Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 544
Filtrar
1.
Sci Rep ; 14(1): 19652, 2024 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-39179785

RESUMO

A biotransformation pair consisting of vinblastine: vincristine present in the Catharanthus roseus plant is of immense pharmacological significance. In this study, we successfully transformed vinblastine into vincristine outside the plant using Pseudomonas aeruginosa 8485 and Pseudomonas fluorescens 2421 and evaluated the antiangiogenic potential of thus produced vincristine through the CAM assay. The toxicity assay showed that both Pseudomonas spp. can tolerate varying concentrations (25-100 µl of 1 mg/ml) of vinblastine. The biotransformation was performed in a liquid nutrient broth medium containing vinblastine (25-100 µl), and Pseudomonas spp. inoculums (50-150 µl) by incubating at 30 °C and 37 °C, respectively for 8 days. The process was optimized for substrate and culture concentrations, pH, temperature, and rotation speed (rpm) for the highest conversion. Analysis using LC-MS/MS confirmed the presence of vincristine as a product of the vinblastine biotransformation by two Pseudomonas spp. P. fluorescens 2421 showed a faster conversion rate with 95% of vinblastine transformed within 24 h than P. aeruginosa 8485, which demonstrated a conversion rate of 92% on the 8th day. From LC-MS/MS analysis, the optimal conditions for the reaction were determined as vinblastine (25 µl), microbial inoculums (150 µl or 200 × 106 and 210 × 106 CFU/ml), pH 7.4, rotation speed of 180 rpm, and temperatures of 30 °C and 37 °C with incubation time of 8 days. The vincristine produced exhibited potent antiangiogenic activity in the CAM assay reducing the thickness and branching of blood vessels in a dose-dependent manner. The study concludes that both Pseudomonas spp. showed promise for vincristine production from vinblastine, without compromising its antiangiogenic properties.


Assuntos
Biotransformação , Pseudomonas aeruginosa , Vimblastina , Vincristina , Vincristina/farmacologia , Vincristina/metabolismo , Vimblastina/metabolismo , Vimblastina/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Pseudomonas/metabolismo , Pseudomonas/efeitos dos fármacos , Espectrometria de Massas em Tandem , Pseudomonas fluorescens/metabolismo , Pseudomonas fluorescens/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/metabolismo
2.
World J Microbiol Biotechnol ; 40(9): 278, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046545

RESUMO

This study investigates the synthesis of vinblastine by endophytic fungi isolated from leaf of C. roseus. A total of 10 endophytic fungi were selected for secretion of vinca alkaloids based on the initial screening by biochemical tests and thin-layer chromatography (TLC). Out of these ten, only four fungal extracts showed positive results for presence of vinblastine at same retention time (10 min.) compared to reference compound on HPLC analysis. The detected concentration of vinblastine was maximum (17 µg/ml) in isolate no. CRL 22 followed by CRL 52, CRL 17 and CRL 28. To validate the presence of vinblastine, ultra-high-performance liquid chromatography coupled with high-resolution accurate mass spectrometry (HRMS) was employed. This analysis confirmed the presence of anhydrovinblastine, a precursor of vinblastine through the detection of molecular ions at m/z 793.4185 in extract of CRL 17. In addition to anhydrovinblastine, the intermediate compounds essential to the biosynthetic pathway of vinblastine were also detected in the extract of CRL 17. These host-origin compounds strongly suggest the presence of a biosynthetic pathway within the endophytic fungus. Based on morphological observation and sequence analysis of the ITS region of rDNA, endophytic fungi were identified as Alternaria alternata (CRL 17), Curvularia lunata (CRL 28), Aspergillus terrus (CRL 52), and Aspergillus clavatonanicus (CRL 22).


Assuntos
Catharanthus , Endófitos , Fungos , Folhas de Planta , Vimblastina , Catharanthus/microbiologia , Vimblastina/metabolismo , Endófitos/metabolismo , Endófitos/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Fungos/metabolismo , Fungos/isolamento & purificação , Fungos/classificação , Fungos/genética , Folhas de Planta/microbiologia , Cromatografia em Camada Fina , Vias Biossintéticas , Espectrometria de Massas
3.
Plant Cell Rep ; 43(6): 139, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735908

