Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.860
Filtrar
1.
Food Chem ; 462: 141012, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39217747

RESUMO

To investigate the variation and fractionation of stable isotopes from irrigation water to soil, grapes, and wine, δ2H, δ18O, and δ17O in different samples from 10 regions in China were determined using a water isotope analyser. The values were significantly different among regions according to the chemometric analysis. All isotopes were significantly and positively correlated with irrigation water-soil and grape-wine. A significant water isotopic fractionation effect was observed from the irrigation water to the soil, grapes, and wine. Stable isotope distribution characteristics correlated with longitude, latitude, altitude, temperature, precipitation, station pressure and wind speed. The linear discriminant analysis (LDA), random forest (RF), support vector machine (SVM), and feed-forward neural network (FNN) models 58.33-100 %, 80-100 %, 53.33-100 %, and 73.33-100 % accurate for distinguishing the geographical origins of all samples from training and test data, respectively. These findings provide a theoretical basis for authenticating the geographic origin of Chinese wines using stable isotope analysis.


Assuntos
Irrigação Agrícola , Isótopos de Oxigênio , Solo , Vitis , Vinho , Vinho/análise , Vitis/química , Vitis/classificação , Vitis/crescimento & desenvolvimento , Solo/química , Isótopos de Oxigênio/análise , China , Água/análise , Água/química , Deutério/análise , Análise Discriminante , Geografia , Fracionamento Químico
2.
Food Microbiol ; 124: 104593, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39244355

RESUMO

Yeast assimilable nitrogen (YAN) is one of the important factors affecting yeast growth and metabolism. However, the nitrogen requirement of indigenous commercial S. cerevisiae NX11424 is unclear. In this study, metabolomics was used to analyze the metabolite profiles of the yeast strain NX11424 under high (433 mg/L) and low (55 mg/L) YAN concentrations. It was found that yeast biomass exhibited different trends under different YAN conditions and was generally positively correlated with the initial YAN concentration, while changes of key biomarkers of yeast strain NX11424 at different stages of fermentation showed a similar trend under high and low YAN concentrations. The YAN concentration affected the metabolite levels of the yeast strain NX11424, which resulted in the significant difference in the levels of pyruvic acid, α-oxoglutarate, palmitoleic acid, proline, butane-2,3-diol, citrulline, ornithine, galactinol, citramalic acid, tryptophan, alanine, phosphate and phenylethanol, mainly involving pathways such as central carbon metabolism, amino acid metabolism, fatty acid metabolism, purine metabolism, and energy metabolism. Yeast strain NX11424 could utilize proline to produce protein under a low YAN level. The intracellular level of citrulline and ornithine under high YAN concentration was higher than that under low YAN level. Yeast strain NX11424 is more suitable for fermentation at lower YAN level. The results obtained here will help to rational utilize of YAN by S. cerevisiae NX11424, and is conducive to precise control of the alcohol fermentation and improve wine quality.


Assuntos
Fermentação , Metabolômica , Nitrogênio , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Nitrogênio/metabolismo , Vinho/análise , Vinho/microbiologia , Biomassa , Aminoácidos/metabolismo
3.
Food Microbiol ; 124: 104609, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39244361

RESUMO

Fino Sherry wine undergoes biological aging carried out by a velum of flor yeast within a traditional dynamic system known as "criaderas and solera". The complex microbiota of biofilm-forming Saccharomyces cerevisiae strains play a crucial role in shaping the distinctive organoleptic profile of these types of wines. For this reason, the aim of this study is to analyze the changes produced by different flor yeast strains in the volatilome and the aminogram of different wines from the criaderas and solera system during biological aging in the laboratory, simulating a flor yeast velum condition at different stages of the system. Results suggest that each strain metabolizes wine differently, finding that depending on the wine, some strains are better suited for the process than others. In addition, it is found that the content of biogenic amines in Fino Sherry wines, previously attributed to malolactic bacteria, varies according to the yeast strain metabolizing the wine, suggesting that flor yeast could be used to modify biogenic amines content during biological aging. Results indicate that the use of selected flor yeast starters in biological aging may be of interest to modulate some parameters during Fino Sherry wine aging.


