. This activation inhibited TGFß signaling as well as TGFß2-induced extracellular matrix deposition and formation of cross-linked actin networks in pHTM cells or SBE-GTM3 cells. We also observed nuclear translocation of both Smad4 and ß-catenin in pHTM cells, which suggested that the cross-inhibition between the TGFß and Wnt signaling pathways may occur in the nucleus. Using our ex vivo model, we found that CHIR99021 inhibited TGFß2-induced OHT in perfusion-cultured human eyes. Conclusions: Our results showed that small-molecule Wnt activators have the potential for treating TGFß signaling-induced OHT in patients with POAG.


Assuntos
Glaucoma de Ângulo Aberto , Glicogênio Sintase Quinase 3 beta , Pressão Intraocular , Malha Trabecular , Humanos , Malha Trabecular/metabolismo , Malha Trabecular/efeitos dos fármacos , Pressão Intraocular/fisiologia , Pressão Intraocular/efeitos dos fármacos , Glaucoma de Ângulo Aberto/metabolismo , Glaucoma de Ângulo Aberto/tratamento farmacológico , Células Cultivadas , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Western Blotting , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia , Hipertensão Ocular/metabolismo , Hipertensão Ocular/tratamento farmacológico , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta2/farmacologia
2.
Biochem Pharmacol ; 227: 116463, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39102994

RESUMO

Gastrointestinal cancers (GICs) are highly prevalent cancers that threaten human health worldwide. The Wnt/ß-catenin signaling pathway has been reported to play a pivotal role in the carcinogenesis of GICs. Numerous interventions targeting the Wnt/ß-catenin signaling in GICs are currently being tested in clinical trials with promising results. Unfortunately, there are no clinically approved drugs that effectively target this pathway. This comprehensive review aims to evaluate the impact of clinical therapies targeting the Wnt/ß-catenin signaling pathway in GICs. By integrating data from bioinformatics databases and recent literature from the past five years, we examine the heterogeneous expression and regulatory mechanisms of Wnt/ß-catenin pathway genes and proteins in GICs. Specifically, we focus on expression patterns, mutation frequencies, and clinical prognoses to understand their implications for treatment strategies. Additionally, we discuss recent clinical trial efforts targeting this pathway. Understanding the inhibitors currently under clinical investigation may help optimize foundational research and clinical strategies. We hope that elucidating the current status of precision therapeutic stratification for patients targeting the Wnt/ß-catenin pathway will guide future innovations in precision medicine for GICs.


Assuntos
Antineoplásicos , Neoplasias Gastrointestinais , Via de Sinalização Wnt , Humanos , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Animais , beta Catenina/metabolismo , beta Catenina/antagonistas & inibidores , beta Catenina/genética , Terapia de Alvo Molecular/métodos
3.
J Orthop Surg Res ; 19(1): 480, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152444

RESUMO

BACKGROUND: Increasing evidence shows the pivotal significance of miRNAs in the pathogenesis of osteoporosis. miR-381-3p has been identified as an inhibitor of osteogenesis. This study explored the role and mechanism of miR-381-3p in postmenopausal osteoporosis (PMOP), the most common type of osteoporosis. METHODS: Bilateral ovariectomy (OVX) rat model was established and miR-381-3p antagomir was administrated through the tail vein in vivo. The pathological changes in rats were assessed through the evaluation of serum bone turnover markers (BALP, PINP, and CTX-1), hematoxylin and eosin (H&E) staining, as well as the expression of osteoblast differentiation biomarkers. Moreover, isolated bone marrow mesenchymal stem cells from OVX-induced rats (OVX-BMMSCs) were utilized to explore the impact of miR-381-3p on osteoblast differentiation. In addition, the target gene and downstream pathway of miR-381-3p were further investigated both in vivo and in vitro. RESULTS: miR-381-3p expression was elevated, whereas KLF5 was suppressed in OVX rats. miR-381-3p antagomir decreased serum levels of bone turnover markers, improved trabecular separation, promoted osteoblast differentiation biomarker expression in OVX rats. ALP activity and mineralization were suppressed, and levels of osteoblast differentiation biomarkers were impeded after miR-381-3p overexpression during osteoblast differentiation of OVX-BMMSCs. While contrasting results were found after inhibition of miR-381-3p. miR-381-3p targets KLF5, negatively affecting its expression as well as its downstream Wnt/ß-catenin pathway, both in vivo and in vitro. Silencing of KLF5 restored Wnt/ß-catenin activation induced by miR-381-3p antagomir. CONCLUSION: miR-381-3p aggravates PMOP by inhibiting osteogenic differentiation through targeting KLF5/Wnt/ß-catenin pathway. miR-381-3p appears to be a promising candidate for therapeutic intervention in PMOP.