RESUMO

KEY MESSAGE: Nitric oxide functions downstream of the melatonin in adjusting Cd-induced osmotic and oxidative stresses, upregulating the transcription of D4H and DAT genes, and increasing total alkaloid and vincristine contents. A few studies have investigated the relationship between melatonin (MT) and nitric oxide (NO) in regulating defensive responses. However, it is still unclear how MT and NO interact to regulate the biosynthesis of alkaloids and vincristine in leaves of Catharanthus roseus (L.) G. Don under Cd stress. Therefore, this context was explored in the present study. Results showed that Cd toxicity (200 µM) induced oxidative stress, decreased biomass, Chl a, and Chl b content, and increased the content of total alkaloid and vinblastine in the leaves. Application of both MT (100 µM) and sodium nitroprusside (200 µM SNP, as NO donor) enhanced endogenous NO content and accordingly increased metal tolerance index, the content of total alkaloid and vinblastine. It also upregulated the transcription of two respective genes (D4H and DAT) under non-stress and Cd stress conditions. Moreover, the MT and SNP treatments reduced the content of H2O2 and malondialdehyde, increased the activities of superoxide dismutase and ascorbate peroxidase, enhanced proline accumulation, and improved relative water content in leaves of Cd-exposed plants. The scavenging NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (cPTIO) averted the effects of MT on the content of total alkaloid and vinblastine and antioxidative responses. Still, the effects conferred by NO on attributes mentioned above were not significantly impaired by p-chlorophenylalanine (p-CPA as an inhibitor of MT biosynthesis). These findings and multivariate analyses indicate that MT motivated terpenoid indole alkaloid biosynthesis and mitigated Cd-induced oxidative stress in the leaves of periwinkle in a NO-dependent manner.


Assuntos
Cádmio , Catharanthus , Regulação da Expressão Gênica de Plantas , Melatonina , Óxido Nítrico , Estresse Oxidativo , Folhas de Planta , Vimblastina , Catharanthus/metabolismo , Catharanthus/genética , Catharanthus/efeitos dos fármacos , Óxido Nítrico/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Vimblastina/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
4.
Physiol Plant ; 176(2): e14276, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566244

RESUMO

The leaf-specific Catharanthus roseus alkaloid, vindoline, is the major bottleneck precursor in the production of scarce and costly anticancer bisindoles (vincristine and vinblastine). The final steps of its biosynthesis and storage occur in the laticifers. Earlier, we have shown that vindoline content is directly related to laticifer number. Pectin remodeling enzymes, like pectin methylesterase (PME), are known to be involved in laticifer development. A search in the croFGD yielded a leaf-abundant CrPME isoform that co-expressed with a few vindoline biosynthetic genes. Full-length cloning, tissue-specific expression profiling, and in silico analysis of CrPME were carried out. It was found to possess all the specific characteristics of a typical plant PME. Transient silencing (through VIGS) and overexpression of CrPME in C. roseus indicated a direct relationship between its expression and vindoline content. Comparative analysis of transcript abundance and enzyme activity in three familial C. roseus genotypes differing significantly in their vindoline content and laticifer count (CIM-Sushil > Dhawal > Nirmal) also corroborated the positive relationship of CrPME expression with vindoline content. This study highlights the possible role of CrPME, a cell wall remodeling enzyme, in modulating laticifer-associated secondary metabolism.


Assuntos
Catharanthus , Vimblastina , Vimblastina/análogos & derivados , Vimblastina/metabolismo , Catharanthus/genética , Catharanthus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
J Pharm Sci ; 113(7): 1960-1974, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38527618