Assuntos
Fermentação , Saccharomyces cerevisiae , Compostos Orgânicos Voláteis , Vinho , Vinho/análise , Vinho/microbiologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos de Nitrogênio/metabolismo , Aminas Biogênicas/metabolismo , Aminas Biogênicas/análise
4.
Food Microbiol ; 124: 104624, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39244375

RESUMO

Environmental conditions significantly impact the metabolism of Saccharomyces cerevisiae, a Crabtree-positive yeast that maintains a fermentative metabolism in high-sugar environments even in the presence of oxygen. Although the introduction of oxygen has been reported to induce alterations in yeast metabolism, knowledge of the mechanisms behind these metabolic adaptations in relation to redox cofactor metabolism and their implications in the context of wine fermentation remains limited. This study aimed to compare the intracellular redox cofactor levels, the cofactor ratios, and primary metabolite production in S. cerevisiae under aerobic and anaerobic conditions in synthetic grape juice. The molecular mechanisms underlying these metabolic differences were explored using a transcriptomic approach. Aerobic conditions resulted in an enhanced fermentation rate and biomass yield. Total NADP(H) levels were threefold higher during aerobiosis, while a decline in the total levels of NAD(H) was observed. However, there were stark differences in the ratio of NAD+/NADH between the treatments. Despite few changes in the differential expression of genes involved in redox cofactor metabolism, anaerobiosis resulted in an increased expression of genes involved in lipid biosynthesis pathways, while the presence of oxygen increased the expression of genes associated with thiamine, methionine, and sulfur metabolism. The production of fermentation by-products was linked with differences in the redox metabolism in each treatment. This study provides valuable insights that may help steer the production of metabolites of industrial interest during alcoholic fermentation (including winemaking) by using oxygen as a lever of redox metabolism.


Assuntos
Fermentação , Oxirredução , Oxigênio , Saccharomyces cerevisiae , Vinho , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Oxigênio/metabolismo , Vinho/microbiologia , Vinho/análise , Anaerobiose , Vitis/microbiologia , Vitis/metabolismo , NAD/metabolismo , Etanol/metabolismo , NADP/metabolismo , Aerobiose , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Coenzimas/metabolismo
5.
Food Res Int ; 194: 114888, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232522

RESUMO

Alcoholic fermentation is one of man's most efficient food preservation processes, and innovations in this area are a trend in food science and nutrition. In addition to the classic Saccharomyces yeasts, various other species may have desirable characteristics for obtaining fruit wines. This study investigated the profile of non-Saccharomyces commercial yeasts compared with S. cerevisiae regarding pineapple wine's chemical composition and bioaccessibility. The fermentation profile of the yeasts Lachancea thermotolerans, Brettanomyces bruxellensis, Brettanomyces lambicus, and S. cerevisiae was evaluated for sugar and alcohol content, and the pineapple wines obtained were analyzed for amino acids, phenolics, and organic acids by HPLC and volatile profile by GC/MS. All yeast strains were able to produce ethanol and glycerol at acceptable levels. L. thermotolerans produced higher levels of lactic acid (0.95 g/L) and higher consumption of free amino acids. B. bruxellensis produced higher levels of individual phenolics and ethanol 109 g/L. The alcoholic fermentation process improved the bioaccessibility of phenolics such as catechin (237 %), epigallocatechin gallate (81 %), procyanidin B1 (61 %) and procyanidin B2 (61 %). The yeasts differed in their volatile profiles, with Brettanomyces and Lachancea producing higher levels of compounds associated with pineapple aroma, such as ester ethyl butyrate (260-270 µg/L). These results demonstrate the importance of choosing the yeast strain for the conduction of alcoholic fermentation and that the yeasts Brettanomyces and Lachancea showed technological potential in obtaining pineapple wines. This study contributes to developing processes for obtaining fruit wines by highlighting two non-Saccharomyces yeast species with technological potential for alcoholic fermentations.


