Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.469
Filtrar
1.
CNS Neurosci Ther ; 30(6): e14808, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38887205

RESUMO

OBJECTIVE: Phenylethanolamine N-methyltransferase (PNMT)-expressing neurons in the nucleus tractus solitarii (NTS) contribute to the regulation of autonomic functions. However, the neural circuits linking these neurons to other brain regions remain unclear. This study aims to investigate the connectivity mechanisms of the PNMT-expressing neurons in the NTS (NTSPNMT neurons). METHODS: The methodologies employed in this study included a modified rabies virus-based retrograde neural tracing technique, conventional viral anterograde tracing, and immunohistochemical staining procedures. RESULTS: A total of 43 upstream nuclei projecting to NTSPNMT neurons were identified, spanning several key brain regions including the medulla oblongata, pons, midbrain, cerebellum, diencephalon, and telencephalon. Notably, dense projections to the NTSPNMT neurons were observed from the central amygdaloid nucleus, paraventricular nucleus of the hypothalamus, area postrema, and the gigantocellular reticular nucleus. In contrast, the ventrolateral medulla, lateral parabrachial nucleus, and lateral hypothalamic area were identified as the primary destinations for axon terminals originating from NTSPNMT neurons. Additionally, reciprocal projections were evident among 21 nuclei, primarily situated within the medulla oblongata. CONCLUSION: Our research findings demonstrate that NTSPNMT neurons form extensive connections with numerous nuclei, emphasizing their essential role in the homeostatic regulation of vital autonomic functions.


Assuntos
Neurônios , Feniletanolamina N-Metiltransferase , Núcleo Solitário , Animais , Feniletanolamina N-Metiltransferase/metabolismo , Feniletanolamina N-Metiltransferase/genética , Núcleo Solitário/enzimologia , Núcleo Solitário/metabolismo , Núcleo Solitário/citologia , Neurônios/metabolismo , Neurônios/enzimologia , Masculino , Vias Eferentes/enzimologia , Vias Aferentes/enzimologia , Ratos Sprague-Dawley , Mapeamento Encefálico/métodos , Ratos
2.
Hear Res ; 449: 109036, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38797037

RESUMO

Although rats and mice are among the preferred animal models for investigating many characteristics of auditory function, they are rarely used to study an essential aspect of binaural hearing: the ability of animals to localize the sources of low-frequency sounds by detecting the interaural time difference (ITD), that is the difference in the time at which the sound arrives at each ear. In mammals, ITDs are mostly encoded in the medial superior olive (MSO), one of the main nuclei of the superior olivary complex (SOC). Because of their small heads and high frequency hearing range, rats and mice are often considered unable to use ITDs for sound localization. Moreover, their MSO is frequently viewed as too small or insignificant compared to that of mammals that use ITDs to localize sounds, including cats and gerbils. However, recent research has demonstrated remarkable similarities between most morphological and physiological features of mouse MSO neurons and those of MSO neurons of mammals that use ITDs. In this context, we have analyzed the structure and neural afferent and efferent connections of the rat MSO, which had never been studied by injecting neuroanatomical tracers into the nucleus. The rat MSO spans the SOC longitudinally. It is relatively small caudally, but grows rostrally into a well-developed column of stacked bipolar neurons. By placing small, precise injections of the bidirectional tracer biotinylated dextran amine (BDA) into the MSO, we show that this nucleus is innervated mainly by the most ventral and rostral spherical bushy cells of the anteroventral cochlear nucleus of both sides, and by the most ventrolateral principal neurons of the ipsilateral medial nucleus of the trapezoid body. The same experiments reveal that the MSO densely innervates the most dorsolateral region of the central nucleus of the inferior colliculus, the central region of the dorsal nucleus of the lateral lemniscus, and the most lateral region of the intermediate nucleus of the lateral lemniscus of its own side. Therefore, the MSO is selectively innervated by, and sends projections to, neurons that process low-frequency sounds. The structural and hodological features of the rat MSO are notably similar to those of the MSO of cats and gerbils. While these similarities raise the question of what functions other than ITD coding the MSO performs, they also suggest that the rat MSO is an appropriate model for future MSO-centered research.