RESUMO

The efficacy of many cancer drugs is hindered by P-glycoprotein (Pgp), a cellular pump that removes drugs from cells. To improve chemotherapy, drugs capable of evading Pgp must be developed. Despite similarities in structure, vinca alkaloids (VAs) show disparate Pgp-mediated efflux ratios. ATPase activity and binding affinity studies show at least two binding sites for the VAs: high- and low-affinity sites that stimulate and inhibit the ATPase activity rate, respectively. The affinity for ATP from the ATPase kinetics curve for vinblastine (VBL) at the high-affinity site was 2- and 9-fold higher than vinorelbine (VRL) and vincristine (VCR), respectively. Conversely, VBL had the highest Km (ATP) for the low-affinity site. The dissociation constants (KDs) determined by protein fluorescence quenching were in the order VBL < VRL< VCR. The order of the KDs was reversed at higher substrate concentrations. Acrylamide quenching of protein fluorescence indicate that the VAs, either at 10 µM or 150 µM, predominantly maintain Pgp in an open-outward conformation. When 3.2 mM AMPPNP was present, 10 µM of either VBL, VRL, or VCR cause Pgp to shift to an open-outward conformation, while 150 µM of the VAs shifted the conformation of Pgp to an intermediate orientation, between opened inward and open-outward. However, the conformational shift induced by saturating AMPPNP and VCR condition was less than either VBL or VRL in the presence of AMPPNP. At 150 µM, atomic force microscopy (AFM) revealed that the VAs shift Pgp population to a predominantly open-inward conformation. Additionally, STDD NMR studies revealed comparable groups in VBL, VRL, and VCR are in contact with the protein during binding. Our results, when coupled with VAs-microtubule structure-activity relationship studies, could lay the foundation for developing next-generation VAs that are effective as anti-tumor agents. A model that illustrates the intricate process of Pgp-mediated transport of the VAs is presented.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Alcaloides de Vinca , Alcaloides de Vinca/metabolismo , Alcaloides de Vinca/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Humanos , Vimblastina/metabolismo , Vimblastina/química , Sítios de Ligação , Vincristina/metabolismo , Vincristina/química , Vincristina/farmacologia , Transporte Biológico , Adenosina Trifosfatases/metabolismo , Cinética
6.
J Plant Res ; 137(1): 125-142, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37962734

RESUMO

Wall-associated kinases (WAKs) are a unique family of proteins that are predominantly localized on the plasma membrane and simultaneously bound to the cell wall. WAKs play a pivotal role in signal transduction to regulate growth, defense, and response to environmental stimuli in plants. These kinases have been identified and characterized in various plant species, however, similar information for Catharanthus roseus is scarce. C. roseus is an evergreen ornamental plant that produces a repertoire of biologically active compounds. The plant is best characterized for the production of antineoplastic monoterpenoid indole alkaloids (MIAs) namely vinblastine and vincristine. Owing to the diverse composition of phytochemicals, C. roseus is known as a "model non-model" plant for secondary metabolite research. Genome analyses showed 37 putative CrWAK genes present in C. roseus, largely localized on the plasma membrane. Phylogenetic analysis revealed six clusters of CrWAKs. Diverse cis-acting elements, including those involved in defense responses, were identified on the promotor regions of CrWAK genes. The highest binding affinity (- 12.6 kcal/mol) was noted for CrWAK-22 against tri-galacturonic acid. Tri-galacturonic acid stimulated 2.5-fold higher production of vinblastine, sixfold upregulation of the expression of ORCA3 transcription factor, and 6.14-fold upregulation of CrWAK-22 expression. Based on these results it was concluded that the expression of CrWAK genes induced by biotic elicitors may have an important role in the production of MIAs. The current findings may serve as a basis for functional characterization and mechanistic explanation of the role of CrWAK genes in the biosynthesis of MIAs upon elicitation.


Assuntos
Catharanthus , Alcaloides de Triptamina e Secologanina , Alcaloides de Triptamina e Secologanina/metabolismo , Catharanthus/genética , Catharanthus/metabolismo , Simulação de Acoplamento Molecular , Vimblastina/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
7.
Chem Biol Interact ; 388: 110833, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38101600

RESUMO

Many chemotherapeutic drugs suffer from multidrug resistance (MDR). Efflux transporters, namely ATP-binding cassettes (ABCs), that pump the drugs out of the cancer cells comprise one major reason behind MDR. Therefore, ABC inhibitors have been under development for ages, but unfortunately, without clinical success. In the present study, an l-type amino acid transporter 1 (LAT1)-utilizing derivative of probenecid (PRB) was developed as a cancer cell-targeted efflux inhibitor for P-glycoprotein (P-gp), breast cancer resistant protein (BCRP) and/or several multidrug resistant proteins (MRPs), and its ability to increase vinblastine (VBL) cellular accumulation and apoptosis-inducing effects were explored. The novel amino acid derivative of PRB (2) increased the VBL exposure in triple-negative human breast cancer cells (MDA-MB-231) and human glioma cells (U-87MG) by 10-68 -times and 2-5-times, respectively, but not in estrogen receptor-positive human breast cancer cells (MCF-7). However, the combination therapy had greater cytotoxic effects in MCF-7 compared to MDA-MB-231 cells due to the increased oxidative stress recorded in MCF-7 cells. The metabolomic study also revealed that compound 2, together with VBL, decreased the transport of those amino acids essential for the biosynthesis of endogenous anti-oxidant glutathione (GSH). Moreover, the metabolic differences between the outcomes of the studied breast cancer cell lines were explained by the distinct expression profiles of solute carriers (SLCs) that can be concomitantly inhibited. Therefore, attacking several SLCs simultaneously to change the nutrient environment of cancer cells can serve as an adjuvant therapy to other chemotherapeutics, offering an alternative to ABC inhibitors.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Vimblastina/farmacologia , Vimblastina/metabolismo , Vimblastina/uso terapêutico , Probenecid/farmacologia , Probenecid/uso terapêutico , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Apoptose , Estresse Oxidativo , Aminoácidos/metabolismo , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral
8.
Physiol Plant ; 175(5): e13994, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882277

