Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.177
Filtrar
1.
FEMS Yeast Res ; 242024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-39270658

RESUMO

Yeast cell wall chitin has been shown to bind grape pathogenesis-related chitinases that are the primary cause of protein haze in wines, suggesting that yeast cell walls may be applied for haze protection. Here, we present a high-throughput screen to identify yeast strains with high cell wall chitin using a reiterative enrichment strategy and fluorescence-activated cell sorting of cells labelled with either GFP-tagged chitinase or Calcofluor white. To assess the validity of the strategy, we first used a pooled deletion strain library of Saccharomyces cerevisiae. The strategy enriched for deletion mutants with genes that had previously been described as having an impact on chitin levels. Genes that had not previously been linked to chitin biosynthesis or deposition were also identified. These genes are involved in cell wall maintenance and/or membrane trafficking functions. The strategy was then applied to a mutagenized population of a commercial wine yeast strain, S. cerevisiae EC1118. Enriched mutant strains showed significantly higher cell wall chitin than the wild type and significantly reduced the activity of chitinases in synthetic model wine, suggesting that these strains may be able to reduce haze formation in wine.


Assuntos
Parede Celular , Quitina , Quitinases , Citometria de Fluxo , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Parede Celular/metabolismo , Quitina/metabolismo , Quitinases/genética , Quitinases/metabolismo , Deleção de Genes , Vinho/microbiologia , Ensaios de Triagem em Larga Escala , Benzenossulfonatos
2.
Food Microbiol ; 124: 104593, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39244355

RESUMO

Yeast assimilable nitrogen (YAN) is one of the important factors affecting yeast growth and metabolism. However, the nitrogen requirement of indigenous commercial S. cerevisiae NX11424 is unclear. In this study, metabolomics was used to analyze the metabolite profiles of the yeast strain NX11424 under high (433 mg/L) and low (55 mg/L) YAN concentrations. It was found that yeast biomass exhibited different trends under different YAN conditions and was generally positively correlated with the initial YAN concentration, while changes of key biomarkers of yeast strain NX11424 at different stages of fermentation showed a similar trend under high and low YAN concentrations. The YAN concentration affected the metabolite levels of the yeast strain NX11424, which resulted in the significant difference in the levels of pyruvic acid, α-oxoglutarate, palmitoleic acid, proline, butane-2,3-diol, citrulline, ornithine, galactinol, citramalic acid, tryptophan, alanine, phosphate and phenylethanol, mainly involving pathways such as central carbon metabolism, amino acid metabolism, fatty acid metabolism, purine metabolism, and energy metabolism. Yeast strain NX11424 could utilize proline to produce protein under a low YAN level. The intracellular level of citrulline and ornithine under high YAN concentration was higher than that under low YAN level. Yeast strain NX11424 is more suitable for fermentation at lower YAN level. The results obtained here will help to rational utilize of YAN by S. cerevisiae NX11424, and is conducive to precise control of the alcohol fermentation and improve wine quality.


Assuntos
Fermentação , Metabolômica , Nitrogênio , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Nitrogênio/metabolismo , Vinho/análise , Vinho/microbiologia , Biomassa , Aminoácidos/metabolismo
3.
Food Microbiol ; 124: 104609, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39244361

RESUMO

Fino Sherry wine undergoes biological aging carried out by a velum of flor yeast within a traditional dynamic system known as "criaderas and solera". The complex microbiota of biofilm-forming Saccharomyces cerevisiae strains play a crucial role in shaping the distinctive organoleptic profile of these types of wines. For this reason, the aim of this study is to analyze the changes produced by different flor yeast strains in the volatilome and the aminogram of different wines from the criaderas and solera system during biological aging in the laboratory, simulating a flor yeast velum condition at different stages of the system. Results suggest that each strain metabolizes wine differently, finding that depending on the wine, some strains are better suited for the process than others. In addition, it is found that the content of biogenic amines in Fino Sherry wines, previously attributed to malolactic bacteria, varies according to the yeast strain metabolizing the wine, suggesting that flor yeast could be used to modify biogenic amines content during biological aging. Results indicate that the use of selected flor yeast starters in biological aging may be of interest to modulate some parameters during Fino Sherry wine aging.


