Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.389
Filtrar
1.
Nat Commun ; 15(1): 5883, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003286

RESUMO

Rodents continuously move their heads and whiskers in a coordinated manner while perceiving objects through whisker-touch. Studies in head-fixed rodents showed that the ventroposterior medial (VPM) and posterior medial (POm) thalamic nuclei code for whisker kinematics, with POm involvement reduced in awake animals. To examine VPM and POm involvement in coding head and whisker kinematics in awake, head-free conditions, we recorded thalamic neuronal activity and tracked head and whisker movements in male mice exploring an open arena. Using optogenetic tagging, we found that in freely moving mice, both nuclei equally coded whisker kinematics and robustly coded head kinematics. The fraction of neurons coding head kinematics increased after whisker trimming, ruling out whisker-mediated coding. Optogenetic activation of thalamic neurons evoked overt kinematic changes and increased the fraction of neurons leading changes in head kinematics. Our data suggest that VPM and POm integrate head and whisker information and can influence head kinematics during tactile perception.


Assuntos
Neurônios , Optogenética , Vibrissas , Animais , Vibrissas/fisiologia , Masculino , Neurônios/fisiologia , Camundongos , Fenômenos Biomecânicos , Movimentos da Cabeça/fisiologia , Cabeça/fisiologia , Camundongos Endogâmicos C57BL , Percepção do Tato/fisiologia , Tálamo/fisiologia , Tálamo/citologia
2.
Learn Mem ; 31(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38955432

RESUMO

Synaptic potentiation has been linked to learning in sensory cortex, but the connection between this potentiation and increased sensory-evoked neural activity is not clear. Here, we used longitudinal in vivo Ca2+ imaging in the barrel cortex of awake mice to test the hypothesis that increased excitatory synaptic strength during the learning of a whisker-dependent sensory-association task would be correlated with enhanced stimulus-evoked firing. To isolate stimulus-evoked responses from dynamic, task-related activity, imaging was performed outside of the training context. Although prior studies indicate that multiwhisker stimuli drive robust subthreshold activity, we observed sparse activation of L2/3 pyramidal (Pyr) neurons in both control and trained mice. Despite evidence for excitatory synaptic strengthening at thalamocortical and intracortical synapses in this brain area at the onset of learning-indeed, under our imaging conditions thalamocortical axons were robustly activated-we observed that L2/3 Pyr neurons in somatosensory (barrel) cortex displayed only modest increases in stimulus-evoked activity that were concentrated at the onset of training. Activity renormalized over longer training periods. In contrast, when stimuli and rewards were uncoupled in a pseudotraining paradigm, stimulus-evoked activity in L2/3 Pyr neurons was significantly suppressed. These findings indicate that sensory-association training but not sensory stimulation without coupled rewards may briefly enhance sensory-evoked activity, a phenomenon that might help link sensory input to behavioral outcomes at the onset of learning.


Assuntos
Neocórtex , Córtex Somatossensorial , Vibrissas , Animais , Vibrissas/fisiologia , Neocórtex/fisiologia , Camundongos , Córtex Somatossensorial/fisiologia , Masculino , Células Piramidais/fisiologia , Camundongos Endogâmicos C57BL , Feminino , Aprendizagem por Associação/fisiologia
3.
Nat Commun ; 15(1): 5544, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956015

RESUMO

Goal-directed tasks involve acquiring an internal model, known as a predictive map, of relevant stimuli and associated outcomes to guide behavior. Here, we identified neural signatures of a predictive map of task behavior in perirhinal cortex (Prh). Mice learned to perform a tactile working memory task by classifying sequential whisker stimuli over multiple training stages. Chronic two-photon calcium imaging, population analysis, and computational modeling revealed that Prh encodes stimulus features as sensory prediction errors. Prh forms stable stimulus-outcome associations that can progressively be decoded earlier in the trial as training advances and that generalize as animals learn new contingencies. Stimulus-outcome associations are linked to prospective network activity encoding possible expected outcomes. This link is mediated by cholinergic signaling to guide task performance, demonstrated by acetylcholine imaging and systemic pharmacological perturbation. We propose that Prh combines error-driven and map-like properties to acquire a predictive map of learned task behavior.