Assuntos
Diferenciação Celular , Fatores de Transcrição Kruppel-Like , MicroRNAs , Osteogênese , Osteoporose Pós-Menopausa , Ovariectomia , Ratos Sprague-Dawley , Via de Sinalização Wnt , Animais , MicroRNAs/genética , Ovariectomia/efeitos adversos , Osteogênese/genética , Osteogênese/fisiologia , Feminino , Via de Sinalização Wnt/fisiologia , Via de Sinalização Wnt/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Ratos , Osteoporose Pós-Menopausa/genética , Osteoporose Pós-Menopausa/metabolismo , Modelos Animais de Doenças , Osteoblastos/metabolismo , Osteoporose/genética , Osteoporose/etiologia , Osteoporose/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células Cultivadas , Humanos
4.
Pathol Res Pract ; 261: 155510, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39116573

RESUMO

Gliomas are among the most common cancers in the central nervous system, arising through various signaling pathways. One significant pathway is Wnt signaling, a tightly regulated process that plays a crucial role in gliomagenesis and development. The current study aims to explore the relationship between circular RNAs (circRNAs) and the Wnt/ß-catenin signaling pathway in gliomas, considering the growing recognition of circRNAs in disease pathogenesis. A comprehensive review of recent research was conducted to investigate the roles of circRNAs in gliomas, focusing on their expression patterns and interactions with the Wnt signaling pathway. The analysis included studies examining circRNAs' function as microRNA sponges and their impact on glioma biology. The findings reveal that circRNAs are differentially expressed in gliomas and significantly influence the occurrence, growth, and metastasis of these tumors. Specifically, circRNAs interact with the Wnt signaling pathway, affecting glioma development and progression. This interaction highlights the importance of circRNAs in glioma pathophysiology. Understanding the regulatory network involving circRNAs and Wnt signaling offers valuable insights into glioma pathophysiology. CircRNAs hold promise as diagnostic and prognostic biomarkers and may serve as targets for novel therapeutic strategies in glioma treatment.


Assuntos
Neoplasias Encefálicas , Glioma , RNA Circular , Via de Sinalização Wnt , Humanos , Glioma/genética , Glioma/patologia , Glioma/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Via de Sinalização Wnt/genética , Via de Sinalização Wnt/fisiologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , MicroRNAs/metabolismo
5.
J Orthop Surg Res ; 19(1): 467, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118123

RESUMO

BACKGROUND: Osteosarcoma is a soft tissue neoplasm with elevated recurrence risk and highly metastatic potential. Metal response element binding transcriptional factor 2 (MTF2) has been revealed to exert multiple activities in human tissues. The present research was conducted to explore the functions and related response mechanism of MTF2 in osteosarcoma which have not been introduced yet. METHODS: Bioinformatics tools identified the differential MTF2 expression in osteosarcoma tissues. MTF2 expression in osteosarcoma cells was examined with Western blot. Cell Counting Kit-8 (CCK-8) assay, 5-Ethynyl-2'-deoxyuridine (EDU) staining, wound healing as well as transwell assays measured cell proliferation, migration and invasion, respectively. Flow cytometry assay detected the cellular apoptotic level. Western blot also measured the expressions of proteins associated with epithelial mesenchymal transition (EMT), apoptosis and enhancer of zeste homolog 2 (EZH2)/secreted frizzled-related protein 1 (SFRP1)/Wnt signaling. Co-immunoprecipitation (Co-IP) assay confirmed MTF2-EZH2 interaction. RESULTS: MTF2 expression was increased in osteosarcoma tissues and cells. MTF2 interference effectively inhibited the proliferation, migration and invasion of osteosarcoma cells and promoted the cellular apoptotic rate. MTF2 directly bound to EZH2 and MTF2 silence reduced EZH2 expression, activated SFRP1 expression and blocked Wnt signaling in osteosarcoma cells. EZH2 upregulation or SFRP1 antagonist WAY-316606 partly counteracted the impacts of MTF2 down-regulation on the SFRP1/Wnt signaling and the biological phenotypes of osteosarcoma cells. CONCLUSIONS: MTF2 might down-regulate SFRP1 to activate Wnt signaling and drive the progression of osteosarcoma via interaction with EZH2 protein.