Assuntos
Fermentação , Saccharomyces cerevisiae , Compostos Orgânicos Voláteis , Vinho , Vinho/análise , Vinho/microbiologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos de Nitrogênio/metabolismo , Aminas Biogênicas/metabolismo , Aminas Biogênicas/análise
4.
Food Microbiol ; 124: 104624, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39244375

RESUMO

Environmental conditions significantly impact the metabolism of Saccharomyces cerevisiae, a Crabtree-positive yeast that maintains a fermentative metabolism in high-sugar environments even in the presence of oxygen. Although the introduction of oxygen has been reported to induce alterations in yeast metabolism, knowledge of the mechanisms behind these metabolic adaptations in relation to redox cofactor metabolism and their implications in the context of wine fermentation remains limited. This study aimed to compare the intracellular redox cofactor levels, the cofactor ratios, and primary metabolite production in S. cerevisiae under aerobic and anaerobic conditions in synthetic grape juice. The molecular mechanisms underlying these metabolic differences were explored using a transcriptomic approach. Aerobic conditions resulted in an enhanced fermentation rate and biomass yield. Total NADP(H) levels were threefold higher during aerobiosis, while a decline in the total levels of NAD(H) was observed. However, there were stark differences in the ratio of NAD+/NADH between the treatments. Despite few changes in the differential expression of genes involved in redox cofactor metabolism, anaerobiosis resulted in an increased expression of genes involved in lipid biosynthesis pathways, while the presence of oxygen increased the expression of genes associated with thiamine, methionine, and sulfur metabolism. The production of fermentation by-products was linked with differences in the redox metabolism in each treatment. This study provides valuable insights that may help steer the production of metabolites of industrial interest during alcoholic fermentation (including winemaking) by using oxygen as a lever of redox metabolism.


Assuntos
Fermentação , Oxirredução , Oxigênio , Saccharomyces cerevisiae , Vinho , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Oxigênio/metabolismo , Vinho/microbiologia , Vinho/análise , Anaerobiose , Vitis/microbiologia , Vitis/metabolismo , NAD/metabolismo , Etanol/metabolismo , NADP/metabolismo , Aerobiose , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Coenzimas/metabolismo
5.
BMC Microbiol ; 24(1): 370, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342090

RESUMO

BACKGROUND: Oenococcus oeni is a commercial wine-fermenting bacterial strain, owing to its high efficiency of malolactic fermentation and stress tolerance. The present study explored the function of key genes in O. oeni to enhance stress resistance by heterologous expression of these genes in another species. RESULTS: The orf00404 gene that encodes a two-component signal transduction response regulator in O. oeni was heterologously expressed in Lactiplantibacillus plantarum WCFS1. The expression of orf00404 significantly enhanced the growth rate of the recombinant strain under acid stress. At 60 h, 72 h, and 108 h of culture at pH 4.0, the recombinant strain had 1562, 641, and 748 differentially expressed genes compared to the control strain, respectively. At all three time points, 20 genes were upregulated in the recombinant strain, including the lamA-D operon-coding genes of the quorum-sensing two component signal transduction system and the spx5 RNA polymerase-binding protein coding gene, which may help adaptation to acid stress. In addition, 47 genes were downregulated in the recombinant strain at all three time points, including the hsp1 heat shock protein-coding gene, the trxA1 thioredoxin-coding gene, and the dinP, mutY, umuC, and uvrB DNA damage repair-related protein-coding genes, potentially indicating that the recombinant strain was less susceptible to stress and had less DNA damage than the control strain in acid stress conditions. The recombinant strain had higher membrane fluidity, permeability, and integrity at an early stage of logarithmic growth (72 h), suggesting that it had a more complete and active cell membrane state at this stage. The intracellular ATP content was significantly reduced in the recombinant strain at the beginning of logarithmic growth (60 h), implying that the recombinant strain consumed more energy at this stage to resist acid stress and growth. CONCLUSIONS: These results indicated that the recombinant strain enhances acid stress tolerance by regulating a gene expression pattern, increasing ATP consumption, and enhancing cell membrane fluidity, membrane permeability, and membrane integrity at specific growth stages. Thus, the recombinant strain may have potential application in the microbial biotechnology industry.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Oenococcus , Transdução de Sinais , Estresse Fisiológico , Oenococcus/genética , Oenococcus/metabolismo , Estresse Fisiológico/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fermentação , Ácidos/metabolismo , Concentração de Íons de Hidrogênio , Vinho/microbiologia , Lactobacillaceae/genética , Lactobacillaceae/metabolismo , Percepção de Quorum/genética
6.
Molecules ; 29(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39275126