Assuntos
Memória de Curto Prazo , Córtex Perirrinal , Animais , Camundongos , Córtex Perirrinal/fisiologia , Memória de Curto Prazo/fisiologia , Masculino , Aprendizagem/fisiologia , Camundongos Endogâmicos C57BL , Vibrissas/fisiologia , Acetilcolina/metabolismo , Comportamento Animal/fisiologia , Feminino
4.
eNeuro ; 11(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38834298

RESUMO

In the rodent whisker system, active sensing and sensorimotor integration are mediated in part by the dynamic interactions between the motor cortex (M1) and somatosensory cortex (S1). However, understanding these dynamic interactions requires knowledge about the synapses and how specific neurons respond to their input. Here, we combined optogenetics, retrograde labeling, and electrophysiology to characterize the synaptic connections between M1 and layer 5 (L5) intratelencephalic (IT) and pyramidal tract (PT) neurons in S1 of mice (both sexes). We found that M1 synapses onto IT cells displayed modest short-term depression, whereas synapses onto PT neurons showed robust short-term facilitation. Despite M1 inputs to IT cells depressing, their slower kinetics resulted in summation and a response that increased during short trains. In contrast, summation was minimal in PT neurons due to the fast time course of their M1 responses. The functional consequences of this reduced summation, however, were outweighed by the strong facilitation at these M1 synapses, resulting in larger response amplitudes in PT neurons than IT cells during repetitive stimulation. To understand the impact of facilitating M1 inputs on PT output, we paired trains of inputs with single backpropagating action potentials, finding that repetitive M1 activation increased the probability of bursts in PT cells without impacting the time dependence of this coupling. Thus, there are two parallel but dynamically distinct systems of M1 synaptic excitation in L5 of S1, each defined by the short-term dynamics of its synapses, the class of postsynaptic neurons, and how the neurons respond to those inputs.


Assuntos
Córtex Motor , Optogenética , Córtex Somatossensorial , Animais , Córtex Somatossensorial/fisiologia , Córtex Motor/fisiologia , Masculino , Feminino , Vias Neurais/fisiologia , Sinapses/fisiologia , Camundongos , Neurônios/fisiologia , Camundongos Endogâmicos C57BL , Vibrissas/fisiologia , Tratos Piramidais/fisiologia , Camundongos Transgênicos , Potenciais Pós-Sinápticos Excitadores/fisiologia
5.
eNeuro ; 11(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38926084

RESUMO

Layer 6 corticothalamic (L6 CT) neurons provide massive input to the thalamus, and these feedback connections enable the cortex to influence its own sensory input by modulating thalamic excitability. However, the functional role(s) feedback serves during sensory processing is unclear. One hypothesis is that CT feedback is under the control of extrasensory signals originating from higher-order cortical areas, yet we know nothing about the mechanisms of such control. It is also unclear whether such regulation is specific to CT neurons with distinct thalamic connectivity. Using mice (either sex) combined with in vitro electrophysiology techniques, optogenetics, and retrograde labeling, we describe studies of vibrissal primary motor cortex (vM1) influences on different CT neurons in the vibrissal primary somatosensory cortex (vS1) with distinct intrathalamic axonal projections. We found that vM1 inputs are highly selective, evoking stronger postsynaptic responses in CT neurons projecting to the dual ventral posterior medial nucleus (VPm) and posterior medial nucleus (POm) located in lower L6a than VPm-only-projecting CT cells in upper L6a. A targeted analysis of the specific cells and synapses involved revealed that the greater responsiveness of Dual CT neurons was due to their distinctive intrinsic membrane properties and synaptic mechanisms. These data demonstrate that vS1 has at least two discrete L6 CT subcircuits distinguished by their thalamic projection patterns, intrinsic physiology, and functional connectivity with vM1. Our results also provide insights into how a distinct CT subcircuit may serve specialized roles specific to contextual modulation of tactile-related sensory signals in the somatosensory thalamus during active vibrissa movements.


