Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58.584
Filtrar
1.
J Med Microbiol ; 73(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38743467

RESUMO

Introduction . Acinetobacter baumannii is a critical priority pathogen for novel antimicrobials (World Health Organization) because of the rise in nosocomial infections and its ability to evolve resistance to last resort antibiotics. A. baumannii is thus a priority target for phage therapeutics. Two strains of a novel, virulent bacteriophage (LemonAid and Tonic) able to infect carbapenem-resistant A. baumannii (strain NCTC 13420), were isolated from environmental water samples collected through a citizen science programme.Gap statement. Phage-host coevolution can lead to emergence of host resistance, with a concomitant reduction in the virulence of host bacteria; a potential benefit to phage therapy applications.Methodology. In vitro and in vivo assays, genomics and microscopy techniques were used to characterize the phages; determine mechanisms and impact of phage resistance on host virulence, and the efficacy of the phages against A. baumannii.Results. A. baumannii developed resistance to both viruses, LemonAid and Tonic. Resistance came at a cost to virulence, with the resistant variants causing significantly reduced mortality in a Galleria mellonella larval in vivo model. A replicated 8 bp insertion increased in frequency (~40 % higher frequency than in the wild-type) within phage-resistant A. baumannii mutants, putatively resulting in early truncation of a protein of unknown function. Evidence from comparative genomics and an adsorption assay suggests this protein acts as a novel phage receptor site in A. baumannii. We find no evidence linking resistance to changes in capsule structure, a known virulence factor. LemonAid efficiently suppressed growth of A. baumanni in vitro across a wide range of titres. However, in vivo, while survival of A. baumannii infected larvae significantly increased with both remedial and prophylactic treatment with LemonAid (107 p.f.u. ml-1), the effect was weak and not sufficient to save larvae from morbidity and mortality.Conclusion. While LemonAid and Tonic did not prove effective as a treatment in a Galleria larvae model, there is potential to harness their ability to attenuate virulence in drug-resistant A. baumannii.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Bacteriófagos , Acinetobacter baumannii/virologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/patogenicidade , Acinetobacter baumannii/genética , Bacteriófagos/genética , Bacteriófagos/fisiologia , Virulência , Infecções por Acinetobacter/microbiologia , Animais , Mariposas/microbiologia , Mariposas/virologia , Terapia por Fagos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Larva/microbiologia , Larva/virologia
2.
BMC Genomics ; 25(1): 461, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734623

RESUMO

BACKGROUND: Pseudomonas syringae pv. actinidiae (Psa) is an important bacterial plant pathogen that causes severe damage to the kiwifruit industry worldwide. Three Psa strains were recently obtained from different kiwifruit orchards in Anhui Province, China. The present study mainly focused on the variations in virulence and genome characteristics of these strains based on the pathogenicity assays and comparative genomic analyses. RESULTS: Three strains were identified as biovar 3 (Psa3), along with strain QSY6 showing higher virulence than JZY2 and YXH1 in pathogenicity assays. The whole genome assembly revealed that each of the three strains had a circular chromosome and a complete plasmid. The chromosome sizes ranged from 6.5 to 6.6 Mb with a GC content of approximately 58.39 to 58.46%, and a predicted number of protein-coding sequences ranging from 5,884 to 6,019. The three strains clustered tightly with 8 Psa3 reference strains in terms of average nucleotide identity (ANI), whole-genome-based phylogenetic analysis, and pangenome analysis, while they were evolutionarily distinct from other biovars (Psa1 and Psa5). Variations were observed in the repertoire of effectors of the type III secretion system among all 15 strains. Moreover, synteny analysis of the three sequenced strains revealed eight genomic regions containing 308 genes exclusively present in the highly virulent strain QSY6. Further investigation of these genes showed that 16 virulence-related genes highlight several key factors, such as effector delivery systems (type III secretion systems) and adherence (type IV pilus), which might be crucial for the virulence of QSY6. CONCLUSION: Three Psa strains were identified and showed variant virulence in kiwifruit plant. Complete genome sequences and comparative genomic analyses further provided a theoretical basis for the potential pathogenic factors responsible for kiwifruit bacterial canker.