Assuntos
Vias Auditivas , Axônios , Localização de Som , Complexo Olivar Superior , Animais , Complexo Olivar Superior/fisiologia , Complexo Olivar Superior/anatomia & histologia , Vias Auditivas/fisiologia , Vias Auditivas/anatomia & histologia , Axônios/fisiologia , Ratos , Masculino , Dextranos/metabolismo , Biotina/análogos & derivados , Estimulação Acústica , Vias Eferentes/fisiologia , Vias Eferentes/anatomia & histologia , Núcleo Olivar/fisiologia , Núcleo Olivar/anatomia & histologia , Feminino , Técnicas de Rastreamento Neuroanatômico , Ratos Wistar
3.
Curr Biol ; 34(11): 2319-2329.e6, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38688283

RESUMO

How evolutionary changes in genes and neurons encode species variation in complex motor behaviors is largely unknown. Here, we develop genetic tools that permit a neural circuit comparison between the model species Drosophila melanogaster and the closely related species D. yakuba, which has undergone a lineage-specific loss of sine song, one of the two major types of male courtship song in Drosophila. Neuroanatomical comparison of song-patterning neurons called TN1 across the phylogeny demonstrates a link between the loss of sine song and a reduction both in the number of TN1 neurons and the neurites supporting the sine circuit connectivity. Optogenetic activation confirms that TN1 neurons in D. yakuba have lost the ability to drive sine song, although they have maintained the ability to drive the singing wing posture. Single-cell transcriptomic comparison shows that D. yakuba specifically lacks a cell type corresponding to TN1A neurons, the TN1 subtype that is essential for sine song. Genetic and developmental manipulation reveals a functional divergence of the sex determination gene doublesex in D. yakuba to reduce TN1 number by promoting apoptosis. Our work illustrates the contribution of motor patterning circuits and cell type changes in behavioral evolution and uncovers the evolutionary lability of sex determination genes to reconfigure the cellular makeup of neural circuits.


Assuntos
Comunicação Animal , Drosophila , Comportamento Sexual Animal , Comportamento Sexual Animal/fisiologia , Drosophila/classificação , Drosophila/citologia , Drosophila/fisiologia , Vias Eferentes/citologia , Neurônios/citologia , Análise da Expressão Gênica de Célula Única , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Animais
4.
Curr Biol ; 34(5): 1059-1075.e5, 2024 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-38402616

RESUMO

Natural behaviors are a coordinated symphony of motor acts that drive reafferent (self-induced) sensory activation. Individual sensors cannot disambiguate exafferent (externally induced) from reafferent sources. Nevertheless, animals readily differentiate between these sources of sensory signals to carry out adaptive behaviors through corollary discharge circuits (CDCs), which provide predictive motor signals from motor pathways to sensory processing and other motor pathways. Yet, how CDCs comprehensively integrate into the nervous system remains unexplored. Here, we use connectomics, neuroanatomical, physiological, and behavioral approaches to resolve the network architecture of two pairs of ascending histaminergic neurons (AHNs) in Drosophila, which function as a predictive CDC in other insects. Both AHN pairs receive input primarily from a partially overlapping population of descending neurons, especially from DNg02, which controls wing motor output. Using Ca2+ imaging and behavioral recordings, we show that AHN activation is correlated to flight behavior and precedes wing motion. Optogenetic activation of DNg02 is sufficient to activate AHNs, indicating that AHNs are activated by descending commands in advance of behavior and not as a consequence of sensory input. Downstream, each AHN pair targets predominantly non-overlapping networks, including those that process visual, auditory, and mechanosensory information, as well as networks controlling wing, haltere, and leg sensorimotor control. These results support the conclusion that the AHNs provide a predictive motor signal about wing motor state to mostly non-overlapping sensory and motor networks. Future work will determine how AHN signaling is driven by other descending neurons and interpreted by AHN downstream targets to maintain adaptive sensorimotor performance.