Assuntos
Ananas , Etanol , Fermentação , Saccharomyces cerevisiae , Vinho , Vinho/análise , Ananas/química , Saccharomyces cerevisiae/metabolismo , Etanol/metabolismo , Etanol/análise , Fenóis/análise , Fenóis/metabolismo , Aminoácidos/análise , Aminoácidos/metabolismo , Brettanomyces/metabolismo , Saccharomycetales/metabolismo , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Frutas/química
6.
Food Res Int ; 194: 114883, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232555

RESUMO

In this research, accelerated aroma release experiments and malvidin-3-O-glucoside copigmentation experiments in model red wine solutions were designed to investigate the abilities and molecular mechanisms of mannoproteins in modulating olfactory/chromatic properties of red wines. Results indicate that under orthonasal condition, mannoprotein MP2 was promising aroma modulator due to its predictable behaviors in expelling and retaining the aroma compounds during different periods. Low field nuclear magnetic resonance and molecular dynamic simulation proved that the modulation ability of MP2 should be explained by its transitionary interacting preferences with water/aroma compound molecules. Retronasal results show that the release of aroma compounds and olfactory perceptions were irregular and difficult to predict, probably due to the complexity of the retronasal condition. All mannoproteins protected malvidin-3-O-glucoside and quercetin via the formation of binary/ternary complexes, and quercetin was found prior to be protected than malvidin-3-O-glucoside. Principal mannoprotein A0A6C1DV26 might be the critical malvidin-3-O-glucoside protector. With the presence of quercetin, principal mannoproteins B3LQU1/B5VL26 in mannoprotein MP1 might exhibit intramolecular and/or intermolecular mechanisms that strengthened the hyperchromic effect, thus enhanced the copigmentation.


Assuntos
Antocianinas , Glucosídeos , Glicoproteínas de Membrana , Vinho , Vinho/análise , Glucosídeos/química , Glicoproteínas de Membrana/metabolismo , Antocianinas/química , Odorantes/análise , Quercetina/química , Percepção Olfatória , Simulação de Dinâmica Molecular , Humanos
7.
Food Res Int ; 195: 114968, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39277237

RESUMO

One of the challenges of cold-hardy grape cultivars is their typical low content of tannins, alongside the presence of anthocyanin diglucoside and high acidity, which can lead to unbalanced red wines. This study hypothesized that the combination of Accentuated Cut Edges (ACE) and macerating enzymes would improve phenolics extraction from grape skins after disruption. The effects of those two winemaking techniques, either used separately or together, on red wine quality characteristics were investigated at crushing, bottling, and after six or nine months of aging. Overall, the combination of treatments improved the concentration of monomeric phenolics (20 %) and tannins (21 %) after nine months of aging. ACE or enzyme treatment separately applied had little impact on phenolics extraction in finished wines. This study exhibited a potential strategy to modify phenolics profile through the synergistic effect of ACE and macerating enzymes by causing cellular breakdown in a cold-hardy red grape cultivar.


Assuntos
Antocianinas , Manipulação de Alimentos , Fenóis , Taninos , Vitis , Vinho , Vinho/análise , Vitis/química , Fenóis/análise , Manipulação de Alimentos/métodos , Antocianinas/análise , Taninos/análise , Frutas/química
8.
J Agric Food Chem ; 72(37): 20592-20602, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39233330

RESUMO

Barrel aging is a crucial stage that influences the taste of wines and spirits, particularly increasing their sweetness and bitterness. This increase is caused by nonvolatile compounds released from oak wood. To search for such molecules, we performed a taste-guided inductive fractionation protocol using several analytical techniques. By using HRMS and NMR, two new galloylated derivatives were elucidated. Their enzymatic hydrolysis revealed the formation of ß-methyl-γ-octalactone, indicating that they are potential precursors. The taste properties of these isomers revealed a sweet and bitter taste for P-WL-1 and P-WL-2, respectively. An LC-HRMS quantification method was performed to evaluate the influence of aging parameters such as botanical origin and toasting process on their concentrations. Several spirits were also analyzed to confirm their presence in this matrix. These results improve the understanding of the molecular markers responsible for the taste of beverages.