Assuntos
Actinidia , Genoma Bacteriano , Genômica , Filogenia , Doenças das Plantas , Pseudomonas syringae , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , China , Actinidia/microbiologia , Virulência/genética , Doenças das Plantas/microbiologia
3.
Appl Microbiol Biotechnol ; 108(1): 328, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717672

RESUMO

Pseudogenes are defined as "non-functional" copies of corresponding parent genes. The cognition of pseudogenes continues to be refreshed through accumulating and updating research findings. Previous studies have predominantly focused on mammals, but pseudogenes have received relatively less attention in the field of microbiology. Given the increasing recognition on the importance of pseudogenes, in this review, we focus on several aspects of microorganism pseudogenes, including their classification and characteristics, their generation and fate, their identification, their abundance and distribution, their impact on virulence, their ability to recombine with functional genes, the extent to which some pseudogenes are transcribed and translated, and the relationship between pseudogenes and viruses. By summarizing and organizing the latest research progress, this review will provide a comprehensive perspective and improved understanding on pseudogenes in microorganisms. KEY POINTS: • Concept, classification and characteristics, identification and databases, content, and distribution of microbial pseudogenes are presented. • How pseudogenization contribute to pathogen virulence is highlighted. • Pseudogenes with potential functions in microorganisms are discussed.


Assuntos
Bactérias , Pseudogenes , Pseudogenes/genética , Bactérias/genética , Bactérias/classificação , Virulência/genética , Vírus/genética , Vírus/classificação
4.
BMC Genom Data ; 25(1): 40, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724915

RESUMO

Bulb rot, a highly damaging disease of tulip plants, has hindered their profitable cultivation worldwide. This rot occurs in both field and storage conditions posing significant challenges. While this disease has been attributed to a range of pathogens, previous investigations have solely examined it within the framework of a single-pathogen disease model. Our study took a different approach and identified four pathogens associated with the disease: Fusarium solani, Penicillium chrysogenum, Botrytis tulipae, and Aspergillus niger. The primary objective of our research was to examine the impact of co-infections on the overall virulence dynamics of these pathogens. Through co-inoculation experiments on potato dextrose agar, we delineated three primary interaction patterns: antibiosis, deadlock, and merging. In vitro trials involving individual pathogen inoculations on tulip bulbs revealed that B. tulipae,was the most virulent and induced complete bulb decay. Nonetheless, when these pathogens were simultaneously introduced in various combinations, outcomes ranged from partial bulb decay to elongated rotting periods. This indicated a notable degree of antagonistic behaviour among the pathogens. While synergistic interactions were evident in a few combinations, antagonism overwhelmingly prevailed. The complex interplay of these pathogens during co-infection led to a noticeable change in the overall severity of the disease. This underscores the significance of pathogen-pathogen interactions in the realm of plant pathology, opening new insights for understanding and managing tulip bulb rot.


Assuntos
Fusarium , Doenças das Plantas , Tulipa , Doenças das Plantas/microbiologia , Fusarium/patogenicidade , Tulipa/microbiologia , Botrytis/patogenicidade , Penicillium chrysogenum/patogenicidade , Aspergillus niger/patogenicidade , Virulência , Raízes de Plantas/microbiologia
5.
PeerJ ; 12: e17381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726379

RESUMO

Background: Escherichia coli is an important intestinal flora, of which pathogenic E. coli is capable of causing many enteric and extra-intestinal diseases. Antibiotics are essential for the treatment of bacterial infections caused by pathogenic E. coli; however, with the widespread use of antibiotics, drug resistance in E. coli has become particularly serious, posing a global threat to human, animal, and environmental health. While the drug resistance and pathogenicity of E. coli carried by tigers and leopards in captivity have been studied intensively in recent years, there is an extreme lack of information on E. coli in these top predators in the wild environment. Methods: Whole genome sequencing data of 32 E. coli strains collected from the feces of wild Amur tiger (Panthera tigris altaica, n = 24) and North China leopard (Panthera pardus japonensis, n = 8) were analyzed in this article. The multi-locus sequence types, serotypes, virulence and resistance genotypes, plasmid replicon types, and core genomic SNPs phylogeny of these isolates were studied. Additionally, antimicrobial susceptibility testing (AST) was performed on these E. coli isolates. Results: Among the E. coli isolates studied, 18 different sequence types were identified, with ST939 (21.9%), ST10 (15.6%), and ST3246 (9.4%) being the most prevalent. A total of 111 virulence genes were detected, averaging about 54 virulence genes per sample. They contribute to invasion, adherence, immune evasion, efflux pump, toxin, motility, stress adaption, and other virulence-related functions of E. coli. Sixty-eight AMR genes and point mutations were identified. Among the detected resistance genes, those belonging to the efflux pump family were the most abundant. Thirty-two E. coli isolates showed the highest rate of resistance to tetracycline (14/32; 43.8%), followed by imipenem (4/32; 12.5%), ciprofloxacin (3/32; 9.4%), doxycycline (2/32; 6.3%), and norfloxacin (1/32; 3.1%). Conclusions: Our results suggest that E. coli isolates carried by wild Amur tigers and North China leopards have potential pathogenicity and drug resistance.