Assuntos
Drosophila , Neurônios , Animais , Drosophila/fisiologia , Vias Eferentes , Insetos
5.
Neurotherapeutics ; 21(2): e00320, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262102

RESUMO

Mirror therapy (MT) has been proposed to promote motor recovery post-stroke through activation of mirror neuron system, recruitment of ipsilateral motor pathways, or/and increasing attention toward the affected limb. However, neuroimaging evidence for these mechanisms is still lacking. To uncover the underlying mechanisms, we designed a randomized controlled study and used a voxel-based whole-brain analysis of resting-state fMRI to explore the brain reorganizations induced by MT. Thirty-five stroke patients were randomized to an MT group (n â€‹= â€‹16) and a conventional therapy (CT) group (n â€‹= â€‹19) for a 4-week intervention. Before and after the intervention, the Fugl-Meyer Assessment Upper Limb subscale (FMA-UL) and resting-state fMRI were collected. A healthy cohort (n â€‹= â€‹16) was established for fMRI comparison. The changes in fractional amplitude of low-frequency fluctuation (fALFF) and seed-based functional connectivity were analyzed to investigate the impact of intervention. Results showed that greater FMA-UL improvement in the MT group was associated with the compensatory increase of fALFF in the contralesional precentral gyrus (M1) region and the re-establishment of functional connectivity between the bilateral M1 regions, which facilitate motor signals transmission via the ipsilateral motor pathways from the ipsilesional M1, contralesional M1, to the affected limb. A step-wise linear regression model revealed these two brain reorganization patterns collaboratively contributed to FMA-UL improvement. In conclusion, MT achieved motor rehabilitation primarily by recruitment of the ipsilateral motor pathways. Trial Registration Information: http://www.chictr.org.cn. Unique Identifier. ChiCTR-INR-17013644, submitted on December 2, 2017.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Imageamento por Ressonância Magnética/métodos , Terapia de Espelho de Movimento , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia , Encéfalo/diagnóstico por imagem , Vias Eferentes , Recuperação de Função Fisiológica/fisiologia
6.
Neurol Res ; 46(2): 125-131, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37729085

RESUMO

BACKGROUND: The polarity of nerve grafts does not interfere with axon growth. Our goal was to investigate whether axons can regenerate in a retrograde fashion within sensory pathways and then extend into motor pathways, leading to muscle reinnervation. METHODS: Fifty-four rats were randomized into four groups. In Group 1, the ulnar nerve was connected end-to-end to the superficial radial nerve after neurectomy of the radial nerve in the axilla. In Group 2, the ulnar nerve was connected end-to-end to the radial nerve distal to the humerus; the radial nerve then was divided in the axilla. In Group 3, the radial nerve was divided in the axilla, but no nerve reconstruction was performed. In Group 4, the radial nerve was crushed in the axilla. Over 6 months, we behaviorally assessed the recovery of toe spread in the right operated-upon forepaw by lifting the rat by its tail and lowering it onto a flat surface. Six months after surgery, rats underwent reoperation, nerve transfers were tested electrophysiologically, and the posterior interosseous nerve (PIN) was removed for histological evaluation. RESULTS: Rats in the crush group recovered toe spread between 5 and 8 days after surgery. Rats with nerve transfers demonstrated electrophysiological and histological findings of nerve regeneration but no behavioral recovery. CONCLUSIONS: Ulnar nerve axons regrew into the superficial radial nerve and then into the PIN to reinnervate the extensor digitorum communis. We were unable to demonstrate behavioral recovery because rats cannot readapt to cross-nerve transfer.


Assuntos
Neurônios Motores , Nervos Periféricos , Ratos , Animais , Neurônios Motores/fisiologia , Nervos Periféricos/cirurgia , Regeneração Nervosa/fisiologia , Nervo Ulnar/cirurgia , Axônios/fisiologia , Vias Eferentes
7.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38112581

RESUMO

Developing neurophysiological tools to predict WHO tumor grade can empower the treating teams for a better surgical decision-making process. A total of 38 patients with supratentorial diffuse gliomas underwent an asleep-awake-sedated craniotomies for tumor removal with intraoperative neuromonitoring. The resting motor threshold was calculated for different train stimulation paradigms during awake and asleep phases. Receiver operating characteristic analysis and Bayesian regression models were performed to analyze the prediction of tumor grading based on the resting motor threshold differences. Significant positive spearman correlations were observed between resting motor threshold excitability difference and WHO tumor grade for train stimulation paradigms of 5 (R = 0.54, P = 0.00063), 4 (R = 0.49, P = 0.002), 3 (R = 0.51, P = 0.001), and 2 pulses (R = 0.54, P = 0.0007). Kruskal-Wallis analysis of the median revealed a positive significant difference between the median of excitability difference and WHO tumor grade in all paradigms. Receiver operating characteristic analysis showed 3 mA difference as the best predictor of high-grade glioma across different patterns of motor pathway stimulation. Bayesian regression found that an excitability difference above 3 mA would indicate a 75.8% probability of a glioma being high grade. Our results suggest that cortical motor excitability difference between the asleep and awake phases in glioma surgery could correlate with tumor grade.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/cirurgia , Vigília , Teorema de Bayes , Glioma/cirurgia , Craniotomia/efeitos adversos , Craniotomia/métodos , Vias Eferentes , Organização Mundial da Saúde , Mapeamento Encefálico/métodos
8.
J Acoust Soc Am ; 154(6): 3644-3659, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051523