Assuntos
Neoplasias Ósseas , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste , Osteossarcoma , Via de Sinalização Wnt , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Osteossarcoma/genética , Humanos , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Via de Sinalização Wnt/fisiologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Proliferação de Células/fisiologia , Linhagem Celular Tumoral , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Apoptose/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Movimento Celular/fisiologia , Progressão da Doença , Regulação Neoplásica da Expressão Gênica
6.
Int J Dev Biol ; 68(2): 65-78, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39016374

RESUMO

During embryonic development, the vertebrate embryonic epiblast is divided into two parts including neural and superficial ectoderm. The neural plate border (NPB) is a narrow transitional area which locates between these parts and contains multipotent progenitor cells. Despite its small size, the cellular heterogeneity in this region produces specific differentiated cells. Signaling pathways, transcription factors, and the expression/repression of certain genes are directly involved in these differentiation processes. Different factors such as the Wnt signaling cascade, fibroblast growth factor (FGF), bone morphogenetic protein (BMP) signaling, and Notch, which are involved in various stages of the growth, proliferation, and differentiation of embryonic cells, are also involved in the determination and differentiation of neural plate border stem cells. Therefore, it is essential to consider the interactions and temporospatial coordination related to cells, tissues, and adjacent structures. This review examines our present knowledge of the formation of the neural plate border and emphasizes the requirement for interaction between different signaling pathways, including the BMP and Wnt cascades, the expression of its special target genes and their regulations, and the precise tissue crosstalk which defines the neural crest fate in the ectoderm at the early human embryonic stages.


Assuntos
Proteínas Morfogenéticas Ósseas , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Crista Neural , Placa Neural , Transdução de Sinais , Placa Neural/metabolismo , Placa Neural/embriologia , Humanos , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Crista Neural/metabolismo , Crista Neural/embriologia , Ectoderma/metabolismo , Ectoderma/embriologia , Ectoderma/citologia , Via de Sinalização Wnt/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Camadas Germinativas/metabolismo , Camadas Germinativas/citologia , Proteínas Wnt/metabolismo , Proteínas Wnt/genética
7.
J Integr Neurosci ; 23(7): 131, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39082287

RESUMO

Stroke is a prominent contributor to mortality and impairment on a global scale. Ischemic stroke accounts for approximately 80% of stroke cases and is caused by occlusion of cerebral blood vessels. Enhancing neurogenesis through the modulation of the neural stem cell niche in the adult brain is a promising therapeutic strategy for individuals afflicted with ischemic stroke. Neurogenesis results in the generation of newborn neurons that serve as replacements for deceased neural cells within the ischemic core, thereby playing a significant role in the process of neural restoration subsequent to cerebral ischemia. Research has shown that activation of the Wnt/ß-catenin pathway can augment neurogenesis following cerebral ischemia, suggesting that this pathway is a potentially beneficial therapeutic target for managing ischemic stroke. This review provides an extensive analysis of the current knowledge regarding the involvement of the Wnt/ß-catenin pathway in promoting neurogenesis, thereby offering a promising avenue for therapeutic intervention in the context of ischemic stroke or other neurological impairments.


Assuntos
AVC Isquêmico , Células-Tronco Neurais , Neurogênese , Via de Sinalização Wnt , Humanos , Via de Sinalização Wnt/fisiologia , Animais , AVC Isquêmico/metabolismo , AVC Isquêmico/terapia , Neurogênese/fisiologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Nicho de Células-Tronco/fisiologia , Células-Tronco Adultas/fisiologia , Isquemia Encefálica/metabolismo , Isquemia Encefálica/terapia
8.
Exp Eye Res ; 245: 109988, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964496

RESUMO

Autism spectrum disorder (ASD) is a group of neurodevelopment disorders characterized by deficits in social interaction and communication, and repetitive or stereotyped behavior. Autistic children are more likely to have vision problems, and ASD is unusually common among blind people. However, the mechanisms behind the vision disorders in autism are unclear. Stabilizing WNT-targeted scaffold protein Axin2 by XAV939 during embryonic development causes overproduction of cortical neurons and leads to autistic-like behaviors in mice. In this study, we investigated the relationship between vision abnormality and autism using an XAV939-induced mouse model of autism. We found that the mice receiving XAV939 had decreased amplitude of bright light-adaptive ERG. The amplitudes and latency of flash visual evoked potential recorded from XAV939-treated mice were lower and longer, respectively than in the control mice, suggesting that XAV939 inhibits visual signal processing and conductance. Anatomically, the diameters of RGC axons were reduced when Axin2 was stabilized during the development, and the optic fibers had defective myelin sheaths and reduced oligodendrocytes. The results suggest that the WNT signaling pathway is crucial for optic nerve development. This study provides experimental evidence that conditions interfering with brain development may also lead to visual problems, which in turn might exaggerate the autistic features in humans.