RESUMO

The microbial terroir is an indispensable part of the terroir panorama, and can improve wine quality with special characteristics. In this study, eight autochthonous yeasts (Saccharomyces cerevisiae), selected in Huailai country, China, were trailed in small-scale and pilot fermentations for both white (Riesling and Sémillon) and red (Cabernet Sauvignon and Syrah) wines and evaluated by GC-MS analysis and the rate-all-that-apply (RATA) method. Compared to commercial yeast strains, the indigenous yeasts were able to produce higher concentrations of ethyl esters and fatty acid ethyl esters, and higher alcohol, resulting in higher odor activity values of fruity, floral attributes. Marked varietal effects were observed in the pilot fermentation, but yeast strains exerted a noticeable impact in modulating wine aroma and sensory profile. Overall, indigenous yeast could produce more preferred aroma compounds and sensory characteristics for both white and red wines, demonstrating the potential for improving wine quality and regional characteristics.


Assuntos
Fermentação , Odorantes , Saccharomyces cerevisiae , Vinho , Vinho/análise , Vinho/microbiologia , Saccharomyces cerevisiae/metabolismo , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas , Leveduras/metabolismo , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , China
7.
Appl Environ Microbiol ; 90(9): e0081024, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39136488

RESUMO

The apiculate yeast genus Hanseniaspora has appeared frequently in enological research for more than 100 years, mostly focused upon the species H. uvarum due to its notable capacity to cause spoilage. Recently, there has been increased research into the potential benefits of other Hanseniaspora species, such as H. vineae, in producing more complex wines. Furthermore, large-scale DNA sequencing-based (metabarcoding) vineyard ecology studies have suggested that Hanseniaspora species may not be evenly distributed. To address potential differences across geographical areas in Oregon, we sampled extensively from 12 vineyards within the Willamette Valley American Viticultural Area (AVA), across 2 sub-AVAs (Eola-Amity Hills and Yamhill-Carlton). Metabarcoding was then used to assess the contribution of Hanseniaspora to the grape berry fungal community and the impact of wine processing on diversity. While 6 of the 23 recognized Hanseniaspora species were present on Pinot Noir grapes in the Willamette Valley AVA, differences between vineyards were driven by the abundance of H. uvarum. Significant positive correlations between the amount of H. uvarum present in must and at cold soak, and then cold soak to early ferment were observed. While intuitive, it is worth noting that no prior studies have observed this across such a large number of grape samples from different vineyards. Our results provide clear evidence that the abundance of H. uvarum on grapes may be an important predictor of potential impacts on wine quality, particularly if performing cold soak, which acts as an enrichment step. IMPORTANCE: Hanseniaspora yeasts are frequently found in uninoculated wine fermentations, and depending upon the species present, their contributions to the wine may be positive or negative. We found that in Oregon's Willamette Valley, the most common species of Hanseniaspora in Pinot Noir vineyards was the known spoilage organism, H. uvarum. This species was one of the strongest contributors to differences in fungal communities between different vineyards and was enriched during typical Pinot Noir processing. These results support Hanseniaspora as an integral and functional component of vineyard "microbial terroir" within Oregon.


Assuntos
Hanseniaspora , Vitis , Vinho , Vinho/microbiologia , Vinho/análise , Oregon , Hanseniaspora/genética , Vitis/microbiologia
8.
Food Res Int ; 192: 114782, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147480