RESUMO

An auditory model has been developed with a time-varying, gain-control signal based on the physiology of the efferent system and subcortical neural pathways. The medial olivocochlear (MOC) efferent stage of the model receives excitatory projections from fluctuation-sensitive model neurons of the inferior colliculus (IC) and wide-dynamic-range model neurons of the cochlear nucleus. The response of the model MOC stage dynamically controls cochlear gain via simulated outer hair cells. In response to amplitude-modulated (AM) noise, firing rates of most IC neurons with band-enhanced modulation transfer functions in awake rabbits increase over a time course consistent with the dynamics of the MOC efferent feedback. These changes in the rates of IC neurons in awake rabbits were employed to adjust the parameters of the efferent stage of the proposed model. Responses of the proposed model to AM noise were able to simulate the increasing IC rate over time, whereas the model without the efferent system did not show this trend. The proposed model with efferent gain control provides a powerful tool for testing hypotheses, shedding insight on mechanisms in hearing, specifically those involving the efferent system.


Assuntos
Núcleo Coclear , Colículos Inferiores , Animais , Coelhos , Colículos Inferiores/fisiologia , Núcleo Coclear/fisiologia , Vias Eferentes/fisiologia , Cóclea/fisiologia , Audição/fisiologia , Núcleo Olivar/fisiologia , Vias Auditivas/fisiologia
9.
Curr Med Sci ; 43(6): 1247-1257, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38153631

RESUMO

BACKGROUND AND OBJECTIVE: Since its initial report by James Parkinson in 1817, Parkinson's disease (PD) has remained a central subject of research and clinical advancement. The disease is estimated to affect approximately 1% of adults aged 60 and above. Deep brain stimulation, emerging as an alternative therapy for end-stage cases, has offered a lifeline to numerous patients. This review aimed to analyze publications pertaining to the impact of deep brain stimulation on the motor pathway in patients with PD over the last decade. METHODS: Data were obtained from the Web of Science Core Collection through the library of Huazhong University of Science and Technology (China). The search strategy encompassed the following keywords: "deep brain stimulation", "Parkinson's disease", "motor pathway", and "human", from January 1, 2012, to December 1, 2022. Additionally, this review visualized the findings using the Citespace software. RESULTS: The results indicated that the United States, the United Kingdom, Germany, and China were the primary contributors to this research field. University College London, Capital Medical University, and Maastricht University were the top 3 research institutions in the research area. Tom Foltynie ranked first with 6 publications, and the journals of Brain and Brain Stimulation published the greatest number of relevant articles. The prevailing research focal points in this domain, as determined by keywords "burst analysis", "encompassed neuronal activity", "nucleus", "hyper direct pathway", etc. CONCLUSION: This study has provided a new perspective through bibliometric analysis of the deep brain stimulation therapy for treating patients with PD, which can shed light on future research to advance our comprehension of this particular field of study.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Bibliometria , Encéfalo , Vias Eferentes , Doença de Parkinson/terapia
11.
Proc Natl Acad Sci U S A ; 120(39): e2300445120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37738297

RESUMO

Animals move smoothly and reliably in unpredictable environments. Models of sensorimotor control, drawing on control theory, have assumed that sensory information from the environment leads to actions, which then act back on the environment, creating a single, unidirectional perception-action loop. However, the sensorimotor loop contains internal delays in sensory and motor pathways, which can lead to unstable control. We show here that these delays can be compensated by internal feedback signals that flow backward, from motor toward sensory areas. This internal feedback is ubiquitous in neural sensorimotor systems, and we show how internal feedback compensates internal delays. This is accomplished by filtering out self-generated and other predictable changes so that unpredicted, actionable information can be rapidly transmitted toward action by the fastest components, effectively compressing the sensory input to more efficiently use feedforward pathways: Tracts of fast, giant neurons necessarily convey less accurate signals than tracts with many smaller neurons, but they are crucial for fast and accurate behavior. We use a mathematically tractable control model to show that internal feedback has an indispensable role in achieving state estimation, localization of function (how different parts of the cortex control different parts of the body), and attention, all of which are crucial for effective sensorimotor control. This control model can explain anatomical, physiological, and behavioral observations, including motor signals in the visual cortex, heterogeneous kinetics of sensory receptors, and the presence of giant cells in the cortex of humans as well as internal feedback patterns and unexplained heterogeneity in neural systems.