Assuntos
Proteína Axina , Modelos Animais de Doenças , Potenciais Evocados Visuais , Nervo Óptico , Animais , Proteína Axina/metabolismo , Camundongos , Potenciais Evocados Visuais/fisiologia , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Eletrorretinografia , Camundongos Endogâmicos C57BL , Axônios/patologia , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Masculino , Via de Sinalização Wnt/fisiologia , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/fisiopatologia , Transtorno Autístico/metabolismo
9.
Dev Biol ; 515: 46-58, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38968989

RESUMO

The Daam1 protein regulates Wnt-induced cytoskeletal changes during vertebrate gastrulation though its full mode of action and binding partners remain unresolved. Here we identify Reversion Induced LIM domain protein (RIL) as a new interacting protein of Daam1. Interaction studies uncover binding of RIL to the C-terminal actin-nucleating portion of Daam1 in a Wnt-responsive manner. Immunofluorescence studies showed subcellular localization of RIL to actin fibers and co-localization with Daam1 at the plasma membrane. RIL gain- and loss-of-function approaches in Xenopus produced severe gastrulation defects in injected embryos. Additionally, a simultaneous loss of Daam1 and RIL synergized to produce severe gastrulation defects indicating RIL and Daam1 may function in the same signaling pathway. RIL further synergizes with another novel Daam1-interacting protein, Formin Binding Protein 1 (FNBP1), to regulate gastrulation. Our studies altogether show RIL mediates Daam1-regulated non-canonical Wnt signaling that is required for vertebrate gastrulation.


Assuntos
Citoesqueleto de Actina , Gastrulação , Proteínas dos Microfilamentos , Via de Sinalização Wnt , Proteínas de Xenopus , Xenopus laevis , Animais , Feminino , Humanos , Ratos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas com Domínio LIM/metabolismo , Proteínas com Domínio LIM/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Ligação Proteica , Via de Sinalização Wnt/fisiologia , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética
10.
Bone ; 187: 117207, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39033993

RESUMO

Fracture management largely relies on the bone's inherent healing capabilities and, when necessary, surgical intervention. Currently, there are limited osteoinductive therapies to promote healing, making targeting skeletal stem/progenitor cells (SSPCs) a promising avenue for therapeutic development. A limiting factor for this approach is our incomplete understanding of the molecular mechanisms governing SSPCs' behavior. We have recently identified that the Leucine-rich repeat-containing G-protein coupled receptor 6 (Lgr6) is expressed in sub-populations of SSPCs, and is required for maintaining bone volume during adulthood and for proper fracture healing. Lgr family members (Lgr4-6) are markers of stem cell niches and play a role in tissue regeneration primarily by binding R-Spondin (Rspo1-4). This interaction promotes canonical Wnt (cWnt) signaling by stabilizing Frizzled receptors. Interestingly, our findings here indicate that Lgr6 may also influence cWnt-independent pathways. Remarkably, Lgr6 expression was enhanced during Bmp-mediated osteogenesis of both human and murine cells. Using biochemical approaches, RNA sequencing, and bioinformatic analysis of published single-cell data, we found that elements of BMP signaling, including its target gene, pSMAD, and gene ontology pathways, are downregulated in the absence of Lgr6. Our findings uncover a molecular interdependency between the Bmp pathway and Lgr6, offering new insights into osteogenesis and potential targets for enhancing fracture healing.


Assuntos
Osteogênese , Receptores Acoplados a Proteínas G , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Osteogênese/fisiologia , Osteogênese/genética , Animais , Humanos , Camundongos , Via de Sinalização Wnt/fisiologia , Proteínas Morfogenéticas Ósseas/metabolismo
11.
Pathol Res Pract ; 260: 155481, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39053135

RESUMO

Here, we explored the role of Prolyl 4-Hydroxylase Subunit Alpha 3 (P4HA3), the most recently identified member of the prolyl-4-hydroxylase (P4H) family, in head and neck squamous cell carcinoma (HNSCC) progression. P4HA3 is upregulated during cancer progression; however, its specific role in HNSCC progression remains elusive. Thus, this study aimed to elucidate the regulatory function of P4HA3 in HNSCC development and progression and to describe the underlying mechanisms. Initially, we analyzed the correlation between the expression of P4HA3 and the WNT pathway genes and clinicopathologic features in HNSCC based on microarray data from The Cancer Genome Atlas (TCGA). Next, we used Gene Oncology (GO) functional data to describe several potentially associated pathways in HNSCC. Then, we knocked down P4HA3 in SCC15 and SCC25 cells, two classic HNSCC cell lines, and assessed the resulting changes using RT-qPCR. Furthermore, we used Western blot to evaluate the regulatory role of P4HA3 in the epithelial-to-mesenchymal transition (EMT) and the WNT/ß-catenin signaling pathway. To explore the effect of P4HA3 knockdown on tumor progression, in vivo experiments were conducted using a murine model. Immunohistochemistry assays were then employed to identify proteins associated with EMT and the WNT/ß-catenin signaling pathway in tumor tissues. Upregulated P4HA3 in HNSCC patient tumor tissues was positively correlated with poor prognosis. Notably, P4HA3 knockdown significantly inhibited the proliferative and invasive abilities of HNSCC. The levels of genes and proteins associated with EMT and the WNT/ß-catenin signaling pathway were also markedly reduced by P4HA3 knockdown. Importantly, the in vivo experiments demonstrated that P4HA3 can promote subcutaneous tumorigenesis in nude mice and knockdown of P4HA3 induce a significant ihibitation of EMT and WNT/ß-catenin pathway detected by immunohistochemistry assay in tumor tissues. In summary, we demonstrated that P4HA3 is a promising diagnostic and therapeutic biomarker for HNSCC. As an oncogene, P4HA3 increases HNSCC proliferation by inducing the EMT and activating the WNT/ß-catenin signaling pathway.