Assuntos
Córtex Motor , Vias Neurais , Córtex Somatossensorial , Tálamo , Vibrissas , Animais , Tálamo/fisiologia , Vias Neurais/fisiologia , Masculino , Córtex Motor/fisiologia , Feminino , Vibrissas/fisiologia , Córtex Somatossensorial/fisiologia , Optogenética , Neurônios/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
6.
Front Neural Circuits ; 18: 1409993, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38827189

RESUMO

For neural circuit construction in the brain, coarse neuronal connections are assembled prenatally following genetic programs, being reorganized postnatally by activity-dependent mechanisms to implement area-specific computational functions. Activity-dependent dendrite patterning is a critical component of neural circuit reorganization, whereby individual neurons rearrange and optimize their presynaptic partners. In the rodent primary somatosensory cortex (barrel cortex), driven by thalamocortical inputs, layer 4 (L4) excitatory neurons extensively remodel their basal dendrites at neonatal stages to ensure specific responses of barrels to the corresponding individual whiskers. This feature of barrel cortex L4 neurons makes them an excellent model, significantly contributing to unveiling the activity-dependent nature of dendrite patterning and circuit reorganization. In this review, we summarize recent advances in our understanding of the activity-dependent mechanisms underlying dendrite patterning. Our focus lays on the mechanisms revealed by in vivo time-lapse imaging, and the role of activity-dependent Golgi apparatus polarity regulation in dendrite patterning. We also discuss the type of neuronal activity that could contribute to dendrite patterning and hence connectivity.


Assuntos
Dendritos , Córtex Somatossensorial , Vibrissas , Animais , Dendritos/fisiologia , Córtex Somatossensorial/fisiologia , Córtex Somatossensorial/crescimento & desenvolvimento , Córtex Somatossensorial/citologia , Vibrissas/fisiologia , Animais Recém-Nascidos
7.
Nat Commun ; 15(1): 4782, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38839747

RESUMO

During perceptually guided decisions, correlates of choice are found as upstream as in the primary sensory areas. However, how well these choice signals align with early sensory representations, a prerequisite for their interpretation as feedforward substrates of perception, remains an open question. We designed a two alternative forced choice task (2AFC) in which male mice compared stimulation frequencies applied to two adjacent vibrissae. The optogenetic silencing of individual columns in the primary somatosensory cortex (wS1) resulted in predicted shifts of psychometric functions, demonstrating that perception depends on focal, early sensory representations. Functional imaging of layer II/III single neurons revealed mixed coding of stimuli, choices and engagement in the task. Neurons with multi-whisker suppression display improved sensory discrimination and had their activity increased during engagement in the task, enhancing selectively representation of the signals relevant to solving the task. From trial to trial, representation of stimuli and choice varied substantially, but mostly orthogonally to each other, suggesting that perceptual variability does not originate from wS1 fluctuations but rather from downstream areas. Together, our results highlight the role of primary sensory areas in forming a reliable sensory substrate that could be used for flexible downstream decision processes.


Assuntos
Comportamento de Escolha , Optogenética , Córtex Somatossensorial , Vibrissas , Animais , Córtex Somatossensorial/fisiologia , Masculino , Vibrissas/fisiologia , Comportamento de Escolha/fisiologia , Camundongos , Neurônios/fisiologia , Camundongos Endogâmicos C57BL
8.
Prog Neurobiol ; 239: 102630, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38834131