Assuntos
Escherichia coli , Fezes , Panthera , Tigres , Sequenciamento Completo do Genoma , Animais , Tigres/microbiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/patogenicidade , Escherichia coli/isolamento & purificação , Panthera/microbiologia , Fezes/microbiologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/microbiologia , Filogenia , Antibacterianos/farmacologia , Genoma Bacteriano/genética , Testes de Sensibilidade Microbiana , China , Virulência/genética , Farmacorresistência Bacteriana/genética , Polimorfismo de Nucleotídeo Único/genética , Tipagem de Sequências Multilocus
6.
Food Res Int ; 186: 114312, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729688

RESUMO

Listeria monocytogenes exhibits varying levels of pathogenicity when entering the host through contaminated food. However, little is known regarding the stress response and environmental tolerance mechanism of different virulence strains to host gastrointestinal (GI) stimuli. This study analyzed the differences in the survival and genes of stress responses among two strains of L. monocytogenes 10403S (serotype 1/2a, highly virulent strain) and M7 (serotype 4a, low-virulence strain) during simulated gastrointestinal digestion. The results indicated that L. monocytogenes 10403S showed greater acid and bile salt tolerance than L. monocytogenes M7, with higher survival rates and less cell deformation and cell membrane permeability during the in vitro digestion. KEGG analysis of the transcriptomes indicated that L. monocytogenes 10403S displayed significant activity in amino acid metabolism, such as glutamate and arginine, associated with acid tolerance. Additionally, L. monocytogenes 10403S demonstrated a higher efficacy in promoting activities that preserve bacterial cell membrane integrity and facilitate flagellar protein synthesis. These findings will contribute valuable practical insights into the tolerance distinctions among different virulence strains of L. monocytogenes in the GI environment.


Assuntos
Microbiologia de Alimentos , Trato Gastrointestinal , Listeria monocytogenes , Produtos da Carne , Listeria monocytogenes/patogenicidade , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Produtos da Carne/microbiologia , Virulência , Trato Gastrointestinal/microbiologia , Ácidos e Sais Biliares/metabolismo , Digestão , Contaminação de Alimentos , Viabilidade Microbiana , Permeabilidade da Membrana Celular
7.
PLoS One ; 19(5): e0303371, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728352

RESUMO

Marek's disease (MD) is an important neoplastic disease caused by serotype 1 Marek's disease virus (MDV-1), which results in severe economic losses worldwide. Despite vaccination practices that have controlled the MD epidemic, current increasing MD-suspected cases indicate the persistent viral infections circulating among vaccinated chicken farms in many countries. However, the lack of available information about phylogeny and molecular characterization of circulating MDV-1 field strains in Taiwan reveals a potential risk in MD outbreaks. This study investigated the genetic characteristics of 18 MDV-1 strains obtained from 17 vaccinated chicken flocks in Taiwan between 2018 and 2020. Based on the sequences of the meq oncogene, the phylogenetic analysis demonstrated that the circulating Taiwanese MDV-1 field strains were predominantly in a single cluster that showed high similarity with strains from countries of the East Asian region. Because the strains were obtained from CVI988/Rispens vaccinated chicken flocks and the molecular characteristics of the Meq oncoprotein showed features like vvMDV and vv+MDV strains, the circulating Taiwanese MDV-1 field strains may have higher virulence compared with vvMDV pathotype. In conclusion, the data presented demonstrates the circulation of hypervirulent MDV-1 strains in Taiwan and highlights the importance of routine surveillance and precaution strategies in response to the emergence of enhanced virulent MDV-1.