Assuntos
Progressão da Doença , Transição Epitelial-Mesenquimal , Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Via de Sinalização Wnt , Humanos , Via de Sinalização Wnt/fisiologia , Via de Sinalização Wnt/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Animais , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Camundongos , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Pró-Colágeno-Prolina Dioxigenase/genética , Linhagem Celular Tumoral , Masculino , Camundongos Nus , Feminino , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade
12.
Skin Res Technol ; 30(6): e13807, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38887112

RESUMO

BACKGROUND: The objective of this study is to investigate the mechanism by which low-level laser stimulation promotes the proliferation of intraepithelial hair follicle stem cells (HFSCs) in wounds. This research aims to expand the applications of laser treatment, enhance wound repair methods, and establish a theoretical and experimental foundation for achieving accelerated wound healing. METHODS: The experimental approach involved irradiating a cell model with low-level laser to assess the proliferation of HFSCs and examine alterations in the expression of proteins related to the Wnt/ß-catenin signaling pathway. A mouse back wound model was established to investigate the effects of low-level laser irradiation on wound healing rate, wound microenvironment, and the proliferation of HFSCs in relation to the Wnt/ß-catenin signaling pathway. RESULTS: The research findings indicate that low-level laser light effectively activates the Wnt signaling pathway, leading to the increased accumulation of core protein ß-catenin and the upregulation of key downstream gene Lef 1. Consequently, this regulatory mechanism facilitates various downstream biological effects, including the notable promotion of HFSC proliferation and differentiation into skin appendages and epithelial tissues. As a result, the process of wound healing is significantly accelerated. CONCLUSION: Low levels of laser activates the Wnt signalling pathway, promotes the regeneration of hair follicle stem cells and accelerates wound healing.


Assuntos
Proliferação de Células , Folículo Piloso , Terapia com Luz de Baixa Intensidade , Fator 1 de Ligação ao Facilitador Linfoide , Regeneração , Células-Tronco , Regulação para Cima , Via de Sinalização Wnt , Cicatrização , Folículo Piloso/efeitos da radiação , Animais , Cicatrização/efeitos da radiação , Cicatrização/fisiologia , Via de Sinalização Wnt/fisiologia , Via de Sinalização Wnt/efeitos da radiação , Camundongos , Células-Tronco/efeitos da radiação , Células-Tronco/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Proliferação de Células/efeitos da radiação , Terapia com Luz de Baixa Intensidade/métodos , Regeneração/fisiologia , Regeneração/efeitos da radiação , beta Catenina/metabolismo , Humanos
13.
J Orthop Surg Res ; 19(1): 352, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877549

RESUMO

PURPOSE: Facet joint degeneration (FJD) is a major cause of low back pain. Parathyroid hormone (PTH) (1-34) is commonly used to treat osteoporosis. However, little is known about its effects on FJD induced by estrogen deficiency. This study aims to investigate the effects of PTH (1-34) on FJD induced by estrogen deficiency and the underlying pathogenesis of the disease. METHODS: Forty 3-month-old female Sprague-Dawley rats were randomly divided into four groups: 30 received bilateral ovariectomy (OVX) followed by 12 weeks of treatment with normal saline, PTH (1-34) or 17ß-estradiol (E2), and 10 received sham surgery followed by administration of normal saline. Status and Wnt/ß-catenin signaling activity in the cartilage and subchondral bone of the L4-L5 FJs and serum biomarkers were analyzed. RESULTS: Administration of PTH (1-34) and E2 ameliorated cartilage lesions, and significantly decreased MMP-13 and caspase-3 levels and chondrocyte apoptosis. PTH (1-34) but not E2 significantly increased cartilage thickness, number of chondrocytes, and the expression of aggrecan. PTH (1-34) significantly improved microarchitecture parameters of subchondral bone, increased the expression of collagen I and osteocalcin, and decreased RANKL/OPG ratio. E2 treatment significantly increased the OPG level and decreased the RANKL/OPG ratio in the subchondral bone of ovariectomized rats, but it did not significantly improve the microarchitecture parameters of subchondral bone. Wnt3a and ß-catenin expression was significantly reduced in the articular cartilage and subchondral bone in OVX rats, but PTH (1-34) could increase the expression of these proteins. E2 significantly increased the activity of Wnt/ß-catenin pathway only in cartilage, but not in subchondral bone. The restoration of Wnt/ß-catenin signaling had an obvious correlation with the improvement of some parameters associated with the FJs status. CONCLUSION: Wnt/ß-catenin signaling may be a potential therapeutic target for FJD induced by estrogen deficiency. PTH (1-34) is effective in treating this disease with better efficacy than 17ß-estradiol, and the efficacy may be attributed to its restoration of Wnt/ß-catenin signaling.