RESUMO

Plant lipocalins perform diverse functions. Recently, allene oxide cyclase, a lipocalin family member, has been shown to co-express with vindoline pathway genes in Catharanthus roseus under various biotic/abiotic stresses. This brought focus to another family member, a temperature-induced lipocalin (CrTIL), which was selected for full-length cloning, tissue-specific expression profiling, in silico characterization, and upstream genomic region analysis for cis-regulatory elements. Stress-mediated variations in CrTIL expression were reflected as disturbances in cell membrane integrity, assayed through measurement of electrolyte leakage and lipid peroxidation product, MDA, which implicated the role of CrTIL in maintaining cell membrane integrity. For ascertaining the function of CrTIL in maintaining membrane stability and elucidating the relationship between CrTIL expression and vindoline content, if any, a direct approach was adopted, whereby CrTIL was transiently silenced and overexpressed in C. roseus. CrTIL silencing and overexpression confirmed its role in the maintenance of membrane integrity and indicated an inverse relationship of its expression with vindoline content. GFP fusion-based subcellular localization indicated membrane localization of CrTIL, which was in agreement with its role in maintaining membrane integrity. Altogether, the role of CrTIL in maintaining membrane structure has possible implications for the intracellular sequestration, storage, and viability of vindoline.


Assuntos
Catharanthus , Catharanthus/genética , Catharanthus/metabolismo , Temperatura , Vimblastina/química , Vimblastina/metabolismo , Lipocalinas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo
9.
Eur J Cell Biol ; 102(4): 151366, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37871345

RESUMO

Microtubules are essential cytoskeletal polymers, which exhibit stochastic transitions between assembly and disassembly, known as catastrophes and rescues. Understanding of catastrophes, rescues, and their control by drugs and microtubule associated proteins (MAPs) has been informed by in vitro reconstitutions of microtubule dynamics. In such experiments microtubules are typically observed on a flat surface of the coverslip. In contrast, we have recently proposed a modified setup in which microtubules assemble from stabilized seeds, overhanging from microfabricated pedestals, so that their dynamic extensions are fully isolated from contact with the coverslip. This assay allows to eliminate potential artifacts, which may substantially affect the frequency of microtubule rescues in vitro. Here we use the pedestal assay to study the sensitivity of microtubules to paclitaxel, one of the best-known inhibitors of microtubule dynamics. By comparing observations in the conventional and the pedestal assays, we find that microtubule dynamics are substantially more sensitive to paclitaxel when the polymers can contact the coverslip. We interpret this as a consequence of the coverslip-induced microtubule assembly perturbation, leading to formation of lattice with defects, and thereby enhancing the efficiency of paclitaxel binding to microtubules in the conventional assay. To test this idea, we use vinblastine, another small-molecule inhibitor, which had been previously shown to cause microtubule growth perturbations. We find that in the pedestal assay vinblastine sensitizes microtubules to paclitaxel to the level, observed in the conventional assay. Interestingly, a minimal fragment of MAP called CLASP2, a previously characterized rescue factor, has a strong effect on microtubule rescues, regardless of the type of assay. Overall, our study underscores the role of microtubule damage in promoting rescues and highlights the utility of the in vitro pedestal assay to study microtubule dynamics modulation by tubulin inhibitors and MAPs.


Assuntos
Proteínas Associadas aos Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/análise , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Vimblastina/farmacologia , Vimblastina/análise , Vimblastina/metabolismo , Microtúbulos/metabolismo , Paclitaxel/farmacologia , Paclitaxel/análise , Paclitaxel/metabolismo , Polímeros/análise , Polímeros/metabolismo , Polímeros/farmacologia
10.
J Pharm Biomed Anal ; 235: 115611, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37542828