Assuntos
Galinhas , Herpesvirus Galináceo 2 , Doença de Marek , Proteínas Oncogênicas Virais , Filogenia , Animais , Galinhas/virologia , Taiwan/epidemiologia , Doença de Marek/virologia , Doença de Marek/prevenção & controle , Herpesvirus Galináceo 2/genética , Herpesvirus Galináceo 2/patogenicidade , Virulência/genética , Proteínas Oncogênicas Virais/genética , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/prevenção & controle , Vacinas contra Doença de Marek/genética , Vacinas contra Doença de Marek/imunologia , Vacinação/veterinária
8.
J Appl Microbiol ; 135(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692849

RESUMO

AIMS: Pyometra and cystitis caused by Escherichia coli are common diseases identified in canine or feline females. The origin of pyometra infection remains uncertain, and effective prevention strategies for this disease are still unknown. This study aimed to provide a phenotypic characterization, including antimicrobial resistance and virulence profiles, of endometrial pathogenic (EnPEC) and uropathogenic (UPEC) E. coli strains isolated simultaneously from the same animal. METHODS AND RESULTS: Sixteen E. coli strains, from eight different animals, were analyzed in this study. The antimicrobial susceptibility profile of EnPEC and UPEC strains was determined using the disc diffusion method, which showed a similar susceptibility profile among strains (EnPEC and UPEC) from the same animal. The virulence profile of the strains was assessed through biofilm formation, as well as serum resistance abilities. EnPEC and UPEC strains from the same animal exhibited slight variations in their virulence and antimicrobial resistance capabilities. Overall, most of the strain pairs showed a high similarity in their ability to establish biofilms and survive in serum complement activity. CONCLUSIONS: Overall, strains of E. coli isolated from both pyometra and cystitis in the same animal, despite presenting distinct clinical diseases, exhibit a wide phenotypic similarity, suggesting a common origin for the strains.


Assuntos
Biofilmes , Doenças do Gato , Cistite , Infecções por Escherichia coli , Escherichia coli , Testes de Sensibilidade Microbiana , Fenótipo , Piometra , Animais , Cistite/microbiologia , Cistite/veterinária , Piometra/microbiologia , Piometra/veterinária , Feminino , Gatos , Cães , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Doenças do Gato/microbiologia , Biofilmes/crescimento & desenvolvimento , Virulência , Antibacterianos/farmacologia , Doenças do Cão/microbiologia , Escherichia coli Uropatogênica/isolamento & purificação , Escherichia coli Uropatogênica/patogenicidade , Farmacorresistência Bacteriana
9.
Arch Microbiol ; 206(6): 271, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767679

RESUMO

Secreted in Xylem (SIX) are small effector proteins released by Fusarium oxysporum f.sp. cubense (Foc) into the plant's xylem sap disrupting the host's defence responses causing Fusarium wilt disease resulting in a significant decline in banana crop yields and economic losses. Notably, different races of Foc possess unique sets of SIX genes responsible for their virulence, however, these genes remain underutilized, despite their potential as biomarkers for early disease detection. Herein, we identified seven SIX genes i.e. SIX1, SIX2, SIX4, SIX6, SIX8a, SIX9a and SIX13 present in Foc Tropical Race 4 (FocTR4), while only SIX9b in Foc Race 1 (Foc1). Analysis of SIX gene expression in infected banana roots revealed differential patterns during infection providing valuable insights into host-pathogen interactions, virulence level, and early detection time points. Additionally, a comprehensive analysis of virulent Foc1_C2HIR and FocTR4_C1HIR isolates yielded informative genomic insights. Hence, these discoveries contribute to our comprehension of potential disease control targets in these plants, as well as enhancing plant diagnostics and breeding programs.