RESUMO

Infection of grapevines with the grey mold pathogen Botrytis cinerea results in severe problems for winemakers worldwide. Browning of wine is caused by the laccase-mediated oxidation of polyphenols. In the last decades, Botrytis management has become increasingly difficult due to the rising number of resistances and the genetic variety of Botrytis strains. During the search for sustainable fungicides, polyphenols showed great potential to inhibit fungal growth. The present study revealed two important aspects regarding the effects of grape-specific polyphenols and their polymerized oxidation products on Botrytis wild strains. On the one hand, laccase-mediated oxidized polyphenols, which resemble the products found in infected grapes, showed the same potential for inhibition of growth and laccase activity, but differed from their native forms. On the other hand, the impact of phenolic compounds on mycelial growth is not correlated to the effect on laccase activity. Instead, mycelial growth and relative specific laccase activity appear to be modulated independently. All phenolic compounds showed not only inhibitory but also inductive effects on fungal growth and/or laccase activity, an observation which is reported for the first time. The simultaneous inhibition of growth and laccase activity demonstrated may serve as a basis for the development of a natural botryticide. Yet, the results showed considerable differences between genetically distinguishable strains, impeding the use of a specific phenolic compound against the genetic variety of wild strains. The present findings might have important implications for future understanding of Botrytis cinerea infections and sustainable Botrytis management including the role of polyphenols.


Assuntos
Botrytis , Lacase , Oxirredução , Polifenóis , Vitis , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Botrytis/enzimologia , Lacase/metabolismo , Polifenóis/farmacologia , Vitis/microbiologia , Micélio/crescimento & desenvolvimento , Micélio/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Vinho/microbiologia , Doenças das Plantas/microbiologia
9.
Anaerobe ; 89: 102893, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39122139

RESUMO

OBJECTIVES: Feeding winery by-products (WBP) could affect the bovine microbiome because of their phenol compounds and a transfer of WBP-associated microbiota. This work examined changes in the underexplored solid-associated rumen microbiome following the inclusion of WBP. METHODS: Using the rumen simulation technique, fermenters were inoculated with the inoculum of donor cows and were fed one of six dietary treatments including a control diet of 70 % hay +30 % concentrate (CON), control diet + 3.7 % commercial grapeseed extract (EXT), 65 % hay + 25 % concentrate + 10 % grape pomace (GP-low), 56 % hay + 24 % concentrate + 20 % grape pomace (GP-high), 70 % hay + 25 % concentrate + 5 % grapeseed meal (GS-low), and 65 % hay + 25 % concentrate + 10 % grapeseed meal (GS-high) (dry matter basis). The compositional changes of bacteria, archaea and fungi in the solid fractions were based on 16S and ITS2 rRNA sequencing. RESULTS: The alpha- and beta-diversity of the microbiota were unaffected. However, treatment modified the bacterial composition at low taxonomic levels. Butyrivibrio fibrisolvens, Treponema bryantii, and bacterium MC2010 decreased in EXT, while Treponema berlinense was increased in GP-high and GP-low compared to CON. Concerning fungi, GS-high increased Candida spp., Lachancea spp., Microdochium spp., Mucor spp., Pichia spp., Saturnispora spp., and Zygosaccharomyces spp. compared to CON. Many non-Saccharomyces yeasts were detected in WBP samples but absent in donor cows and CON samples. The genera affected by treatment were not the major contributors to the ruminal degradation of nutrients. CONCLUSIONS: The results indicate a sensitivity of rumen solid bacteria to grape phenols when delivered as an extract and a transfer of WBP-associated microbiota into the rumen.


Assuntos
Ração Animal , Bactérias , Fermentação , Fungos , Rúmen , Animais , Rúmen/microbiologia , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Ração Animal/análise , Bovinos , Microbioma Gastrointestinal/efeitos dos fármacos , Vinho/análise , Vinho/microbiologia , Microbiota/efeitos dos fármacos
10.
Int J Food Microbiol ; 425: 110858, 2024 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-39163814

RESUMO

The aromatic profile of wine determines its overall final quality, and among the volatile molecules that define it, varietal thiols are responsible for shaping the distinctive character of certain wine varieties. In grape must, these thiols are conjugated to amino acids or small peptides in a non-volatile form. During wine fermentation, yeasts play a principal role in expressing these aromatic compounds as they internalise and cleavage these precursors, releasing the corresponding free and aroma-impacting fraction. Here, we investigate the impact of three wine yeasts (Saccharomyces cerevisiae, Torulaspora delbrueckii and Lachancea thermotolerans) on thiol releasing in synthetic grape must fermentations supplemented with different cysteinylated (Cys-4MSP and Cys-3SH) and glutathionylated (GSH-4MSP and GSH-3SH) precursors. We demonstrate higher consumption levels of cysteinylated precursors, and consequently, higher amounts of thiols are released from them compared to glutathionylated ones. We also report a significant impact of yeast inoculated on the final thiols released. Meanwhile T. delkbrueckii exhibits a great 3SHA releasing capacity, L. thermotolerans stands out because of its high 3SH release. We also highlight the synergic effect of the co-inoculation strategy, especially relevant in the case of S. cerevisiae and L. thermotolerans mixed fermentation, that has an outstanding release of 4MSP thiol. Although our results stem from a specific experimental approach that differs from real winemaking situations, these findings reveal the potential of unravelling the specific role of different yeast species, thiol precursors and their interaction, to improve wine production processes in the context of wine aroma enhancement.