RESUMO

Dopamine critically influences reward processing, sensory perception, and motor control. Yet, the modulation of dopaminergic signaling by sensory experiences is not fully delineated. Here, by manipulating sensory experience using bilateral single-row whisker deprivation, we demonstrated that gene transcription in the dopaminergic signaling pathway (DSP) undergoes experience-dependent plasticity in both granular and supragranular layers of the primary somatosensory (barrel) cortex (S1). Sensory experience and deprivation compete for the regulation of DSP transcription across neighboring cortical columns, and sensory deprivation-induced changes in DSP are topographically constrained. These changes in DSP extend beyond cortical map plasticity and influence neuronal information processing. Pharmacological regulation of D2 receptors, a key component of DSP, revealed that D2 receptor activation suppresses excitatory neuronal excitability, hyperpolarizes the action potential threshold, and reduces the instantaneous firing rate. These findings suggest that the dopaminergic drive originating from midbrain dopaminergic neurons, targeting the sensory cortex, is subject to experience-dependent regulation and might create a regulatory feedback loop for modulating sensory processing. Finally, using topological gene network analysis and mutual information, we identify the molecular hubs of experience-dependent plasticity of DSP. These findings provide new insights into the mechanisms by which sensory experience shapes dopaminergic signaling in the brain and might help unravel the sensory deficits observed after dopamine depletion.


Assuntos
Dopamina , Plasticidade Neuronal , Transdução de Sinais , Córtex Somatossensorial , Córtex Somatossensorial/metabolismo , Córtex Somatossensorial/fisiologia , Animais , Transdução de Sinais/fisiologia , Dopamina/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios Dopaminérgicos/fisiologia , Neurônios Dopaminérgicos/metabolismo , Vibrissas/fisiologia , Receptores de Dopamina D2/metabolismo , Privação Sensorial/fisiologia , Camundongos , Masculino
9.
J Neurosci ; 44(25)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38769008

RESUMO

Rapid eye movement (REM) sleep, also referred to as paradoxical sleep for the striking resemblance of its electroencephalogram (EEG) to the one observed in wakefulness, is characterized by the occurrence of transient events such as limb twitches or facial and rapid eye movements. Here, we investigated the local activity of the primary somatosensory or barrel cortex (S1) in naturally sleeping head-fixed male mice during REM. Through local field potential recordings, we uncovered local appearances of spindle waves in the barrel cortex during REM concomitant with strong delta power, challenging the view of a wakefulness-like activity in REM. We further performed extra- and intracellular recordings of thalamic cells in head-fixed mice. Our data show high-frequency thalamic bursts of spikes and subthreshold spindle oscillations in approximately half of the neurons of the ventral posterior medial nucleus which further confirmed the thalamic origin of local cortical spindles in S1 in REM. Cortical spindle oscillations were suppressed, while thalamus spike firing increased, associated with rapid mouse whisker movements and S1 cortical activity transitioned to an activated state. During REM, the sensory thalamus and barrel cortex therefore alternate between high (wake-like) and low (non-REM sleep-like) activation states, potentially providing a neuronal substrate for mnemonic processes occurring during this paradoxical sleep stage.


Assuntos
Eletroencefalografia , Sono REM , Córtex Somatossensorial , Tálamo , Animais , Camundongos , Sono REM/fisiologia , Córtex Somatossensorial/fisiologia , Masculino , Tálamo/fisiologia , Camundongos Endogâmicos C57BL , Vibrissas/fisiologia , Vibrissas/inervação , Vigília/fisiologia , Vias Neurais/fisiologia
10.
Science ; 384(6696): 652-660, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38723089

RESUMO

Nasal chemosensation is considered the evolutionarily oldest mammalian sense and, together with somatosensation, is crucial for neonatal well-being before auditory and visual pathways start engaging the brain. Using anatomical and functional approaches in mice, we reveal that odor-driven activity propagates to a large part of the cortex during the first postnatal week and enhances whisker-evoked activation of primary whisker somatosensory cortex (wS1). This effect disappears in adult animals, in line with the loss of excitatory connectivity from olfactory cortex to wS1. By performing neonatal odor deprivation, followed by electrophysiological and behavioral work in adult animals, we identify a key transient regulation of nasal chemosensory information necessary for the development of wS1 sensory-driven dynamics and somatosensation. Our work uncovers a cross-modal critical window for nasal chemosensation-dependent somatosensory functional maturation.