Assuntos
Biomarcadores , Fusarium , Musa , Doenças das Plantas , Xilema , Fusarium/genética , Fusarium/patogenicidade , Fusarium/isolamento & purificação , Doenças das Plantas/microbiologia , Xilema/microbiologia , Musa/microbiologia , Virulência/genética , Interações Hospedeiro-Patógeno , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Raízes de Plantas/microbiologia , Regulação Fúngica da Expressão Gênica
10.
Med Microbiol Immunol ; 213(1): 8, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767707

RESUMO

Bacterial resistance to serum is a key virulence factor for the development of systemic infections. The amount of lipopolysaccharide (LPS) and the O-antigen chain length distribution on the outer membrane, predispose Salmonella to escape complement-mediated killing. In Salmonella enterica serovar Enteritidis (S. Enteritidis) a modal distribution of the LPS O-antigen length can be observed. It is characterized by the presence of distinct fractions: low molecular weight LPS, long LPS and very long LPS. In the present work, we investigated the effect of the O-antigen modal length composition of LPS molecules on the surface of S. Enteritidis cells on its ability to evade host complement responses. Therefore, we examined systematically, by using specific deletion mutants, roles of different O-antigen fractions in complement evasion. We developed a method to analyze the average LPS lengths and investigated the interaction of the bacteria and isolated LPS molecules with complement components. Additionally, we assessed the aspect of LPS O-antigen chain length distribution in S. Enteritidis virulence in vivo in the Galleria mellonella infection model. The obtained results of the measurements of the average LPS length confirmed that the method is suitable for measuring the average LPS length in bacterial cells as well as isolated LPS molecules and allows the comparison between strains. In contrast to earlier studies we have used much more precise methodology to assess the LPS molecules average length and modal distribution, also conducted more subtle analysis of complement system activation by lipopolysaccharides of various molecular mass. Data obtained in the complement activation assays clearly demonstrated that S. Enteritidis bacteria require LPS with long O-antigen to resist the complement system and to survive in the G. mellonella infection model.


Assuntos
Proteínas do Sistema Complemento , Modelos Animais de Doenças , Lipopolissacarídeos , Antígenos O , Salmonella enteritidis , Salmonella enteritidis/imunologia , Salmonella enteritidis/patogenicidade , Animais , Antígenos O/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Lipopolissacarídeos/imunologia , Evasão da Resposta Imune , Viabilidade Microbiana , Mariposas/microbiologia , Mariposas/imunologia , Virulência , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Ativação do Complemento , Lepidópteros/imunologia , Lepidópteros/microbiologia
11.
Nat Commun ; 15(1): 4261, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769341

RESUMO

Triazoles, the most widely used class of antifungal drugs, inhibit the biosynthesis of ergosterol, a crucial component of the fungal plasma membrane. Inhibition of a separate ergosterol biosynthetic step, catalyzed by the sterol C-24 methyltransferase Erg6, reduces the virulence of pathogenic yeasts, but its effects on filamentous fungal pathogens like Aspergillus fumigatus remain unexplored. Here, we show that the lipid droplet-associated enzyme Erg6 is essential for the viability of A. fumigatus and other Aspergillus species, including A. lentulus, A. terreus, and A. nidulans. Downregulation of erg6 causes loss of sterol-rich membrane domains required for apical extension of hyphae, as well as altered sterol profiles consistent with the Erg6 enzyme functioning upstream of the triazole drug target, Cyp51A/Cyp51B. Unexpectedly, erg6-repressed strains display wild-type susceptibility against the ergosterol-active triazole and polyene antifungals. Finally, we show that erg6 repression results in significant reduction in mortality in a murine model of invasive aspergillosis. Taken together with recent studies, our work supports Erg6 as a potentially pan-fungal drug target.


Assuntos
Antifúngicos , Aspergilose , Aspergillus , Ergosterol , Proteínas Fúngicas , Metiltransferases , Triazóis , Animais , Metiltransferases/metabolismo , Metiltransferases/genética , Antifúngicos/farmacologia , Aspergillus/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Camundongos , Aspergilose/microbiologia , Aspergilose/tratamento farmacológico , Ergosterol/metabolismo , Ergosterol/biossíntese , Triazóis/farmacologia , Regulação Fúngica da Expressão Gênica , Aspergillus fumigatus/genética , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/metabolismo , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Hifas/genética , Hifas/metabolismo , Feminino , Testes de Sensibilidade Microbiana , Virulência/genética
12.
Gut Microbes ; 16(1): 2356642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38769708