Assuntos
Fermentação , Saccharomyces cerevisiae , Compostos de Sulfidrila , Torulaspora , Vinho , Vinho/microbiologia , Vinho/análise , Compostos de Sulfidrila/metabolismo , Saccharomyces cerevisiae/metabolismo , Torulaspora/metabolismo , Saccharomycetales/metabolismo , Saccharomycetales/crescimento & desenvolvimento , Vitis/microbiologia , Odorantes/análise
11.
Food Chem ; 460(Pt 3): 140758, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39121775

RESUMO

To unlock the potential of indigenous non-Saccharomyces cerevisiae and develop novel starters to enhance the aromatic complexity of kiwifruit wine, Zygosaccharomyces rouxii, Pichia kudriavzevii and Meyerozyma guilliermondii were pairwise combined and then used in sequential fermentation with Saccharomyces cerevisiae. The impact of different starter cultures on the chemical composition and flavor profile of the kiwifruit wines was comprehensively analyzed, and the aroma evolution during alcoholic fermentation was investigated by examining the changes in key volatiles and their loss rates. Compared with Saccharomyces cerevisiae, mixed starter cultures not only improve antioxidant capacity but also increase esters and alcohols yields, presenting intense floral and fruity aromas with high sensory acceptability. The results indicated that sequential inoculation of non-Saccharomyces cerevisiae combination and Saccharomyces cerevisiae promoted the development of volatiles while maintaining the stability of key aroma compounds in the winemaking environment and reducing the aroma loss rates during alcoholic fermentation.


Assuntos
Actinidia , Fermentação , Frutas , Odorantes , Saccharomyces cerevisiae , Compostos Orgânicos Voláteis , Vinho , Vinho/análise , Vinho/microbiologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Actinidia/química , Actinidia/metabolismo , Odorantes/análise , Frutas/química , Frutas/metabolismo , Frutas/microbiologia , Paladar , Humanos , Aromatizantes/metabolismo , Aromatizantes/química
12.
Food Chem ; 460(Pt 3): 140647, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39121781

RESUMO

Microbial interactions during the fermentation process influence the sensory characteristics of wines. Alongside alcoholic fermentation, malolactic fermentation also plays a crucial role in determining the aromatic traits of wines. The time (t), rate (m) and volatile organic compounds (VOCs) of malolactic fermentation are linked to the interaction between yeasts and lactic acid bacteria. The study investigated the interactions between Lactiplantibacillus plantarum or Oenococcus oeni with Saccharomyces cerevisiae by using the Technological Affinity Index (TAIndex). The co-inoculation of L. plantarum/S. cerevisiae resulted in a higher TAIndex than the co-inoculation of O. oeni/S. cerevisiae conditions. A low TAIndex led to increased aromaticity of the wines. The time and rate of malolactic fermentation have a strong impact on the synthesis of VOCs with a high olfactory impact. Therefore, knowledge of the TAIndex could play a decisive role in improving winemaking planning to produce wines with higher fruit and floral perceptions.


Assuntos
Fermentação , Odorantes , Oenococcus , Saccharomyces cerevisiae , Compostos Orgânicos Voláteis , Vinho , Vinho/análise , Vinho/microbiologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Odorantes/análise , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Oenococcus/metabolismo , Frutas/química , Frutas/microbiologia , Frutas/metabolismo , Lactobacillales/metabolismo , Vitis/microbiologia , Vitis/química , Vitis/metabolismo , Humanos , Lactobacillus plantarum/metabolismo
13.
Food Chem ; 460(Pt 3): 140658, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39126949