Assuntos
Nariz , Córtex Olfatório , Córtex Somatossensorial , Animais , Camundongos , Animais Recém-Nascidos , Camundongos Endogâmicos C57BL , Nariz/fisiologia , Nariz/anatomia & histologia , Odorantes , Córtex Olfatório/crescimento & desenvolvimento , Córtex Olfatório/fisiologia , Córtex Olfatório/ultraestrutura , Privação Sensorial/fisiologia , Olfato/fisiologia , Córtex Somatossensorial/crescimento & desenvolvimento , Córtex Somatossensorial/fisiologia , Córtex Somatossensorial/ultraestrutura , Vibrissas/fisiologia
11.
Neuron ; 112(14): 2386-2403.e6, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38729150

RESUMO

To investigate which activity patterns in sensory cortex are relevant for perceptual decision-making, we combined two-photon calcium imaging and targeted two-photon optogenetics to interrogate barrel cortex activity during perceptual discrimination. We trained mice to discriminate bilateral whisker deflections and report decisions by licking left or right. Two-photon calcium imaging revealed sparse coding of contralateral and ipsilateral whisker input in layer 2/3, with most neurons remaining silent during the task. Activating pyramidal neurons using two-photon holographic photostimulation evoked a perceptual bias that scaled with the number of neurons photostimulated. This effect was dominated by optogenetic activation of non-coding neurons, which did not show sensory or motor-related activity during task performance. Photostimulation also revealed potent recruitment of cortical inhibition during sensory processing, which strongly and preferentially suppressed non-coding neurons. Our results suggest that a pool of non-coding neurons, selectively suppressed by network inhibition during sensory processing, can be recruited to enhance perception.


Assuntos
Inibição Neural , Neurônios , Optogenética , Córtex Somatossensorial , Vibrissas , Animais , Camundongos , Córtex Somatossensorial/fisiologia , Vibrissas/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Masculino , Estimulação Luminosa/métodos , Camundongos Endogâmicos C57BL
12.
PLoS Comput Biol ; 20(4): e1011468, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626210

RESUMO

Neurons in the cerebral cortex receive thousands of synaptic inputs per second from thousands of presynaptic neurons. How the dendritic location of inputs, their timing, strength, and presynaptic origin, in conjunction with complex dendritic physiology, impact the transformation of synaptic input into action potential (AP) output remains generally unknown for in vivo conditions. Here, we introduce a computational approach to reveal which properties of the input causally underlie AP output, and how this neuronal input-output computation is influenced by the morphology and biophysical properties of the dendrites. We demonstrate that this approach allows dissecting of how different input populations drive in vivo observed APs. For this purpose, we focus on fast and broadly tuned responses that pyramidal tract neurons in layer 5 (L5PTs) of the rat barrel cortex elicit upon passive single whisker deflections. By reducing a multi-scale model that we reported previously, we show that three features are sufficient to predict with high accuracy the sensory responses and receptive fields of L5PTs under these specific in vivo conditions: the count of active excitatory versus inhibitory synapses preceding the response, their spatial distribution on the dendrites, and the AP history. Based on these three features, we derive an analytically tractable description of the input-output computation of L5PTs, which enabled us to dissect how synaptic input from thalamus and different cell types in barrel cortex contribute to these responses. We show that the input-output computation is preserved across L5PTs despite morphological and biophysical diversity of their dendrites. We found that trial-to-trial variability in L5PT responses, and cell-to-cell variability in their receptive fields, are sufficiently explained by variability in synaptic input from the network, whereas variability in biophysical and morphological properties have minor contributions. Our approach to derive analytically tractable models of input-output computations in L5PTs provides a roadmap to dissect network-neuron interactions underlying L5PT responses across different in vivo conditions and for other cell types.