Assuntos
Bebidas Alcoólicas , Aromatizantes , Quercus , Paladar , Madeira , Quercus/química , Madeira/química , Bebidas Alcoólicas/análise , Aromatizantes/química , Humanos , Lactonas/química , Lactonas/análise , Estrutura Molecular , Espectrometria de Massas , Vinho/análise
9.
Food Res Int ; 194: 114885, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39232523

RESUMO

The Chinese bayberry pomace wine (CPW) was prepared with the assisted fermentation of lactic acid bacteria and acetic acid bacteria, and its antioxidant effect on Drosophila melanogaster was researched. After mixed fermentation, CPW had a better color, which means there was more retention of anthocyanins, and the functional activity of anthocyanins could enhance the antioxidant capacity of flies. We found that the lifespan of flies exposed to CPW was prolonged, and the reproductive capacity of these flies was decreased. The food intake of flies was also influenced by CPW with gender differences. Furthermore, CPW alleviated the excessive proliferation of the intestinal precursor cells of H2O2-induced flies and activated the transcription level of antibacterial peptide genes. CPW had a protective effect on H2O2-induced acute injury flies, with an increased survival rate, enhanced SOD and CAT activities, and decreased malondialdehyde (MDA) content in flies. The expression of oxidative stress-related genes including CuZn-SOD, Mn-SOD, and CAT was also significantly upregulated by CPW, but the downregulation effect of CPW on age-related gene expression such as methuselah (MTH), the target of rapamycin (TOR) and ribosomaiprotein S6 kinase (S6K) was sex-specific. These results suggested that CPW played an important role in anti-oxidative stress injury, which was beneficial to promoting the reuse of by-products from Chinese bayberry processing.


Assuntos
Antioxidantes , Drosophila melanogaster , Myrica , Estresse Oxidativo , Vinho , Animais , Feminino , Masculino , Antocianinas/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Fermentação , Frutas/química , Peróxido de Hidrogênio/metabolismo , Longevidade/efeitos dos fármacos , Myrica/química , Estresse Oxidativo/efeitos dos fármacos , Vinho/análise
10.
Molecules ; 29(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39275126

RESUMO

The microbial terroir is an indispensable part of the terroir panorama, and can improve wine quality with special characteristics. In this study, eight autochthonous yeasts (Saccharomyces cerevisiae), selected in Huailai country, China, were trailed in small-scale and pilot fermentations for both white (Riesling and Sémillon) and red (Cabernet Sauvignon and Syrah) wines and evaluated by GC-MS analysis and the rate-all-that-apply (RATA) method. Compared to commercial yeast strains, the indigenous yeasts were able to produce higher concentrations of ethyl esters and fatty acid ethyl esters, and higher alcohol, resulting in higher odor activity values of fruity, floral attributes. Marked varietal effects were observed in the pilot fermentation, but yeast strains exerted a noticeable impact in modulating wine aroma and sensory profile. Overall, indigenous yeast could produce more preferred aroma compounds and sensory characteristics for both white and red wines, demonstrating the potential for improving wine quality and regional characteristics.


Assuntos
Fermentação , Odorantes , Saccharomyces cerevisiae , Vinho , Vinho/análise , Vinho/microbiologia , Saccharomyces cerevisiae/metabolismo , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas , Leveduras/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , China
11.
Nutrients ; 16(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39275279

RESUMO

BACKGROUND: Alcohol abuse is one of the most common causes of mortality worldwide. This study aimed to investigate the efficacy of a treatment in reducing circulating ethanol and oxidative stress biomarkers. METHODS: Twenty wine-drinking subjects were investigated in a randomized controlled, single-blind trial (ClinicalTrials.gov. Identifier: NCT06548503; Ethical Committee of the University of Padova (HEC-DSB/12-2023) to evaluate the effect of the intake of a product containing silymarin, pyrroloquinoline quinone sodium salt, and myricetin (referred to as Si.Pi.Mi. for this project) on blood alcohol, ethyl glucuronide (EtG: marker for alcohol consumption) and markers of oxidative stress levels (Reactive Oxygen Species-ROS, Total Antioxidant Capacity-TAC, CoQ10, thiols redox status, 8-isoprostane, NO metabolites, neopterin, and uric acid). The effects of the treatment versus placebo were evaluated acutely and after 1 week of supplementation in blood and/or saliva and urine samples. RESULTS: Si.Pi.Mi intake reduced circulating ethanol after 120 min (-33%). Changes in oxidative stress biomarkers, particularly a TAC (range +9-12%) increase and an 8-isoprostane (marker of lipidic peroxidation) decrease (range -22-27%), were observed too. CONCLUSION: After the administration of Si.Pi.Mi, the data seemed to suggest a better alcohol metabolism and oxidative balance in response to wine intake. Further verification is requested.