RESUMO

This investigation explores the impact of various fermentation techniques and the inoculation of Bacillus subtilis spores on the physicochemical properties and principal flavor profiles of Huangjiu. Employing sensory analysis, headspace solid-phase microextraction, gas chromatography-tandem mass spectrometry (HS-SPME-GC-MS), and orthogonal partial least squares discriminant analysis (OPLS-DA), we observed that these variables significantly alter the physicochemical attributes of Huangjiu. Our analysis, integrating volatile organic compounds (VOCs) with odor activity values (OAV), revealed that while B. subtilis inoculation modifies the concentrations of key flavor compounds, it does not affect their types. Notably, the inoculation enhances the concentrations of 13 primary flavor compounds, thereby enriching floral and fruity notes while reducing higher alcohol levels. These findings contribute valuable insights into the flavor formation mechanisms of Huangjiu and guide the optimization of fermentation processes.


Assuntos
Bacillus subtilis , Fermentação , Oryza , Paladar , Compostos Orgânicos Voláteis , Vinho , Adulto , Feminino , Humanos , Masculino , Cromatografia Gasosa-Espectrometria de Massas , Odorantes/análise , Oryza/química , Oryza/microbiologia , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Vinho/análise , Vinho/microbiologia
14.
Mol Syst Biol ; 20(10): 1109-1133, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39174863

RESUMO

Adaptive Laboratory Evolution (ALE) of microorganisms can improve the efficiency of sustainable industrial processes important to the global economy. However, stochasticity and genetic background effects often lead to suboptimal outcomes during laboratory evolution. Here we report an ALE platform to circumvent these shortcomings through parallelized clonal evolution at an unprecedented scale. Using this platform, we evolved 104 yeast populations in parallel from many strains for eight desired wine fermentation-related traits. Expansions of both ALE replicates and lineage numbers broadened the evolutionary search spectrum leading to improved wine yeasts unencumbered by unwanted side effects. At the genomic level, evolutionary gains in metabolic characteristics often coincided with distinct chromosome amplifications and the emergence of side-effect syndromes that were characteristic of each selection niche. Several high-performing ALE strains exhibited desired wine fermentation kinetics when tested in larger liquid cultures, supporting their suitability for application. More broadly, our high-throughput ALE platform opens opportunities for rapid optimization of microbes which otherwise could take many years to accomplish.


Assuntos
Fermentação , Fenótipo , Saccharomyces cerevisiae , Vinho , Vinho/microbiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Evolução Clonal/genética , Evolução Molecular Direcionada
15.
Int J Food Microbiol ; 425: 110894, 2024 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-39216361

RESUMO

The life cycle of most non-conventional yeasts, such as Torulaspora delbrueckii (Td), is not as well-understood as that of Saccharomyces cerevisiae (Sc). Td is generally assumed to be haploid, which detracts from some biotechnological properties compared to diploid Sc strains. We analyzed the life cycle of several Td wine strains and found that they were mainly diploid during exponential growth in rich medium. However, most cells became haploid in stationary phase, as observed for Sc haploid heterothallic strains. When transferred and incubated in nutrient-deficient media, these haploid cells became polymorphic, enlarged, and transitioned to diploid or polyploid states. The increased ploidy, that mainly results from supernumerary mitosis without cytokinesis, was followed by sporulation. A similar response was observed in yeasts that remained alive during the second fermentation of base wine for sparkling wine making, or during growth in ethanol-supplemented medium. This response was not observed in the Sc yeast populations under any of the experimental conditions assayed, which suggests that it is a specific adaptation of Td to the stressful fermentation conditions. This response allows Td yeasts to remain alive and metabolically active longer during wine fermentation. Consequently, we designed procedures to increase the cell size and ploidy of haploid Td strains. Td inocula with increased ploidy showed enhanced fermentation efficiency compared to haploid inocula of the same strains.