Assuntos
Técnicas de Observação do Comportamento , Células Receptoras Sensoriais , Animais , Humanos , Retroalimentação , Vias Eferentes , Percepção
12.
eNeuro ; 10(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553240

RESUMO

Expanding knowledge about the cellular composition of subcortical brain regions demonstrates large heterogeneity and differences from the cortical architecture. Previously we described three subtypes of somatostatin-expressing (Sst) neurons in the mouse ventral tegmental area (VTA) and showed their local inhibitory action on the neighboring dopaminergic neurons (Nagaeva et al., 2020). Here, we report that Sst+ neurons especially from the anterolateral part of the mouse VTA also project far outside the VTA and innervate forebrain regions that are mainly involved in the regulation of emotional behavior, including the ventral pallidum, lateral hypothalamus, the medial part of the central amygdala, anterolateral division of the bed nucleus of stria terminalis, and paraventricular thalamic nucleus. Deletion of these VTASst neurons in mice affected several behaviors, such as home cage activity, sensitization of locomotor activity to morphine, fear conditioning responses, and reactions to the inescapable stress of forced swimming, often in a sex-dependent manner. Together, these data demonstrate that VTASst neurons have selective projection targets distinct from the main targets of VTA dopamine neurons. VTASst neurons are involved in the regulation of behaviors primarily associated with the stress response, making them a relevant addition to the efferent VTA pathways and stress-related neuronal network.


Assuntos
Neurônios Dopaminérgicos , Área Tegmentar Ventral , Camundongos , Animais , Área Tegmentar Ventral/metabolismo , Vias Eferentes/metabolismo , Neurônios Dopaminérgicos/metabolismo , Região Hipotalâmica Lateral , Somatostatina/metabolismo
13.
Brain Stimul ; 16(5): 1232-1239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37595834

RESUMO

Subcortical motor pathways, such as the reticulospinal tract, are critical for producing and modulating voluntary movements and have been implicated in neurological conditions. Previous research has described the presence of ipsilateral motor evoked potentials (iMEPs) in the arm to transcranial magentic stimulation (TMS), and suggested they could be mediated by the uncrossed corticospinal tract or by ipsilateral cortico-reticulospinal connections. Here, we sought to elucidate the role of the reticulospinal tract in mediating iMEPs by assessing their modulation by a startling acoustic stimulus and mapping these responses across multiple upper limb effectors. In a first experiment, we delivered TMS at various intervals (1, 5, 10 and 15 ms) after a startling acoustic stimulus, known to excite the reticular formation, to elicit iMEPs in the arm. We observed robust facilitation of iMEP area when startle conditioning preceded TMS at the 10 ms interval. In a second experiment, we replicated our findings showing that both the area and number of iMEPs in the arm increases with startle conditioning. Using this technique, we observed that iMEPs are more prominent in the arm compared with the hand. In a third experiment, we also observed greater presence of iMEPs in flexor compared with extensor muscles. Together, these findings are consistent with properties of the reticulospinal tract observed in animals, suggesting that iMEPs primarily reflect reticulospinal activity. Our findings imply that we can use this approach to track modulation of cortico-reticulospinal excitability following interventions or neurological conditions where the reticulospinal tract may be involved in motor recovery.