Assuntos
Biomarcadores , Flavonoides , Estresse Oxidativo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Projetos Piloto , Biomarcadores/sangue , Biomarcadores/urina , Masculino , Adulto , Flavonoides/farmacologia , Flavonoides/administração & dosagem , Feminino , Método Simples-Cego , Cofator PQQ/farmacologia , Consumo de Bebidas Alcoólicas , Antioxidantes , Etanol , Pessoa de Meia-Idade , Vinho/análise
12.
Int J Food Microbiol ; 425: 110858, 2024 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-39163814

RESUMO

The aromatic profile of wine determines its overall final quality, and among the volatile molecules that define it, varietal thiols are responsible for shaping the distinctive character of certain wine varieties. In grape must, these thiols are conjugated to amino acids or small peptides in a non-volatile form. During wine fermentation, yeasts play a principal role in expressing these aromatic compounds as they internalise and cleavage these precursors, releasing the corresponding free and aroma-impacting fraction. Here, we investigate the impact of three wine yeasts (Saccharomyces cerevisiae, Torulaspora delbrueckii and Lachancea thermotolerans) on thiol releasing in synthetic grape must fermentations supplemented with different cysteinylated (Cys-4MSP and Cys-3SH) and glutathionylated (GSH-4MSP and GSH-3SH) precursors. We demonstrate higher consumption levels of cysteinylated precursors, and consequently, higher amounts of thiols are released from them compared to glutathionylated ones. We also report a significant impact of yeast inoculated on the final thiols released. Meanwhile T. delkbrueckii exhibits a great 3SHA releasing capacity, L. thermotolerans stands out because of its high 3SH release. We also highlight the synergic effect of the co-inoculation strategy, especially relevant in the case of S. cerevisiae and L. thermotolerans mixed fermentation, that has an outstanding release of 4MSP thiol. Although our results stem from a specific experimental approach that differs from real winemaking situations, these findings reveal the potential of unravelling the specific role of different yeast species, thiol precursors and their interaction, to improve wine production processes in the context of wine aroma enhancement.


Assuntos
Fermentação , Saccharomyces cerevisiae , Compostos de Sulfidrila , Torulaspora , Vinho , Vinho/microbiologia , Vinho/análise , Compostos de Sulfidrila/metabolismo , Saccharomyces cerevisiae/metabolismo , Torulaspora/metabolismo , Saccharomycetales/metabolismo , Saccharomycetales/crescimento & desenvolvimento , Vitis/microbiologia , Odorantes/análise
13.
J Agric Food Chem ; 72(34): 19016-19027, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39145698

RESUMO

Lipophenols, phenolic compounds esterified with fatty alcohols or fatty acids, provide greater health benefits upon dietary ingestion of plant-based foods than unesterified (poly)phenols. Based on this premise, the present study aimed to demonstrate the role of gastrointestinal enzymes (pepsin, pancreatin, and pancreatic lipase) in releasing alkyl gallates and trans-caffeates from wine lees, providing bioactive compounds with enhanced capacities against oxidative stress (OS) and para-inflammation. The UHPLC-ESI-QqQ-MS/MS-based analysis revealed ethyl gallate and ethyl trans-caffeate as the most prominent compounds (1.675 and 0.872 µg/g dw, respectively), while the bioaccessibility of the derivatives of gallic and caffeic acids was dependent on the alkyl chain properties. The de novo formation of alkyl gallates during gastric and intestinal digestion resulted from intestinal enzyme activity. Moreover, the in vitro capacity of bioaccessible alkyl esters of gallic and trans-caffeic acids to reduce cyclooxygenase-2 concentration and modulate oxilipins related to OS (8-iso-PGF2α) and inflammation (PGF2α and PGE2) was demonstrated in a time-dependent manner. In conclusion, the presence of alkyl esters of gallic and trans-caffeic acids in wine lees and their subsequent formation during digestion of this byproduct emphasize their value as a source of antioxidant and anti-inflammatory compounds, encouraging the consideration of wine lees as a valuable ingredient for health-promoting coproducts.