RESUMO

Adherent-invasive Escherichia coli (AIEC) strain LF82, isolated from patients with Crohn's disease, invades gut epithelial cells, and replicates in macrophages contributing to chronic inflammation. In this study, we found that RstAB contributing to the colonization of LF82 in a mouse model of chronic colitis by promoting bacterial replication in macrophages. By comparing the transcriptomes of rstAB mutant- and wild-type when infected macrophages, 83 significant differentially expressed genes in LF82 were identified. And we identified two possible RstA target genes (csgD and asr) among the differentially expressed genes. The electrophoretic mobility shift assay and quantitative real-time PCR confirmed that RstA binds to the promoters of csgD and asr and activates their expression. csgD deletion attenuated LF82 intracellular biofilm formation, and asr deletion reduced acid tolerance compared with the wild-type. Acidic pH was shown by quantitative real-time PCR to be the signal sensed by RstAB to activate the expression of csgD and asr. We uncovered a signal transduction pathway whereby LF82, in response to the acidic environment within macrophages, activates transcription of the csgD to promote biofilm formation, and activates transcription of the asr to promote acid tolerance, promoting its replication within macrophages and colonization of the intestine. This finding deepens our understanding of the LF82 replication regulation mechanism in macrophages and offers new perspectives for further studies on AIEC virulence mechanisms.


Assuntos
Aderência Bacteriana , Biofilmes , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Macrófagos , Macrófagos/microbiologia , Animais , Camundongos , Escherichia coli/genética , Escherichia coli/patogenicidade , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Biofilmes/crescimento & desenvolvimento , Infecções por Escherichia coli/microbiologia , Humanos , Concentração de Íons de Hidrogênio , Virulência , Colite/microbiologia , Doença de Crohn/microbiologia , Modelos Animais de Doenças , Transdução de Sinais , Ácidos/metabolismo
13.
Mol Biol Rep ; 51(1): 647, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727981

RESUMO

Calcium (Ca2+) is a universal signaling molecule that is tightly regulated, and a fleeting elevation in cytosolic concentration triggers a signal cascade within the cell, which is crucial for several processes such as growth, tolerance to stress conditions, and virulence in fungi. The link between calcium and calcium-dependent gene regulation in cells relies on the transcription factor Calcineurin-Responsive Zinc finger 1 (CRZ1). The direct regulation of approximately 300 genes in different stress pathways makes it a hot topic in host-pathogen interactions. Notably, CRZ1 can modulate several pathways and orchestrate cellular responses to different types of environmental insults such as osmotic stress, oxidative stress, and membrane disruptors. It is our belief that CRZ1 provides the means for tightly modulating and synchronizing several pathways allowing pathogenic fungi to install into the apoplast and eventually penetrate plant cells (i.e., ROS, antimicrobials, and quick pH variation). This review discusses the structure, function, regulation of CRZ1 in fungal physiology and its role in plant pathogen virulence.


Assuntos
Proteínas Fúngicas , Fungos , Regulação Fúngica da Expressão Gênica , Plantas , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Plantas/microbiologia , Plantas/metabolismo , Fungos/patogenicidade , Fungos/genética , Fungos/metabolismo , Virulência/genética , Interações Hospedeiro-Patógeno/genética , Cálcio/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/genética
14.
Sci Rep ; 14(1): 10758, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730020

RESUMO

Staphylococcus aureus is a frequent agent of bacteraemia. This bacterium has a variety of virulence traits that allow the establishment and maintenance of infection. This study explored the virulence profile of S. aureus strains causing paediatric bacteraemia (SAB) in Manhiça district, Mozambique. We analysed 336 S. aureus strains isolated from blood cultures of children younger than 5 years admitted to the Manhiça District Hospital between 2001 and 2019, previously characterized for antibiotic susceptibility and clonality. The strains virulence potential was evaluated by PCR detection of the Panton-Valentine leucocidin (PVL) encoding genes, lukS-PV/lukF-PV, assessment of the capacity for biofilm formation and pathogenicity assays in Galleria mellonella. The overall carriage of PVL-encoding genes was over 40%, although reaching ~ 70 to 100% in the last years (2014 to 2019), potentially linked to the emergence of CC152 lineage. Strong biofilm production was a frequent trait of CC152 strains. Representative CC152 and CC121 strains showed higher virulence potential in the G. mellonella model when compared to reference strains, with variations within and between CCs. Our results highlight the importance of monitoring the emergent CC152-MSSA-PVL+ and other lineages, as they display important virulence traits that may negatively impact the management of SAB paediatric patients in Manhiça district, Mozambique.