Assuntos
Músculo Esquelético , Tratos Piramidais , Humanos , Vias Eferentes , Tratos Piramidais/fisiologia , Músculo Esquelético/fisiologia , Mãos , Potencial Evocado Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Eletromiografia/métodos
14.
J Neurosci ; 43(25): 4642-4649, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37221095

RESUMO

Auditory experience plays a critical role in hearing development. Developmental auditory deprivation because of otitis media, a common childhood disease, produces long-standing changes in the central auditory system, even after the middle ear pathology is resolved. The effects of sound deprivation because of otitis media have been mostly studied in the ascending auditory system but remain to be examined in the descending pathway that runs from the auditory cortex to the cochlea via the brainstem. Alterations in the efferent neural system could be important because the descending olivocochlear pathway influences the neural representation of transient sounds in noise in the afferent auditory system and is thought to be involved in auditory learning. Here, we show that the inhibitory strength of the medial olivocochlear efferents is weaker in children with a documented history of otitis media relative to controls; both boys and girls were included in the study. In addition, children with otitis media history required a higher signal-to-noise ratio on a sentence-in-noise recognition task than controls to achieve the same criterion performance level. Poorer speech-in-noise recognition, a hallmark of impaired central auditory processing, was related to efferent inhibition, and could not be attributed to the middle ear or cochlear mechanics.SIGNIFICANCE STATEMENT Otitis media is the second most common reason children go to the doctor. Previously, degraded auditory experience because of otitis media has been associated with reorganized ascending neural pathways, even after middle ear pathology resolved. Here, we show that altered afferent auditory input because of otitis media during childhood is also associated with long-lasting reduced descending neural pathway function and poorer speech-in-noise recognition. These novel, efferent findings may be important for the detection and treatment of childhood otitis media.


Assuntos
Audição , Otite Média , Masculino , Feminino , Criança , Humanos , Retroalimentação , Ruído , Percepção Auditiva , Cóclea/fisiologia , Vias Eferentes/fisiologia
15.
Nature ; 617(7959): 125-131, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37046088

RESUMO

The hippocampus is a mammalian brain structure that expresses spatial representations1 and is crucial for navigation2,3. Navigation, in turn, intricately depends on locomotion; however, current accounts suggest a dissociation between hippocampal spatial representations and the details of locomotor processes. Specifically, the hippocampus is thought to represent mainly higher-order cognitive and locomotor variables such as position, speed and direction of movement4-7, whereas the limb movements that propel the animal can be computed and represented primarily in subcortical circuits, including the spinal cord, brainstem and cerebellum8-11. Whether hippocampal representations are actually decoupled from the detailed structure of locomotor processes remains unknown. To address this question, here we simultaneously monitored hippocampal spatial representations and ongoing limb movements underlying locomotion at fast timescales. We found that the forelimb stepping cycle in freely behaving rats is rhythmic and peaks at around 8 Hz during movement, matching the approximately 8 Hz modulation of hippocampal activity and spatial representations during locomotion12. We also discovered precisely timed coordination between the time at which the forelimbs touch the ground ('plant' times of the stepping cycle) and the hippocampal representation of space. Notably, plant times coincide with hippocampal representations that are closest to the actual position of the nose of the rat, whereas between these plant times, the hippocampal representation progresses towards possible future locations. This synchronization was specifically detectable when rats approached spatial decisions. Together, our results reveal a profound and dynamic coordination on a timescale of tens of milliseconds between central cognitive representations and peripheral motor processes. This coordination engages and disengages rapidly in association with cognitive demands and is well suited to support rapid information exchange between cognitive and sensory-motor circuits.


Assuntos
Hipocampo , Locomoção , Navegação Espacial , Animais , Ratos , Membro Anterior/fisiologia , Hipocampo/fisiologia , Locomoção/fisiologia , Navegação Espacial/fisiologia , Tomada de Decisões , Fatores de Tempo , Cognição/fisiologia , Vias Eferentes
16.
J Neurosci ; 43(14): 2469-2481, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36859307