Assuntos
Ciclo-Oxigenase 2 , Ésteres , Estresse Oxidativo , Fenóis , Vinho , Estresse Oxidativo/efeitos dos fármacos , Vinho/análise , Fenóis/química , Fenóis/metabolismo , Ésteres/química , Ésteres/metabolismo , Ciclo-Oxigenase 2/metabolismo , Humanos , Inflamação/metabolismo , Vitis/química , Ácidos Cafeicos/química , Ácidos Cafeicos/metabolismo
14.
Microb Cell Fact ; 23(1): 231, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164751

RESUMO

BACKGROUND: Global warming causes an increase in the levels of sugars in grapes and hence in ethanol after wine fermentation. Therefore, alcohol reduction is a major target in modern oenology. Deletion of the MKS1 gene, a negative regulator of the Retrograde Response pathway, in Saccharomyces cerevisiae was reported to increase glycerol and reduce ethanol and acetic acid in wine. This study aimed to obtain mutants with a phenotype similar to that of the MKS1 deletion strain by subjecting commercial S. cerevisiae wine strains to an adaptive laboratory evolution (ALE) experiment with the lysine toxic analogue S-(2-aminoethyl)-L-cysteine (AEC). RESULTS: In laboratory-scale wine fermentation, isolated AEC-resistant mutants overproduced glycerol and reduced acetic acid. In some cases, ethanol was also reduced. Whole-genome sequencing revealed point mutations in the Retrograde Response activator Rtg2 and in the homocitrate synthases Lys20 and Lys21. However, only mutations in Rtg2 were responsible for the overactivation of the Retrograde Response pathway and ethanol reduction during vinification. Finally, wine fermentation was scaled up in an experimental cellar for one evolved mutant to confirm laboratory-scale results, and any potential negative sensory impact was ruled out. CONCLUSIONS: Overall, we have shown that hyperactivation of the Retrograde Response pathway by ALE with AEC is a valid approach for generating ready-to-use mutants with a desirable phenotype in winemaking.


Assuntos
Cisteína , Etanol , Fermentação , Glicerol , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vinho , Etanol/metabolismo , Vinho/análise , Glicerol/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cisteína/metabolismo , Evolução Molecular Direcionada , Mutação , Ácido Acético/metabolismo
15.
Food Res Int ; 192: 114803, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147502

RESUMO

Mannoproteins have traditionally been recognized as effective wine organoleptic modulators, however, ambiguous understanding of the relationship between their organoleptic functions and physiochemical characteristics often lead to inappropriate application in winemaking. To reveal the possible role the physiochemical characteristics of mannoproteins play in modulating wine color and aroma properties, three water-soluble mannoproteins (MP1, MP2, MP3) with different physiochemical characteristics have been prepared, and accelerated red wine aging, malvidin pigments formation experiments, accelerated aroma release experiments have been designed to observe their organoleptic modulating functions in this research. Results suggest that the phenolic/chromatic stability of red wines could be enhanced by MP3, probably due to its low steric hindrance potential, high reactivity, and good hydro-alcoholic stability conferred by its high Mannan/Glucan ratio (8.68), abundant hydrophobic/hydrophilic amino acids (65.29 % of total protein), and low/medium molecular weight level (30.71-57.77 kDa), respectively, which protected the phenolic compounds and promoted the formation of pyranoanthocyanins. Mannoproteins could modulate the volatility of aroma compounds by expelling or retention effects, which depended on the duration of mannoprotein application (the expelling effect was firstly observed possibly because of the significant adsorption of free H2O by MPs) and the types of mannoproteins. MP1 and MP2 were prone to retain and expel aroma compounds, respectively, probably due to their medium/high molecular weight levels (60.48-135.39 kDa) that conferred abundant interacting sites, and the high proportion of hydrophobic and hydrophilic components in MP1 (97.71 % polysaccharides of total mannoprotein, 34.58 % hydrophobic amino acids of total protein) and MP2 (97.96 % polysaccharides of total mannoprotein, 28.36 % hydrophobic amino acids of total protein) guaranteed a relatively higher interacting frequency with aroma compounds and free H2O molecules, respectively.