Assuntos
Fermentação , Ploidias , Torulaspora , Vinho , Vinho/microbiologia , Torulaspora/genética , Torulaspora/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Haploidia , Microbiologia de Alimentos , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo
16.
Food Chem ; 457: 140428, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39024661

RESUMO

Black rice wine (BRW) is a traditional Chinese rice wine with unique flavors; however, the formation pathways of flavor compounds driven by microbiota remain unclear. This study employed HPLC and GC-MS to reveal that during BRW fermentation, free amino acids increased sevenfold, volatile compounds doubled, and 28 key characteristic flavor compounds were identified. Metatranscriptomic analysis indicated that during fermentation, driven by physicochemical factors and microbial interactions, Saccharomyces gradually became the dominant active microorganism (relative abundance 87.01%-97.70%). Other dominant microorganisms (relative abundance >0.1%), including Saccharomycopsis, Pediococcus, Wickerhamomyces, and Weissella, significantly decreased. Meanwhile, the microflora's signature functions underwent succession: transcription early, carbohydrate metabolism mid-stage, and autophagy late. These microbial and functional successions facilitated the accumulation of flavor compounds. Metabolic network reconstruction revealed that Saccharomyces was pivotal in substrate degradation and flavor formation, while other dominant microorganisms actively promoted these processes. This study provides insights into regulating BRW's flavor through microorganisms.


Assuntos
Bactérias , Fermentação , Aromatizantes , Microbiota , Oryza , Vinho , Vinho/análise , Vinho/microbiologia , Oryza/microbiologia , Oryza/metabolismo , Oryza/química , Aromatizantes/metabolismo , Aromatizantes/química , Bactérias/genética , Bactérias/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , Paladar
17.
Microbiol Spectr ; 12(8): e0057223, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39012115

RESUMO

Fermenting grape juice provides a habitat for a well-mapped and evolutionarily relevant microbial ecosystem consisting of many natural or inoculated strains of yeasts and bacteria. The molecular nature of many of the ecological interactions within this ecosystem remains poorly understood, with the partial exception of interactions of a metabolic nature such as competition for nutrients and production of toxic metabolites/peptides. Data suggest that physical contact between species plays a significant role in the phenotypic outcome of interspecies interactions. However, the molecular nature of the mechanisms regulating these phenotypes remains unknown. Here, we present a transcriptomic analysis of physical versus metabolic contact between two wine relevant yeast species, Saccharomyces cerevisiae and Lachancea thermotolerans. The data show that these species respond to the physical presence of the other species. In S. cerevisiae, physical contact results in the upregulation of genes involved in maintaining cell wall integrity, cell wall structural components, and genes involved in the production of H2S. In L. thermotolerans, HSP stress response genes were the most significantly upregulated gene family. Both yeasts downregulated genes belonging to the FLO family, some of which play prominent roles in cellular adhesion. qPCR analysis indicates that the expression of some of these genes is regulated in a species-specific manner, suggesting that yeasts adjust gene expression to specific biotic challenges or interspecies interactions. These findings provide fundamental insights into yeast interactions and evolutionary adaptations of these species to the wine ecosystem.IMPORTANCEWithin the wine ecosystem, yeasts are the most relevant contributors to alcoholic fermentation and wine organoleptic characteristics. While some studies have described yeast-yeast interactions during alcoholic fermentation, such interactions remain ill-defined, and little is understood regarding the molecular mechanisms behind many of the phenotypes observed when two or more species are co-cultured. In particular, no study has investigated transcriptional regulation in response to physical interspecies cell-cell contact, as opposed to the generally better understood/characterized metabolic interactions. These data are of direct relevance to our understanding of microbial ecological interactions in general while also creating opportunities to improve ecosystem-based biotechnological applications such as wine fermentation. Furthermore, the presence of competitor species has rarely been considered an evolutionary biotic selection pressure. In this context, the data reveal novel gene functions. This, and further such analysis, is likely to significantly enlarge the genome annotation space.


Assuntos
Fermentação , Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae , Transcriptoma , Vinho , Vinho/microbiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Saccharomycetales/metabolismo , Perfilação da Expressão Gênica , Vitis/microbiologia , Vitis/genética , Parede Celular/metabolismo , Parede Celular/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interações Microbianas
18.
Food Microbiol ; 123: 104571, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038885

RESUMO

The pieddecuve (PdC) technique involves using a portion of grape must to undergo spontaneous fermentation, which is then used to inoculate a larger volume of must. This allows for promoting autochthonous yeasts present in the must, which can respect the typicality of the resulting wine. However, the real impact of this practice on the yeast population has not been properly evaluated. In this study, we examined the effects of sulphur dioxide (SO2), temperature, ethanol supplementation, and time on the dynamics and selection of yeasts during spontaneous fermentation to be used as PdC. The experimentation was conducted in a synthetic medium and sterile must using a multi-species yeast consortium and in un-inoculated natural grape must. Saccharomyces cerevisiae dominated both the PdC and fermentations inoculated with commercial wine yeast, displaying similar population growth regardless of the tested conditions. However, using 40 mg/L of SO2 and 1% (v/v) ethanol during spontaneous fermentation of Muscat of Alexandria must allowed the non-Saccharomyces to be dominant during the first stages, regardless of the temperature tested. These findings suggest that it is possible to apply the studied parameters to modulate the yeast population during spontaneous fermentation while confirming the effectiveness of the PdC methodology in controlling alcoholic fermentation.