RESUMO

Most current methods for neuromodulation target the cortex. Approaches for inducing plasticity in subcortical motor pathways, such as the reticulospinal tract, could help to boost recovery after damage (e.g., stroke). In this study, we paired loud acoustic stimulation (LAS) with transcranial magnetic stimulation (TMS) over the motor cortex in male and female healthy humans. LAS activates the reticular formation; TMS activates descending systems, including corticoreticular fibers. Two hundred paired stimuli were used, with 50 ms interstimulus interval at which LAS suppresses TMS responses. Before and after stimulus pairing, responses in the contralateral biceps muscle to TMS alone were measured. Ten, 20, and 30 min after stimulus pairing ended, TMS responses were enhanced, indicating the induction of LTP. No long-term changes were seen in control experiments which used 200 unpaired TMS or LAS, indicating the importance of associative stimulation. Following paired stimulation, no changes were seen in responses to direct corticospinal stimulation at the level of the medulla, or in the extent of reaction time shortening by a loud sound (StartReact effect), suggesting that plasticity did not occur in corticospinal or reticulospinal synapses. Direct measurements in female monkeys undergoing a similar paired protocol revealed no enhancement of corticospinal volleys after paired stimulation, suggesting no changes occurred in intracortical connections. The most likely substrate for the plastic changes, consistent with all our measurements, is an increase in the efficacy of corticoreticular connections. This new protocol may find utility, as it seems to target different motor circuits compared with other available paradigms.SIGNIFICANCE STATEMENT Induction of plasticity by neurostimulation protocols may be promising to enhance functional recovery after damage such as following stroke, but current protocols mainly target cortical circuits. In this study, we developed a novel paradigm which may generate long-term changes in connections between cortex and brainstem. This could provide an additional tool to modulate and improve recovery.


Assuntos
Plasticidade Neuronal , Estimulação Magnética Transcraniana , Humanos , Masculino , Feminino , Estimulação Magnética Transcraniana/métodos , Plasticidade Neuronal/fisiologia , Músculo Esquelético/fisiologia , Vias Eferentes , Formação Reticular/fisiologia , Potencial Evocado Motor/fisiologia
17.
Neurosci Res ; 186: 10-20, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36007624

RESUMO

The nucleus posterior tuberis (NPT) in teleost fishes, also called posterior tuberal nucleus, is situated in the posterior tuberculum of the diencephalon. It is fused across the midline and densely packed with small cells, but little is known about its connections. In this study, the afferent and efferent connections of the NPT were examined by means of tracer applications of the carbocyanine dye DiI in the firemouth cichlid, Thorichthys meeki. Retrogradely labeled cell bodies were found in the corpus mamillare and nucleus periventricularis of the inferior lobe; and anterogradely labeled terminal fibers were detected in the medial zone of the dorsal telencephalon, medial part of the nucleus lateralis tuberis, dorsal posterior thalamic nucleus, torus lateralis, medial part of the nucleus diffusus of the inferior lobe, and tectum opticum. All these connections show an ipsilateral tendency. The NPT is apparently a significant relay nucleus in the diencephalon of T. meeki, and possibly involved in a variety of feedback circuits. It seems also to be part of a tecto-hypothalamo-telencephalic pathway in cichlids.


Assuntos
Ciclídeos , Animais , Telencéfalo , Vias Aferentes , Vias Eferentes
18.
Rev. am. med. respir ; 23(4): 270-276, 2023. graf
Artigo em Espanhol | LILACS, BINACIS | ID: biblio-1535475

RESUMO

Todas las teorías sobre los mecanismos de generación de disnea tuvieron defensores y detractores e, interesantemente, con el desarrollo de sofisticadas técnicas neurofisiológicas y de imágenes funcionales ha sido posible jerarquizar cada uno de ellos. Todas han sobrevivido al paso del tiempo y ninguna puede explicar por sí sola la disnea en todas las situaciones clínicas, lo cual habla de la naturaleza compleja y multifactorial del fenómeno. El concepto de inadecuación tensión y longitud halló en las últimas décadas un sustento con nuevas evidencias a su favor. En particular, con el hallazgo de las vías involucradas y con la aplicación de conocimientos neurofisiológicos, la teoría de la inadecuación tensión y longitud se vería refinada con la descarga corolaria o copia eferente. Esta descarga corolaria o copia eferente es un atributo básico del sistema nervioso, que se encuentra en el reino animal, desde los invertebrados a los primates y en la especie humana. Este artículo está dedicado a la historia de la copia eferente y su incorporación como hipótesis para explicar la disnea, la más aceptada en la actualidad.


All the theories about the mechanisms of generation of dyspnea had defenders and detractors and, interestingly, with the development of sophisticated neurophysiological techniques and functional imaging, it has been possible to rank each one of them. All have survived the passage of time and none can singularly explain dyspnea in all clini cal situations, showing the complex and multifactorial nature of the phenomenon. The concept of length-tension inappropriateness has found support in recent decades with new evidence in its favor. Specially with the discovery of the pathways involved and with the application of neurophysiological knowledge, the length-tension inappropriate ness theory would be refined with the corollary discharge or efferent copy. This corol lary discharge or efferent copy is a basic attribute of the nervous system found in the animal kingdom, from invertebrates to primates and in the human species. This article is dedicated to the history of the efferent copy and its incorporation as a hypothesis to explain dyspnea, which is currently the most accepted one.