Assuntos
Potenciais de Ação , Modelos Neurológicos , Córtex Somatossensorial , Animais , Ratos , Córtex Somatossensorial/fisiologia , Córtex Somatossensorial/citologia , Potenciais de Ação/fisiologia , Dendritos/fisiologia , Vibrissas/fisiologia , Tratos Piramidais/fisiologia , Sinapses/fisiologia , Biologia Computacional , Células Piramidais/fisiologia , Simulação por Computador , Rede Nervosa/fisiologia
13.
Nat Commun ; 15(1): 3454, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658551

RESUMO

In artificial nervous systems, conductivity changes indicate synaptic weight updates, but they provide limited information compared to living organisms. We present the pioneering design and production of an electrochromic neuromorphic transistor employing color updates to represent synaptic weight for in-sensor computing. Here, we engineer a specialized mechanism for adaptively regulating ion doping through an ion-exchange membrane, enabling precise control over color-coded synaptic weight, an unprecedented achievement. The electrochromic neuromorphic transistor not only enhances electrochromatic capabilities for hardware coding but also establishes a visualized pattern-recognition network. Integrating the electrochromic neuromorphic transistor with an artificial whisker, we simulate a bionic reflex system inspired by the longicorn beetle, achieving real-time visualization of signal flow within the reflex arc in response to environmental stimuli. This research holds promise in extending the biomimetic coding paradigm and advancing the development of bio-hybrid interfaces, particularly in incorporating color-based expressions.


Assuntos
Besouros , Animais , Besouros/fisiologia , Transistores Eletrônicos , Biomimética/métodos , Biomimética/instrumentação , Redes Neurais de Computação , Cor , Vibrissas/fisiologia , Biônica/métodos , Biônica/instrumentação , Sinapses/fisiologia
14.
Nat Commun ; 15(1): 3081, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594279

RESUMO

Tactile sensation and vision are often both utilized for the exploration of objects that are within reach though it is not known whether or how these two distinct sensory systems combine such information. Here in mice, we used a combination of stereo photogrammetry for 3D reconstruction of the whisker array, brain-wide anatomical tracing and functional connectivity analysis to explore the possibility of tacto-visual convergence in sensory space and within the circuitry of the primary visual cortex (VISp). Strikingly, we find that stimulation of the contralateral whisker array suppresses visually evoked activity in a tacto-visual sub-region of VISp whose visual space representation closely overlaps with the whisker search space. This suppression is mediated by local fast-spiking interneurons that receive a direct cortico-cortical input predominantly from layer 6 neurons located in the posterior primary somatosensory barrel cortex (SSp-bfd). These data demonstrate functional convergence within and between two primary sensory cortical areas for multisensory object detection and recognition.


Assuntos
Neurônios , Tato , Camundongos , Animais , Neurônios/fisiologia , Tato/fisiologia , Interneurônios , Reconhecimento Psicológico , Córtex Somatossensorial/fisiologia , Vibrissas/fisiologia
15.
Nat Commun ; 15(1): 3529, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664415

RESUMO

The feedback projections from cortical layer 6 (L6CT) to the sensory thalamus have long been implicated in playing a primary role in gating sensory signaling but remain poorly understood. To causally elucidate the full range of effects of these projections, we targeted silicon probe recordings to the whisker thalamocortical circuit of awake mice selectively expressing Channelrhodopsin-2 in L6CT neurons. Through optogenetic manipulation of L6CT neurons, multi-site electrophysiological recordings, and modeling of L6CT circuitry, we establish L6CT neurons as dynamic modulators of ongoing spiking in the ventral posteromedial nucleus of the thalamus (VPm), either suppressing or enhancing VPm spiking depending on L6CT neurons' firing rate and synchrony. Differential effects across the cortical excitatory and inhibitory sub-populations point to an overall influence of L6CT feedback on cortical excitability that could have profound implications for regulating sensory signaling across a range of ethologically relevant conditions.