Assuntos
Vértebras Lombares , Ovariectomia , Hormônio Paratireóideo , Ratos Sprague-Dawley , Via de Sinalização Wnt , Articulação Zigapofisária , Animais , Feminino , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia , Articulação Zigapofisária/efeitos dos fármacos , Ratos , Estradiol/farmacologia , Estradiol/uso terapêutico
14.
Bone Res ; 12(1): 37, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910207

RESUMO

Stem/progenitor cells differentiate into different cell lineages during organ development and morphogenesis. Signaling pathway networks and mechanotransduction are important factors to guide the lineage commitment of stem/progenitor cells during craniofacial tissue morphogenesis. Here, we used tooth root development as a model to explore the roles of FGF signaling and mechanotransduction as well as their interaction in regulating the progenitor cell fate decision. We show that Fgfr1 is expressed in the mesenchymal progenitor cells and their progeny during tooth root development. Loss of Fgfr1 in Gli1+ progenitors leads to hyperproliferation and differentiation, which causes narrowed periodontal ligament (PDL) space with abnormal cementum/bone formation leading to ankylosis. We further show that aberrant activation of WNT signaling and mechanosensitive channel Piezo2 occurs after loss of FGF signaling in Gli1-CreER;Fgfr1fl/fl mice. Overexpression of Piezo2 leads to increased osteoblastic differentiation and decreased Piezo2 leads to downregulation of WNT signaling. Mechanistically, an FGF/PIEZO2/WNT signaling cascade plays a crucial role in modulating the fate of progenitors during root morphogenesis. Downregulation of WNT signaling rescues tooth ankylosis in Fgfr1 mutant mice. Collectively, our findings uncover the mechanism by which FGF signaling regulates the fate decisions of stem/progenitor cells, and the interactions among signaling pathways and mechanotransduction during tooth root development, providing insights for future tooth root regeneration.


Assuntos
Fatores de Crescimento de Fibroblastos , Mecanotransdução Celular , Raiz Dentária , Via de Sinalização Wnt , Animais , Via de Sinalização Wnt/fisiologia , Raiz Dentária/crescimento & desenvolvimento , Raiz Dentária/metabolismo , Raiz Dentária/citologia , Fatores de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Camundongos , Diferenciação Celular , Células-Tronco/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Canais Iônicos
15.
Kardiologiia ; 64(5): 3-10, 2024 May 31.
Artigo em Russo, Inglês | MEDLINE | ID: mdl-38841783

RESUMO

AIM: Assessment of WNT1, WNT3a, and LRP6 concentrations in patients with ischemic heart disease (IHD) and obstructive and non-obstructive coronary artery (CA) disease. MATERIAL AND METHODS: This cross-sectional observational study included 50 IHD patients (verified by coronary angiography, CAG), of which 25 (50%) were men, mean age 64.9±8.1 years; 20 patients had non-obstructive CA disease (stenosis <50%), and 30 patients had hemodynamically significant stenosis. Concentrations of WNT1, WNT3a and LRP6 were measured in all patients. RESULTS: The concentrations of WNT1 and WNT3a proteins were significantly higher in patients with IHD and obstructive CA disease (p < 0.001), while the concentration of LRP6 was higher in the group with non-obstructive CA disease (p = 0.016). Data analysis of the group with obstructive CA disease showed a moderate correlation between WNT1 and LRP6 (ρ=0.374; p=0.042). Correlation analysis of all groups of patients with CA disease revealed a moderate association between the concentrations of WNT1 and uric acid (ρ=0.416; p=0.007). Regression analysis showed that risk factors for the development of IHD, such as increased body mass index, age, smoking, dyslipidemia, and hypertension, did not significantly influence the type of CA disease in IHD patients. According to ROC analysis, the obstructive form of IHD was predicted by a WNT3a concentration higher than 0.155 ng/ml and a LRP6 concentration lower than 12.94 ng/ml. CONCLUSION: IHD patients with non-obstructive CA disease had the greatest increase in LRP6, while patients with obstructive CA disease had significantly higher concentrations of the canonical WNT cascade proteins, WNT1 and WNT3a. According to the ROC analysis, a WNT3a concentration >0.155 ng/ml can serve as a predictor for the presence of hemodynamically significant CA stenosis in IHD patients (sensitivity 96.7%; specificity 70%), whereas a LRP6 concentration >12.94 ng/ml can predict the development of non-obstructive CA disease (sensitivity 76.7%; specificity 65%).