RESUMO

Enrichment of pharmaceutically important vinca alkaloids, vinblastine and vincristine, in the leaves of Madagascar periwinkle (Catharanthus roseus) plants through different pre- or postharvest treatments or cultivation conditions, e.g., exposing the plants to UV-irradiation, has been in focus for decades. Controlled LED environment in the visible light range offers the possibility of monitoring the changes in the concentration of metabolites in the vinca alkaloid-related pathway without involving UV-related abiotic stress. In the frame of our targeted metabolomics approach, 64 vinca alkaloids and metabolites were screened with the help of a UPLC-ESI-QTOF-MS instrumental setup from the leaf extracts of C. roseus plants grown in chambers under control (medium light), low light, and high blue / high red/ high far-red conditions. Out of the 14 metabolites that could be assigned either unambiguously with authentic standards or tentatively with high resolution mass spectrometry-based methods, all three dimer vinca alkaloids, that is, 3',4'-anhydrovinblastine, vinblastine and vincristine showed an at least nine-fold enrichment under high blue irradiation when compared with the control conditions: final concentrations of 961 mg kg-1 dry weight, 33.8 mg kg-1 dry weight, and 11.7 mg kg-1 dry weight could be achieved, respectively. As supported by multivariate statistical analysis, the key metabolites of the vinca alkaloid pathway were highly represented among the metabolites that were specifically stimulated by high blue light application.


Assuntos
Antineoplásicos , Catharanthus , Alcaloides de Vinca , Alcaloides de Vinca/análise , Alcaloides de Vinca/metabolismo , Vimblastina/metabolismo , Catharanthus/metabolismo , Vincristina , Antineoplásicos/metabolismo , Metabolômica
11.
Plant Commun ; 4(6): 100661, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37464741

RESUMO

This study reports the assembly of a near-complete genome of Catharanthus roseus, consisting of 561.7 Mb scaffolded into 8 pseudochromosomes with a contig N50 of 24.7 Mb and a scaffold N50 of 71.1 Mb. The assembly enables the construction of a gene regulatory network of the vinblastine biosynthetic pathway and provides insights into the high susceptibility of C. roseus to the Huanglongbing pathogen.


Assuntos
Catharanthus , Vimblastina , Vimblastina/metabolismo , Catharanthus/genética , Catharanthus/metabolismo
12.
Bioorg Chem ; 139: 106684, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37356337

RESUMO

The microtubule system plays an important role in the mitosis and growth of eukaryotic cells, and it is considered as an appealing and highly successful molecular target for cancer treatment. In fact, microtubule targeting agents, such as paclitaxel and vinblastine, have been approved by FDA for tumor therapy, which have achieved significant therapeutic effects and sales performance. At present, microtubule targeting agents mainly include microtubule-destabilizing agents, microtubule-stabilizing agents, and a few tubulin degradation agents. Although there are few reports about tubulin degradation agents at present, tubulin degradation agents show great potential in overcoming multidrug resistance and reducing neurotoxicity. In addition, some natural drugs could specifically degrade tubulin in tumor cells, but have no effect in normal cells, thus showing a good biosafety profile. Therefore, tubulin degradation agents might exhibit a better application. Currently, some small molecules have been designed to promote tubulin degradation with potent antiproliferative activities, showing the potential for cancer treatment. In this work, we reviewed the reports on tubulin degradation, and focused on the degradation mechanism and important functional groups of chemically synthesized compounds, hoping to provide help for the degradation design of tubulin.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos , Antineoplásicos/química , Vimblastina/metabolismo , Vimblastina/farmacologia , Paclitaxel/metabolismo , Moduladores de Tubulina/química
13.
Plant Physiol Biochem ; 196: 783-792, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36848864

RESUMO

Catharanthus roseus is a perennial herb of the Apocynaceae family, from which about 200 kinds of alkaloids have been characterized. Most alkaloids from C. roseus are terpenoid indole alkaloids (TIAs), such as vinblastine and vincristine, which are widely used in the clinic for their good antitumor activity. However, they were only biosynthesized in C. roseus, and their content in C. roseus is extremely low. The access to these valuable compounds is by plant extraction or chemical semisynthesis from their precursors catharanthine and vindoline. Since catharanthine and vindoline are also obtained from C. roseus, the supply of vinblastine and vincristine makes it difficult to meet market demands. Therefore, how to improve the yield of TIAs is an attractive issue. In this study, we compared the regulatory effect of two critical transcription factors, octadecanoid-derivative responsive Catharanthus AP2-domain protein 3 (ORCA3) and octadecanoid-derivative responsive Catharanthus AP2-domain protein 4 (ORCA4), on the biosynthesis of TIAs in C. roseus. The results showed that overexpressing both two transcription factors could increase the accumulation of TIAs. The effect was more significant when ORCA4 was overexpressed. To acquire C. roseus TIAs on a continuous and consistent basis, we then created and acquired C. roseus stem cells stably overexpressing ORCA4. This is the first time a recombinant C. roseus stem cell system with stable ORCA4 overexpression has been developed, which not only provides new ideas for future research in this area but also breaches new life into the industrial application of using plant cell culture to obtain natural products.