Assuntos
Bacteriemia , Biofilmes , Infecções Comunitárias Adquiridas , Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Moçambique/epidemiologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/isolamento & purificação , Virulência/genética , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/epidemiologia , Biofilmes/crescimento & desenvolvimento , Pré-Escolar , Bacteriemia/microbiologia , Bacteriemia/epidemiologia , Infecções Comunitárias Adquiridas/microbiologia , Lactente , Animais , Exotoxinas/genética , Toxinas Bacterianas/genética , Leucocidinas/genética , Fatores de Virulência/genética , Feminino , Masculino , Mariposas/microbiologia
15.
Gut Microbes ; 16(1): 2350778, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38717446

RESUMO

Ethanolamine is an abundant compound in the gastrointestinal tract and a valuable source of carbon and nitrogen for pathogenic bacteria harboring ethanolamine utilization (eut) genes. Eut-positive pathogens can consume free ethanolamine to outcompete commensal microbes, which often lack eut genes, and establish infection. Ethanolamine can also act as a host recognition signal for eut-positive pathogens to upregulate virulence genes during colonization. Therefore, reducing free ethanolamine titers may represent a novel approach to preventing infection by eut-positive pathogens. Interestingly, the commensal microorganism Levilactobacillus brevis ATCC 14869 was found to encode over 18 eut genes within its genome. This led us to hypothesize that L. brevis can compete with eut-positive pathogens by clearing free ethanolamine from the environment. Our results demonstrate that despite being unable to metabolize ethanolamine under most conditions, L. brevis ATCC 14869 responds to the compound by increasing the expression of genes encoding proteins involved in microcompartment formation and adhesion to the intestinal epithelial barrier. The improved intestinal adhesion of L. brevis in the presence of ethanolamine also enhanced the exclusion of eut-positive pathogens from adhering to intestinal epithelial cells. These findings support further studies to test whether L. brevis ATCC 14869 can counter enteric pathogens and prevent or reduce the severity of infections. Overall, the metabolic capabilities of L. brevis ATCC 14869 offer a unique opportunity to add to the armamentarium of antimicrobial therapies as well as our understanding of the mechanisms used by beneficial microbes to sense and adapt to host microenvironments.


Assuntos
Aderência Bacteriana , Etanolamina , Regulação Bacteriana da Expressão Gênica , Levilactobacillus brevis , Etanolamina/metabolismo , Aderência Bacteriana/efeitos dos fármacos , Levilactobacillus brevis/genética , Levilactobacillus brevis/metabolismo , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Microbioma Gastrointestinal , Animais , Virulência/genética
16.
Proc Natl Acad Sci U S A ; 121(22): e2314166121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768348

RESUMO

The nonstructural protein 1 (Nsp1) of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) is a virulence factor that targets multiple cellular pathways to inhibit host gene expression and antiviral response. However, the underlying mechanisms of the various Nsp1-mediated functions and their contributions to SARS-CoV-2 virulence remain unclear. Among the targets of Nsp1 is the mRNA (messenger ribonucleic acid) export receptor NXF1-NXT1, which mediates nuclear export of mRNAs from the nucleus to the cytoplasm. Based on Nsp1 crystal structure, we generated mutants on Nsp1 surfaces and identified an acidic N-terminal patch that is critical for interaction with NXF1-NXT1. Photoactivatable Nsp1 probe reveals the RNA Recognition Motif (RRM) domain of NXF1 as an Nsp1 N-terminal binding site. By mutating the Nsp1 N-terminal acidic patch, we identified a separation-of-function mutant of Nsp1 that retains its translation inhibitory function but substantially loses its interaction with NXF1 and reverts Nsp1-mediated mRNA export inhibition. We then generated a recombinant (r)SARS-CoV-2 mutant on the Nsp1 N-terminal acidic patch and found that this surface is key to promote NXF1 binding and inhibition of host mRNA nuclear export, viral replication, and pathogenicity in vivo. Thus, these findings provide a mechanistic understanding of Nsp1-mediated mRNA export inhibition and establish the importance of this pathway in the virulence of SARS-CoV-2.