Assuntos
Doença da Artéria Coronariana , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Via de Sinalização Wnt , Humanos , Masculino , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Feminino , Pessoa de Meia-Idade , Doença da Artéria Coronariana/fisiopatologia , Estudos Transversais , Idoso , Via de Sinalização Wnt/fisiologia , Proteína Wnt3A/metabolismo , Proteína Wnt1/metabolismo , Angiografia Coronária/métodos , Biomarcadores
16.
Neurochem Res ; 49(8): 2197-2214, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38834846

RESUMO

Neuroinflammation and endothelial cell apoptosis are prominent features of blood-brain barrier (BBB) disruption, which have been described in Alzheimer's disease (AD) and can predict cognitive decline. Recent reports revealed vascular ß-amyloid (Aß) deposits, Muller cell degeneration and microglial dysfunction in the retina of AD patients. However, there has been no in-depth research on the roles of inflammation, retinal endothelial cell apoptosis, and blood-retinal barrier (BRB) damage in AD retinopathy. We found that Raddeanin A (RDA) could improve pathological and cognitive deficits in a mouse model of Alzheimer's disease by targeting ß-amyloidosis, However, the effects of RDA on AD retinal function require further study. To clarify whether RDA inhibits inflammation and apoptosis and thus improves BRB function in AD-related retinopathy. In vitro we used Aß-treated HRECs and MIO-M1 cells, and in vivo we used 3×Tg-AD mice to investigate the effect of RDA on BRB in AD-related retinopathy. We found that RDA could improve BRB function in AD-related retinopathy by inhibiting NLRP3-mediated inflammation and suppressing Wnt/ß-catenin pathway-mediated apoptosis, which is expected to improve the pathological changes in AD-related retinopathy and the quality of life of AD patients.


Assuntos
Doença de Alzheimer , Apoptose , Barreira Hematorretiniana , Camundongos Transgênicos , Retina , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Apoptose/efeitos dos fármacos , Barreira Hematorretiniana/efeitos dos fármacos , Barreira Hematorretiniana/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Camundongos , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Camundongos Endogâmicos C57BL , Humanos , Peptídeos beta-Amiloides/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia , Masculino
17.
Dev Biol ; 515: 18-29, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38945423

RESUMO

The Formin protein Daam1 is required for Wnt-induced cytoskeletal changes during gastrulation, though how it accomplishes this remains unresolved. Here we report the characterization of Formin Binding Protein 1 (FNBP1) as a binding partner of Daam1. The interaction of Daam1 with FNBP1 and its domains required for this interaction were delineated. Immunofluorescence studies showed FNBP1 co-localizes with Daam1, and is an integral component of the actin cytoskeletal complex that is responsive to Wnt stimulation. Specifically, FNBP1 can induce intracellular tubule-like structures and localize to focal adhesions suggesting a role for FNBP1 in cell migration. Functional FNBP1 studies in Xenopus embryos uncover a critical role for FNBP1 in regulating vertebrate gastrulation. Additionally, suboptimal doses of Daam1 and FNBP1 synergize to produce severe gastrulation defects, indicating FNBP1 and Daam1 may function within the same signaling pathway. These results together show FNBP1 is an integral component of Daam1-regulated non-canonical Wnt signaling required for vertebrate gastrulation.


Assuntos
Gastrulação , Via de Sinalização Wnt , Proteínas de Xenopus , Xenopus laevis , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Movimento Celular , Embrião não Mamífero/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Ligação Proteica , Proteínas rho de Ligação ao GTP , Via de Sinalização Wnt/fisiologia , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/genética , Feminino
18.
Psychiatry Res ; 339: 115983, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38870775

RESUMO

Despite uncertainty about the specific molecular mechanisms driving major depressive disorder (MDD), the Wnt signaling pathway stands out as a potentially influential factor in the pathogenesis of MDD. Known for its role in intercellular communication, cell proliferation, and fate, Wnt signaling has been implicated in diverse biological phenomena associated with MDD, spanning neurodevelopmental to neurodegenerative processes. In this systematic review, we summarize the functional differences in protein and gene expression of the Wnt signaling pathway, and targeted genetic association studies, to provide an integrated synthesis of available human data examining Wnt signaling in MDD. Thirty-three studies evaluating protein expression (n = 15), gene expression (n = 9), or genetic associations (n = 9) were included. Only fifteen demonstrated a consistently low overall risk of bias in selection, comparability, and exposure. We found conflicting observations of limited and distinct Wnt signaling components across diverse tissue sources. These data do not demonstrate involvement of Wnt signaling dysregulation in MDD. Given the well-established role of Wnt signaling in antidepressant response, we propose that a more targeted and functional assessment of Wnt signaling is needed to understand its role in depression pathophysiology. Future studies should include more components, assess multiple tissues concurrently, and follow a standardized approach.