Assuntos
Catharanthus , Alcaloides de Triptamina e Secologanina , Catharanthus/genética , Vimblastina/metabolismo , Vimblastina/farmacologia , Vincristina/metabolismo , Vincristina/farmacologia , Fatores de Transcrição/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Alcaloides de Triptamina e Secologanina/farmacologia , Alcaloides Indólicos/metabolismo , Alcaloides Indólicos/farmacologia
14.
Chem Biol Drug Des ; 102(3): 444-456, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36509697

RESUMO

The natural products plinabulin, docetaxel, and vinblastine are microtubule targeting agents (MTAs). They have been used alone or in combination in cancer treatment. However, the exact nature of their effects on microtubule (MT) polymerization dynamics is poorly understood. To elucidate the longitudinal conformational and energetic changes during MT dynamics, a total of 140 ns molecular dynamic simulations combined with binding free energy calculations were performed on seven tubulin models. The results indicated that the drugs disrupted MT polymerization by altering both MT conformation and binding free energy of the neighboring tubulin subunits. The combination of plinabulin and docetaxel destabilized MT polymerization due to bending MT and weakening the polarity of tubulin polymerization. The new combination of docetaxel and vinblastine synergistically enhanced MT depolymerization and bending, while plinabulin and vinblastine had no synergistic inhibitory effects. The results were verified by the tubulin assembly assay. Our study obtained a comprehensive understanding of the action mechanisms of three natural drugs and their combinations on MT dynamic, provided theoretical guidance for new MTA combinations, and would promote the optimal use of MTA and contribute to developing new MTAs as anticancer agents.


Assuntos
Antineoplásicos , Moduladores de Tubulina , Tubulina (Proteína) , Antineoplásicos/farmacologia , Docetaxel/farmacologia , Docetaxel/metabolismo , Microtúbulos , Tubulina (Proteína)/metabolismo , Vimblastina/farmacologia , Vimblastina/análise , Vimblastina/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia
15.
ACS Synth Biol ; 12(1): 27-34, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36516122

RESUMO

Vinblastine is a chemotherapy agent produced by the plant Catharanthus roseus in small quantities. Currently, vinblastine is sourced by isolation or semisynthesis. Nicotiana benthamiana is a plant heterologous host that can be used for reconstitution of biosynthetic pathways as an alternative natural product sourcing strategy. Recently, the biosynthesis of the late-stage vinblastine precursors precondylocarpine acetate, catharanthine, and tabersonine have been fully elucidated. However, the large number of enzymes involved in the pathway and the unstable nature of intermediates make the reconstitution of late-stage vinblastine precursor biosynthesis challenging. We used the N. benthamiana chassis and a state-of-art modular vector assembly to optimize the six biosynthetic steps leading to production of precondylocarpine acetate from the central intermediate strictosidine (∼2.7 mg per 1 g frozen tissue). After selecting the optimal regulatory element combination, we constructed four transcriptional unit assemblies and tested their efficiency. Finally, we successfully reconstituted the biosynthetic steps leading to production of catharanthine and tabersonine.


Assuntos
Catharanthus , Vimblastina , Vimblastina/metabolismo , Nicotiana/genética , Alcaloides Indólicos/metabolismo , Catharanthus/genética , Catharanthus/metabolismo
16.
Sci Rep ; 12(1): 17803, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36280677

RESUMO

The anti-cancer vinblastine and vincristine alkaloids can only be naturally found in periwinkle (Catharanthus roseus). Both of these alkaloids' accumulations are known to be influenced by salicylic acid (SA). The transcriptome data to reveal the induction effect (s) of SA, however, seem restricted at this time. In this study, the de novo approach of transcriptome assembly was performed on the RNA-Sequencing (RNA-Seq) data in C. roseus. The outcome demonstrated that SA treatment boosted the expression of all the genes in the Terpenoid Indole Alkaloids (TIAs) pathway that produces the vinblastine and vincristine alkaloids. These outcomes supported the time-course measurements of vincristine alkaloid, the end product of the TIAs pathway, and demonstrated that SA spray had a positive impact on transcription and alkaloid synthesis. Additionally, the abundance of transcription factor families including bHLH, C3H, C2H2, MYB, MYB-related, AP2/ ERF, NAC, bZIP, and WRKY suggests a role for a variety of transcription families in response to the SA stimuli. Di-nucleotide and tri-nucleotide SSRs were the most prevalent SSR markers in microsatellite analyses, making up 39% and 34% of all SSR markers, respectively, out of the 77,192 total SSRs discovered.