Assuntos
Glicoproteínas de Membrana , Odorantes , Vinho , Vinho/análise , Glicoproteínas de Membrana/metabolismo , Odorantes/análise , Cor , Mucoproteínas/química , Interações Hidrofóbicas e Hidrofílicas , Humanos , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química
16.
Food Chem ; 459: 140259, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089197

RESUMO

2-Aminoacetophenone is an off-flavor that can result from tryptophan degradation via riboflavin-photosensitized reaction. This study investigates the impact of light exposure, provided by a UV-C source, oxygen concentrations and transition metals on the formation of 2-aminoacetophenone in model wine containing tryptophan and riboflavin. Irrespective of oxygen and transition metals, >85% of tryptophan were degraded via first-order kinetics to unknown product(s). However, longer light exposure and more oxygen caused 2-aminoacetophenone concentrations to increase. Transition metals decelerated the 2-aminoacetophenone formation and acetaldehyde was formed suggesting photo-Fenton reaction occurred as a competitive reaction. The degradation rate of riboflavin inclined with less oxygen and in the presence of transition metals due to the depletion of oxygen by photo-Fenton reaction. Oxygen plays an important role in the regeneration of riboflavin and therefore must be seen as an intensifier for light-induced 2-aminoacetophenone formation. This paper provides new insights into riboflavin-photosensitized reactions.


Assuntos
Acetofenonas , Oxigênio , Riboflavina , Triptofano , Raios Ultravioleta , Vinho , Riboflavina/química , Triptofano/química , Vinho/análise , Acetofenonas/química , Oxigênio/química , Cinética , Elementos de Transição/química
17.
Anaerobe ; 89: 102893, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39122139

RESUMO

OBJECTIVES: Feeding winery by-products (WBP) could affect the bovine microbiome because of their phenol compounds and a transfer of WBP-associated microbiota. This work examined changes in the underexplored solid-associated rumen microbiome following the inclusion of WBP. METHODS: Using the rumen simulation technique, fermenters were inoculated with the inoculum of donor cows and were fed one of six dietary treatments including a control diet of 70 % hay +30 % concentrate (CON), control diet + 3.7 % commercial grapeseed extract (EXT), 65 % hay + 25 % concentrate + 10 % grape pomace (GP-low), 56 % hay + 24 % concentrate + 20 % grape pomace (GP-high), 70 % hay + 25 % concentrate + 5 % grapeseed meal (GS-low), and 65 % hay + 25 % concentrate + 10 % grapeseed meal (GS-high) (dry matter basis). The compositional changes of bacteria, archaea and fungi in the solid fractions were based on 16S and ITS2 rRNA sequencing. RESULTS: The alpha- and beta-diversity of the microbiota were unaffected. However, treatment modified the bacterial composition at low taxonomic levels. Butyrivibrio fibrisolvens, Treponema bryantii, and bacterium MC2010 decreased in EXT, while Treponema berlinense was increased in GP-high and GP-low compared to CON. Concerning fungi, GS-high increased Candida spp., Lachancea spp., Microdochium spp., Mucor spp., Pichia spp., Saturnispora spp., and Zygosaccharomyces spp. compared to CON. Many non-Saccharomyces yeasts were detected in WBP samples but absent in donor cows and CON samples. The genera affected by treatment were not the major contributors to the ruminal degradation of nutrients. CONCLUSIONS: The results indicate a sensitivity of rumen solid bacteria to grape phenols when delivered as an extract and a transfer of WBP-associated microbiota into the rumen.


Assuntos
Ração Animal , Bactérias , Fermentação , Fungos , Rúmen , Animais , Rúmen/microbiologia , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Ração Animal/análise , Bovinos , Microbioma Gastrointestinal/efeitos dos fármacos , Vinho/análise , Vinho/microbiologia , Microbiota/efeitos dos fármacos
18.
J Chromatogr A ; 1734: 465264, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39181094