Assuntos
Optogenética , Córtex Somatossensorial , Tálamo , Vibrissas , Vigília , Animais , Vigília/fisiologia , Córtex Somatossensorial/fisiologia , Camundongos , Tálamo/fisiologia , Vibrissas/fisiologia , Neurônios/fisiologia , Masculino , Vias Neurais/fisiologia , Núcleos Ventrais do Tálamo/fisiologia , Potenciais de Ação/fisiologia , Feminino , Camundongos Endogâmicos C57BL
16.
Cell Rep ; 43(4): 113970, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38512868

RESUMO

To meet the high energy demands of brain function, cerebral blood flow (CBF) parallels changes in neuronal activity by a mechanism known as neurovascular coupling (NVC). However, which neurons play a role in mediating NVC is not well understood. Here, we identify in mice and humans a specific population of cortical GABAergic neurons that co-express neuronal nitric oxide synthase and tachykinin receptor 1 (Tacr1). Through whole-tissue clearing, we demonstrate that Tacr1 neurons extend local and long-range projections across functionally connected cortical areas. We show that whisker stimulation elicited Tacr1 neuron activity in the barrel cortex through feedforward excitatory pathways. Additionally, through optogenetic experiments, we demonstrate that Tacr1 neurons are instrumental in mediating CBF through the relaxation of mural cells in a similar fashion to whisker stimulation. Finally, by electron microscopy, we observe that Tacr1 processes contact astrocytic endfeet. These findings suggest that Tacr1 neurons integrate cortical activity to mediate NVC.


Assuntos
Acoplamento Neurovascular , Animais , Camundongos , Acoplamento Neurovascular/fisiologia , Humanos , Neurônios/metabolismo , Neurônios/fisiologia , Vibrissas/fisiologia , Camundongos Endogâmicos C57BL , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Masculino , Córtex Cerebral/fisiologia , Córtex Cerebral/irrigação sanguínea , Circulação Cerebrovascular/fisiologia , Óxido Nítrico Sintase Tipo I/metabolismo
17.
STAR Protoc ; 5(2): 102972, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38502685

RESUMO

Studies on sensory information processing typically focus on whisker-related tactile information, overlooking the question of how sensory inputs from other body areas are processed at cortical levels. Here, we present a protocol for stimulating specific rodent limb receptive fields while recording in vivo somatosensory-evoked activity. We describe steps for localizing cortical-hindlimb coordinates using acute peripheral stimulation, electrode placement, and the application of electrical stimulation. This protocol overcomes the challenge of inducing a reproducible and consistent stimulation of specific limbs. For complete details on the use and execution of this protocol, please refer to Miguel-Quesada et al.1.


Assuntos
Estimulação Elétrica , Potenciais Somatossensoriais Evocados , Córtex Somatossensorial , Animais , Potenciais Somatossensoriais Evocados/fisiologia , Estimulação Elétrica/métodos , Córtex Somatossensorial/fisiologia , Ratos , Camundongos , Extremidades/fisiologia , Roedores , Membro Posterior/fisiologia , Vibrissas/fisiologia
18.
Neuron ; 112(11): 1848-1861.e4, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492575

RESUMO

Whisker stimulation in awake mice evokes transient suppression of simple spike probability in crus I/II Purkinje cells. Here, we investigated how simple spike suppression arises synaptically, what it encodes, and how it affects cerebellar output. In vitro, monosynaptic parallel fiber (PF)-excitatory postsynaptic currents (EPSCs) facilitated strongly, whereas disynaptic inhibitory postsynaptic currents (IPSCs) remained stable, maximizing relative inhibitory strength at the onset of PF activity. Short-term plasticity thus favors the inhibition of Purkinje spikes before PFs facilitate. In vivo, whisker stimulation evoked a 2-6 ms synchronous spike suppression, just 6-8 ms (∼4 synaptic delays) after sensory onset, whereas active whisker movements elicited broadly timed spike rate increases that did not modulate sensory-evoked suppression. Firing in the cerebellar nuclei (CbN) inversely correlated with disinhibition from sensory-evoked simple spike suppressions but was decoupled from slow, non-synchronous movement-associated elevations of Purkinje firing rates. Synchrony thus allows the CbN to high-pass filter Purkinje inputs, facilitating sensory-evoked cerebellar outputs that can drive movements.