Assuntos
Catharanthus , Alcaloides de Triptamina e Secologanina , Catharanthus/genética , Catharanthus/metabolismo , Transcriptoma , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Vimblastina/metabolismo , Vincristina , Regulação da Expressão Gênica de Plantas , Alcaloides de Triptamina e Secologanina/metabolismo , Fatores de Transcrição/metabolismo , RNA/metabolismo , Nucleotídeos/metabolismo
17.
Mol Biol Rep ; 49(11): 10357-10365, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36097118

RESUMO

BACKGROUND: Catharanthus roseus is the sole resource of vinblastine and vincristine, two TIAs of great interest for their powerful anticancer activities. Increasing the concentration of these alkaloids in various organs of the plant is one of the important goals in C. roseus breeding programs. Plant probiotic bacteria (PBB) act as biotic elicitors and can induce the synthesis of secondary products in plants. The purpose of this research is to study the effects of PBB on expression of the TIA biosynthetic pathway genes and the content of alkaloids in C. roseus. METHODS AND RESULTS: The individual and combined effects of P. fluorescens strains 169 and A. brasilense strains Ab-101 was studied for expression of the TIA biosynthetic pathway genes (G10H, DAT, T16H and CrPRX) using qRT-PCR and the content of vinblastine and vincristine using HPLC method in roots of C. roseus. P. fluorescens. This drastically increased the content of vinblastine and vincristine alkaloids, compared to the control in the roots, to 174 and 589 (µg/g), respectively. Molecular analysis showed bacterium significantly increased the expression of more genes in the TIA biosynthetic pathway compared to the control. P. fluorescens increased the expression of the final gene of the biosynthetic pathway (CrPRX) 47.9 times compared to the control. Our findings indicate the correlation between transcriptional and metabolic outcomes. The same was true for A. brasilense. CONCLUSIONS: It can be concluded that seed treatments and seedling root treatments composed of naturally occurring probiotic bacteria are likely to be widely applicable for inducing enhanced alkaloid contents in medicinal plants.


Assuntos
Catharanthus , Probióticos , Alcaloides de Triptamina e Secologanina , Catharanthus/genética , Catharanthus/metabolismo , Vimblastina/metabolismo , Vimblastina/farmacologia , Vincristina/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica , Bactérias/genética , Regulação da Expressão Gênica de Plantas
18.
Nat Commun ; 13(1): 3335, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680936

RESUMO

The Madagascar's periwinkle is the model plant for studies of plant specialized metabolism and monoterpenoid indole alkaloids (MIAs), and an important source for the anticancer medicine vinblastine. The elucidation of entire 28-step biosynthesis of vinblastine allowed further investigations for the formation of other remarkably complex bioactive MIAs. In this study, we describe the discovery and characterization of vindolinine synthase, a Fe(II)/α-ketoglutarate-dependent (Fe/2OG) dioxygenase, that diverts assembly of tabersonine to vinblastine toward the formation of three alternatively cyclized MIAs: 19S-vindolinine, 19R-vindolinine, and venalstonine. Vindolinine synthase catalyzes a highly unusual, redox-neutral reaction to form a radical from dehydrosecodine, which is further cyclized by hydrolase 2 to form the three MIA isomers. We further show the biosynthesis of vindolinine epimers from tabersonine using hydrolase 2 catalyzed reverse cycloaddition. While the occurrence of vindolinines is rare in nature, the more widely found venalstonine derivatives are likely formed from similar redox-neutral reactions by homologous Fe/2OG dioxygenases.