RESUMO

Various sensory perceptions drive the quality and typicality of wines, with the volatile profile playing a fundamental role in the characteristics of odor, aroma and consequently flavor, which combines the smell (odor and aroma), taste, and trigeminal sensations. Efforts have been made in both the field of instrumental and sensory analysis to understand the relationship of volatile compounds with sensory attributes in omics approaches. Gas chromatography (monodimensional and two-dimensional (heartcutting and comprehensive)) associated with mass spectrometry (GC/MS, GC-GC/MS and GCxGC/MS) and chemometric tools have contributed to foodomics analyses, specifically those linked to metabolomics/volatilomics. These tools, along with the elucidation of sensory properties (sensomics), lead to advanced results in the field of flavoromics. They also help to define the best practices in both vineyard management and winemaking that enable the production of high-quality wines. The objective of this review is to report the challenges of determining the volatile profile of wines, pointing out the ways that can be followed in successful identification and quantification of volatile compounds. The state of the art of sensory evaluation methods is also addressed, providing information that helps in choosing the most appropriate sensory method to be conducted with chromatographic analysis to achieve more in-depth results in the field of flavoromics.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Paladar , Compostos Orgânicos Voláteis , Vinho , Vinho/análise , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Odorantes/análise , Humanos , Metabolômica/métodos
19.
Sci Rep ; 14(1): 17852, 2024 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090231

RESUMO

Melatonin is a multifunctional molecule with diverse biological roles that holds great value as a health-promoting bioactive molecule in any food product and yeast's ability to produce it has been extensively demonstrated in the last decade. However, its quantification presents costly analytical challenges due to the usual low concentrations found as the result of yeast metabolism. This study addresses these analytical challenges by optimizing a yeast biosensor based on G protein-coupled receptors (GPCR) for melatonin detection and quantitation. Strategic genetic modifications were employed to significantly enhance its sensitivity and fluorescent signal output, making it suitable for detection of yeast-produced melatonin. The optimized biosensor demonstrated significantly improved sensitivity and fluorescence, enabling the screening of 101 yeast strains and the detection of melatonin in various wine samples. This biosensor's efficacy in quantifying melatonin in yeast growth media underscores its utility in exploring melatonin production dynamics and potential applications in functional food development. This study provides a new analytical approach that allows a rapid and cost-effective melatonin analysis to reach deeper insights into the bioactivity of melatonin in fermented products and its implications for human health. These findings highlight the broader potential of biosensor technology in streamlining analytical processes in fermentation science.


Assuntos
Técnicas Biossensoriais , Fermentação , Melatonina , Receptores Acoplados a Proteínas G , Saccharomyces cerevisiae , Técnicas Biossensoriais/métodos , Melatonina/análise , Melatonina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Vinho/análise , Bebidas/análise
20.
Int J Mol Sci ; 25(16)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39201311

RESUMO

Flavonoids play an important role in forming wine grapes and wine quality characteristics. The flavonoids of three winter red wine grapes, Yeniang No. 2 (YN2), Marselan (Mar), and Guipu No. 6 (GP6), were analyzed by ultra-high-performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-QQQ-MS). Furthermore, the flavonoids in GP6 grapevines using two types of training systems, namely, trellis (T) and espaliers (E), were also compared in this study. Overall, 196 flavonoid metabolites, including 96 flavones, 38 flavonols, 19 flavanones, 18 polyphenols, 15 anthocyanins, 7 isoflavones, and 3 proanthocyanidins, were identified. The flavonoid profiles were remarkably different among these three grape varieties, while they did not change much in the GP6 managed on trellis and espaliers. Grape varieties with different genetic backgrounds have their own unique flavonoid profiles. Compared with Mar-T, isoflavones and flavonols presented higher contents in GP6-T and YN2-T, which mainly contain glycitein, genistin, calycosin, kaempferide, isotrifoliin, and ayanin. The anthocyanin content was significantly higher in YN2-T than in the other two varieties. YN2 and GP6-T present a more stable color, with significantly more acetylated diglucosides and methylated anthocyanins in YN2-T and GP6-T than in Mar-T. Notably, GP6 had more varied flavonoids and the better characteristics to its flavonoid profile out of these three varieties, due to it containing a higher number of anthocyanins, flavone, and flavonols and the greatest number of different flavonoid metabolites (DFMs), with higher contents than YN2 and Mar. Compared with the trellis training system, the espaliers training system increased the content of flavonoids detected in GP6 grape berries; however, the composition of flavonoids strictly depends on the grape variety.


Assuntos
Flavonoides , Metabolômica , Vitis , Vinho , Vitis/química , Vitis/metabolismo , Flavonoides/análise , Flavonoides/metabolismo , Vinho/análise , Metabolômica/métodos , China , Cromatografia Líquida de Alta Pressão , Antocianinas/análise , Antocianinas/metabolismo , Metaboloma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...