Assuntos
Potenciais de Ação , Núcleos Cerebelares , Células de Purkinje , Sinapses , Animais , Células de Purkinje/fisiologia , Núcleos Cerebelares/fisiologia , Núcleos Cerebelares/citologia , Camundongos , Potenciais de Ação/fisiologia , Sinapses/fisiologia , Vibrissas/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Camundongos Endogâmicos C57BL , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino
19.
Neuroscience ; 544: 128-137, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38447690

RESUMO

In Robo3cKO mice, midline crossing defects of the trigeminothalamic projections from the trigeminal principal sensory nucleus result in bilateral whisker maps in the somatosensory thalamus and consequently in the face representation area of the primary somatosensory (S1) cortex (Renier et al., 2017; Tsytsarev et al., 2017). We investigated whether this bilateral sensory representation in the whisker-barrel cortex is also reflected in the downstream projections from the S1 to the primary motor (M1) cortex. To label these projections, we injected anterograde viral axonal tracer in S1 cortex. Corticocortical projections from the S1 distribute to similar areas across the ipsilateral hemisphere in control and Robo3cKO mice. Namely, in both genotypes they extend to the M1, premotor/prefrontal cortex (PMPF), secondary somatosensory (S2) cortex. Next, we performed voltage-sensitive dye imaging (VSDi) in the left hemisphere following ipsilateral and contralateral single whisker stimulation. While controls showed only activation in the contralateral whisker barrel cortex and M1 cortex, the Robo3cKO mouse left hemisphere was activated bilaterally in both the barrel cortex and the M1 cortex. We conclude that the midline crossing defect of the trigeminothalamic projections leads to bilateral whisker representations not only in the thalamus and the S1 cortex but also downstream from the S1, in the M1 cortex.


Assuntos
Córtex Motor , Córtex Somatossensorial , Camundongos , Animais , Córtex Somatossensorial/fisiologia , Vibrissas/fisiologia , Córtex Motor/fisiologia , Tálamo/diagnóstico por imagem , Núcleos do Trigêmeo
20.
Carbohydr Polym ; 332: 121927, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431420

RESUMO

Natural bone exhibits a complex anisotropic and micro-nano hierarchical structure, more importantly, bone extracellular matrix (ECM) presents liquid crystal (LC) phase and viscoelastic characteristics, providing a unique microenvironment for guiding cell behavior and regulating osteogenesis. However, in bone tissue engineering scaffolds, the construction of bone-like ECM microenvironment with exquisite microstructure is still a great challenge. Here, we developed a novel polysaccharide LC hydrogel supported 3D printed poly(l-lactide) (PLLA) scaffold with bone-like ECM microenvironment and micro-nano aligned structure. First, we prepared a chitin whisker/chitosan polysaccharide LC precursor, and then infuse it into the pores of 3D printed PLLA scaffold, which was previously surface modified with a polydopamine layer. Next, the LC precursor was chemical cross-linked by genipin to form a hydrogel network with bone-like ECM viscoelasticity and LC phase in the scaffold. Subsequently, we performed directional freeze-casting on the composite scaffold to create oriented channels in the LC hydrogel. Finally, we soaked the composite scaffold in phytic acid to further physical cross-link the LC hydrogel through electrostatic interactions and impart antibacterial effects to the scaffold. The resultant biomimetic scaffold displays osteogenic activity, vascularization ability and antibacterial effect, and is expected to be a promising candidate for bone repair.


Assuntos
Quitosana , Cristais Líquidos , Animais , Quitosana/química , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Quitina/farmacologia , Quitina/metabolismo , Vibrissas , Alicerces Teciduais/química , Regeneração Óssea , Engenharia Tecidual , Osteogênese , Matriz Extracelular/metabolismo , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...