Assuntos
Transtorno Depressivo Maior , Via de Sinalização Wnt , Humanos , Transtorno Depressivo Maior/metabolismo , Via de Sinalização Wnt/fisiologia
19.
J Pathol ; 264(1): 4-16, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38922866

RESUMO

SMAD4 is a tumor suppressor mutated or silenced in multiple cancers, including oral cavity squamous cell carcinoma (OSCC). Human clinical samples and cell lines, mouse models and organoid culture were used to investigate the role that SMAD4 plays in progression from benign disease to invasive OSCC. Human OSCC lost detectable SMAD4 protein within tumor epithelium in 24% of cases, and this loss correlated with worse progression-free survival independent of other major clinical and pathological features. A mouse model engineered for KrasG12D expression in the adult oral epithelium induced benign papillomas, however the combination of KrasG12D with loss of epithelial Smad4 expression resulted in rapid development of invasive carcinoma with features of human OSCC. Examination of regulatory pathways in 3D organoid cultures of SMAD4+ and SMAD4- mouse tumors with Kras mutation found that either loss of SMAD4 or inhibition of TGFß signaling upregulated the WNT pathway and altered the extracellular matrix. The gene signature of the mouse tumor organoids lacking SMAD4 was highly similar to the gene signature of human head and neck squamous cell carcinoma. In summary, this work has uncovered novel mechanisms by which SMAD4 acts as a tumor suppressor in OSCC. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Progressão da Doença , Neoplasias Bucais , Proteína Smad4 , Via de Sinalização Wnt , Proteína Smad4/metabolismo , Proteína Smad4/genética , Humanos , Animais , Via de Sinalização Wnt/fisiologia , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/genética , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Linhagem Celular Tumoral , Mutação , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Masculino , Organoides/metabolismo , Organoides/patologia
20.
Pathol Res Pract ; 260: 155420, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908335

RESUMO

Odontogenic tumors (OGTs), which originate from cells of odontogenic apparatus and their remnants, are rare entities. Primary intraosseous carcinoma NOS (PIOC), is one of the OGTs, but it is even rarer and has a worse prognosis. The precise characteristics of PIOC, especially in immunohistochemical features and its pathogenesis, remain unclear. We characterized a case of PIOC arising from the left mandible, in which histopathological findings showed a transition from the odontogenic keratocyst to the carcinoma. Remarkably, the tumor lesion of this PIOC prominently exhibits malignant attributes, including invasive growth of carcinoma cell infiltration into the bone tissue, an elevated Ki-67 index, and lower signal for CK13 and higher signal for CK17 compared with the non-tumor region, histopathologically and immunohistopathologically. Further immunohistochemical analyses demonstrated increased expression of ADP-ribosylation factor (ARF)-like 4c (ARL4C) (accompanying expression of ß-catenin in the nucleus) and yes-associated protein (YAP) in the tumor lesion. On the other hand, YAP was expressed and the expression of ARL4C was hardly detected in the non-tumor region. In addition, quantitative RT-PCR analysis using RNAs and dot blot analysis using genomic DNA showed the activation of Wnt/ß-catenin signaling and epigenetic alterations, such as an increase of 5mC levels and a decrease of 5hmC levels, in the tumor lesion. A DNA microarray and a gene set enrichment analysis demonstrated that various types of intracellular signaling would be activated and several kinds of cellular functions would be altered in the pathogenesis of PIOC. Experiments with the GSK-3 inhibitor revealed that ß-catenin pathway increased not only mRNA levels of ankyrin repeat domain1 (ANKRD1) but also protein levels of YAP and transcriptional co-activator with PDZ-binding motif (TAZ) in oral squamous cell carcinoma cell lines. These results suggested that further activation of YAP signaling by Wnt/ß-catenin signaling may be associated with the pathogenesis of PIOC deriving from odontogenic keratocyst in which YAP signaling is activated.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Cistos Odontogênicos , Tumores Odontogênicos , Fatores de Transcrição , Via de Sinalização Wnt , Humanos , Cistos Odontogênicos/patologia , Cistos Odontogênicos/metabolismo , Tumores Odontogênicos/patologia , Tumores Odontogênicos/metabolismo , Via de Sinalização Wnt/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo , beta Catenina/genética , Proteínas de Sinalização YAP , Neoplasias Mandibulares/patologia , Neoplasias Mandibulares/metabolismo , Masculino , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...