Assuntos
Catharanthus , Alcaloides de Triptamina e Secologanina , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Catharanthus/metabolismo , Compostos Ferrosos/metabolismo , Regulação da Expressão Gênica de Plantas , Hidrolases/metabolismo , Oxirredução , Proteínas de Plantas/genética , Alcaloides de Triptamina e Secologanina/metabolismo , Vimblastina/análogos & derivados , Vimblastina/metabolismo
19.
Arch Biochem Biophys ; 727: 109296, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35594923

RESUMO

A tritiated derivative of the sponge-derived natural product spongistatin 1 was prepared, and its interactions with tubulin were examined. [3H]Spongistatin 1 was found to bind rapidly to tubulin at a single site (the low specific activity of the [3H]spongistatin 1, 0.75 Ci/mmol, prevented our defining an association rate), and the inability of spongistatin 1 to cause an aberrant assembly reaction was confirmed. Spongistatin 1 bound to tubulin very tightly, and we could detect no significant dissociation reaction from tubulin. The tubulin-[3H]spongistatin 1 complex did dissociate in 8 M urea, so there was no evidence for covalent bond formation. Apparent KD values were obtained by Scatchard analysis of binding data and by Hummel-Dreyer chromatography (3.5 and 1.1 µM, respectively). The effects of a large cohort of vinca domain drugs on the binding of [3H]spongistatin 1 to tubulin were evaluated. Compounds that did not cause aberrant assembly reactions (halichondrin B, eribulin, maytansine, and rhizoxin) caused little inhibition of [3H]spongistatin 1 binding. Little inhibition also occurred with the peptides dolastatin 15, its active pentapeptide derivative, vitilevuamide, or diazonamide A, nor with the vinca alkaloid vinblastine. Strong inhibition was observed with dolastatin 10, hemiasterlin, and cryptophycin 1, all of which cause aberrant assembly reactions that might actually mask the spongistatin 1 binding site. Spongistatin 5 was found to be a competitive inhibitor of [3H]spongistatin 1 binding, with an apparent Ki of 2.2 µM. We propose that the strong picomolar cytotoxicity of spongistatin 1 probably derives from its extremely tight binding to tubulin.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Antineoplásicos/farmacologia , Sítios de Ligação , Macrolídeos , Microtúbulos , Tubulina (Proteína)/química , Vimblastina/metabolismo , Vimblastina/farmacologia
20.
Mar Drugs ; 20(3)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35323487

RESUMO

Catharanthus roseus (L.) G. Don is a plant belonging to the genus Catharanthus of the Apocynaceae family. It contains more than one hundred alkaloids, of which some exhibit significant pharmacological activities. Chitooligosaccharides are the only basic aminooligosaccharides with positively charged cations in nature, which can regulate plant growth and antioxidant properties. In this study, the leaves of Catharanthus roseus were sprayed with chitooligosaccharides of different molecular weights (1 kDa, 2 kDa, 3 kDa) and different concentrations (0.01 µg/mL, 0.1 µg/mL, 1 µg/mL and 10 µg/mL). The fresh weights of its root, stem and leaf were all improved after chitooligosaccharides treatments. More importantly, the chitooligosaccharides elicitor strongly stimulated the accumulation of vindoline and catharanthine in the leaves, especially with the treatment of 0.1 µg/mL 3 kDa chitooligosaccharides, the contents of them were increased by 60.68% and 141.54%, respectively. Furthermore, as the defensive responses, antioxidant enzymes activities (catalase, glutathione reductase, ascorbate peroxidase, peroxidase and superoxide dismutase) were enhanced under chitooligosaccharides treatments. To further elucidate the underlying mechanism, qRT-PCR was used to investigate the genes expression levels of secologanin synthase (SLS), strictosidine synthase (STR), strictosidine glucosidase (SGD), tabersonine 16-hydroxylase (T16H), desacetoxyvindoline-4-hydroxylase (D4H), deacetylvindoline-4-O-acetyltransferase (DAT), peroxidase 1 (PRX1) and octadecanoid-responsive Catharanthus AP2-domain protein 3 (ORCA3). All the genes were significantly up-regulated after chitooligosaccharides treatments, and the transcription abundance of ORCA3, SLS, STR, DAT and PRX1 reached a maximal level with 0.1 µg/mL 3 kDa chitooligosaccharides treatment. All these results suggest that spraying Catharanthus roseus leaves with chitooligosaccharides, especially 0.1 µg/mL of 3 kDa chitooligosaccharides, may effectively improve the pharmaceutical value of Catharanthus roseus.


Assuntos
Catharanthus/efeitos dos fármacos , Quitosana/farmacologia , Oligossacarídeos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Antioxidantes/metabolismo , Catharanthus/genética , Catharanthus/crescimento & desenvolvimento , Catharanthus/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxirredutases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Vimblastina/análogos & derivados , Vimblastina/metabolismo , Alcaloides de Vinca/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...