Assuntos
Vias Eferentes , Sistema Nervoso
19.
Acta Neurochir (Wien) ; 164(12): 3267-3274, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36087121

RESUMO

BACKGROUND: 5-Aminolevulinic acid (5-ALA) fluorescence can maximize perirolandic glioblastoma (GBM) resection with low rates of postoperative sequelae. Our purpose was to present the outcomes of our experience and compare them with other literature reports to investigate the potential influence of different intraoperative monitoring strategies and to evaluate the role of intraoperative data on neurological and radiological outcomes in our series. METHODS: We retrospectively analyzed our prospectively collected database of GBM involving the motor pathways. Each patient underwent tumor exeresis with intraoperative 5-ALA fluorescence visualization. Our monitoring strategy was based on direct stimulation (DS), combined with cortical or transcranial MEPs. The radiological outcome was evaluated with CRET vs. residual tumor, and the neurological outcome as improved, unchanged, or worsened. We also performed a literature review to compare our results with state-of-the-art on the subject. RESULTS: Sixty-five patients were included. CRET was 63.1%, permanent postoperative impairment was 1.5%, and DS's lowest motor threshold was 5 mA. In the literature, CRET was 25-73%, permanent postoperative impairment 3-16%, and DS lowest motor threshold was 1-3 mA. Our monitoring strategy identified a motor pathway in 60% of cases in faint fluorescent tissue, and its location in bright/faint fluorescence was predictive of CRET (p < 0.001). A preoperative motor deficit was associated with a worse clinical outcome (p < 0.001). Resection of bright fluorescent tissue was stopped in 26%, and fluorescence type of residual tumor was associated with higher CRET grades (p < 0.001). CONCLUSIONS: Based on the data presented and the current literature, distinct monitoring strategies can achieve different onco-functional outcomes in 5-ALA-guided resection of a glioblastoma (GBM) motor pathway. Intraoperatively, functional and fluorescence data close to a bright/vague interface could be helpful to predict onco-functional outcomes.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Glioblastoma/patologia , Ácido Aminolevulínico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Estudos Retrospectivos , Neoplasia Residual/cirurgia , Vias Eferentes/patologia
20.
Int Tinnitus J ; 26(1): 20-26, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35861455

RESUMO

OBJECTIVE: The objective of this study is to investigate a possible role of the Medial Olivocochlear (MOC) efferent neural pathway and neural connections responsible for tinnitus generation in silence/sensory deprivation. DESIGN: By placing normal hearing participants in a sound booth for 10 minutes, silence/sensory deprivation was created. This offered assessment of MOC neural pathway in normal hearing participants in silence. Hyperactivity of MOC neural pathway was assessed by its more suppressive effect on Transient Otoacoustic Emissions (TEOAEs) in silence. The required auditory measurements were recorded in the sound booth using recommended diagnostic protocols to ensure the effect of 'only silence' on auditory structures. TEOAE were recorded from the right ear and suppression was measured by placing noise in the left ear. Fifty-eight normal hearing male individuals between age 18-35 years were recruited as participants in this study. RESULTS: Approximately, forty-one percent of the participants perceived some type of tinnitus during/after 10 minutes of silence. No statistically significant difference was found in the total TEOAE amplitude and TEOAE suppression amplitude before and after ten minutes of silence. Post silence total TEOAE suppression between tinnitus perceiving and non-perceiving tinnitus participants were not statistically significantly different. CONCLUSION: These results suggest that the medial olivocochlear efferent pathway or lower brain stem area does not appear to play a role in the emergence of temporary tinnitus in silence however indicate the involvement of higher central auditory nervous system structures in perception of the tinnitus which support the well-accepted notion that tinnitus is the central auditory processing phenomenon.


Assuntos
Zumbido , Estimulação Acústica , Adolescente , Adulto , Percepção Auditiva/fisiologia , Vias Eferentes/fisiologia , Humanos , Masculino , Vias Neurais , Emissões Otoacústicas Espontâneas/fisiologia , Zumbido/diagnóstico , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...