Assuntos
Etanol , Fermentação , Saccharomyces cerevisiae , Dióxido de Enxofre , Vitis , Vinho , Leveduras , Vitis/microbiologia , Vinho/microbiologia , Vinho/análise , Etanol/metabolismo , Dióxido de Enxofre/farmacologia , Dióxido de Enxofre/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Leveduras/metabolismo , Temperatura , Estresse Fisiológico
19.
Food Microbiol ; 123: 104582, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038888

RESUMO

One of the best-known Hungarian products on world wine market is Aszú, which belongs to the family of Tokaj wine specialties and is made from aszú berries. An important condition for the formation of aszú berries is the noble rot of technologically mature grapes, which is caused by Botrytis cinerea. At the same time botrytized sweet wines are produced not only in Hungary, but in many locations of wine-producing areas of Europe as well as in certain wine growing regions of other continents. The determination of botrytization is mostly based on sensory evaluations, which is a highly subjective procedure and largely depends on the training and experience of the evaluator. Currently, the classification of aszú berries (class I and class II) is based only on visual inspection and determination of sugar content. Based on these facts the primary goal of our work was to develop a qPCR assay capable for objective rating and classification of aszú berries. The developed qPCR is highly specific and sensitive as can clearly distinguish between B. cinerea and other filamentous fungi and yeast species occur on grapes. Moreover, it is suitable for categorizing berries colonized by B. cinerea to varying degrees. Thus, the developed qPCR method can be a useful technique for classification of the grape berries into four quality groups: healthy, semi-shrivelled, Aszú Class II and Aszú Class I.


Assuntos
Botrytis , Frutas , Vitis , Vinho , Vitis/microbiologia , Vinho/microbiologia , Vinho/análise , Frutas/microbiologia , Botrytis/genética , Botrytis/classificação , Botrytis/isolamento & purificação , Hungria , Reação em Cadeia da Polimerase em Tempo Real/métodos , Doenças das Plantas/microbiologia
20.
Food Microbiol ; 123: 104589, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39038894

RESUMO

To further explore strain potential and develop an aromatic kiwifruit wine fermentation technique, the feasibility of simultaneous inoculation by non-Saccharomyces yeast and lactic acid bacteria was investigated. Lacticaseibacillus paracasei, Lactiplantibacillus plantarum, and Limosilactobacillus fermentum, which have robust ß-glucosidase activity as well as good acid and ethanol tolerance, were inoculated for simultaneous fermentation with Zygosaccharomyces rouxii and Meyerozyma guilliermondii, respectively. Subsequently, the chemical compositions and sensory characteristics of the wines were comprehensively evaluated. The results showed that the majority of the simultaneous protocols effectively improved the quality of kiwifruit wines, increasing the content of polyphenols and volatile compounds, thereby enhancing sensory acceptability compared to the fermentation protocols inoculated with non-Saccharomyces yeast individually. Particularly, the collaboration between Lacp. plantarum and Z. rouxii significantly increased the diversity and content of esters, alcohols, and ketones, intensifying floral and seeded fruit odors, and achieving the highest overall acceptability. This study highlights the potential significance of simultaneous inoculation in kiwifruit wine production.


Assuntos
Actinidia , Fermentação , Frutas , Odorantes , Paladar , Compostos Orgânicos Voláteis , Vinho , Actinidia/microbiologia , Vinho/microbiologia , Vinho/análise , Frutas/microbiologia , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Odorantes/análise , Humanos , Polifenóis/metabolismo , Polifenóis/análise , Lactobacillales/metabolismo , Leveduras/metabolismo , Zygosaccharomyces/metabolismo , Zygosaccharomyces/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...