Assuntos
Transporte Ativo do Núcleo Celular , COVID-19 , Proteínas de Transporte Nucleocitoplasmático , RNA Mensageiro , Proteínas de Ligação a RNA , SARS-CoV-2 , Proteínas não Estruturais Virais , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , SARS-CoV-2/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Transporte Nucleocitoplasmático/genética , Animais , COVID-19/virologia , COVID-19/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Replicação Viral , Núcleo Celular/metabolismo , Células Vero , Virulência , Chlorocebus aethiops , Células HEK293
17.
BMC Genomics ; 25(1): 502, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773367

RESUMO

BACKGROUND: Fusarium zanthoxyli is a destructive pathogen causing stem canker in prickly ash, an ecologically and economically important forest tree. However, the genome lack of F. zanthoxyli has hindered research on its interaction with prickly ash and the development of precise control strategies for stem canker. RESULTS: In this study, we sequenced and annotated a relatively high-quality genome of F. zanthoxyli with a size of 43.39 Mb, encoding 11,316 putative genes. Pathogenicity-related factors are predicted, comprising 495 CAZymes, 217 effectors, 156 CYP450s, and 202 enzymes associated with secondary metabolism. Besides, a comparative genomics analysis revealed Fusarium and Colletotrichum diverged from a shared ancestor approximately 141.1 ~ 88.4 million years ago (MYA). Additionally, a phylogenomic investigation of 12 different phytopathogens within Fusarium indicated that F. zanthoxyli originated approximately 34.6 ~ 26.9 MYA, and events of gene expansion and contraction within them were also unveiled. Finally, utilizing conserved domain prediction, the results revealed that among the 59 unique genes, the most enriched domains were PnbA and ULP1. Among the 783 expanded genes, the most enriched domains were PKc_like kinases and those belonging to the APH_ChoK_Like family. CONCLUSION: This study sheds light on the genetic basis of F. zanthoxyli's pathogenicity and evolution which provides valuable information for future research on its molecular interactions with prickly ash and the development of effective strategies to combat stem canker.


Assuntos
Evolução Molecular , Fusarium , Genoma Fúngico , Genômica , Filogenia , Doenças das Plantas , Fusarium/genética , Fusarium/patogenicidade , Genômica/métodos , Doenças das Plantas/microbiologia , Virulência/genética
18.
Vet Res ; 55(1): 65, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773540

RESUMO

In 2020, a new genotype of swine H1N2 influenza virus (H1avN2-HA 1C.2.4) was identified in France. It rapidly spread within the pig population and supplanted the previously predominant H1avN1-HA 1C.2.1 virus. To characterize this new genotype which is genetically and antigenically distant from the other H1avNx viruses detected in France, an experimental study was conducted to compare the outcomes of H1avN2 and H1avN1 infections in pigs and evaluate the protection conferred by the only inactivated vaccine currently licensed in Europe containing an HA 1C (clade 1C.2.2) antigen. Infection with H1avN2 induced stronger clinical signs and earlier shedding than H1avN1. The neutralizing antibodies produced following H1avN2 infection were unable to neutralize H1avN1, and vice versa, whereas the cellular-mediated immunity cross-reacted. Vaccination slightly altered the impact of H1avN2 infection at the clinical level, but did not prevent shedding of infectious virus particles. It induced a cellular-mediated immune response towards H1avN2, but did not produce neutralizing antibodies against this virus. As in vaccinated animals, animals previously infected by H1avN1 developed a cross-reacting cellular immune response but no neutralizing antibodies against H1avN2. However, H1avN1 pre-infection induced a better protection against the H1avN2 infection than vaccination, probably due to higher levels of non-neutralizing antibodies and a mucosal immunity. Altogether, these results showed that the new H1avN2 genotype induced a severe respiratory infection and that the actual vaccine was less effective against this H1avN2-HA 1C.2.4 than against H1avN1-HA 1C.2.1, which may have contributed to the H1avN2 epizootic and dissemination in pig farms in France.


Assuntos
Genótipo , Vírus da Influenza A Subtipo H1N2 , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Suínos , Doenças dos Suínos/virologia , Doenças dos Suínos/imunologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/imunologia , França/epidemiologia , Vírus da Influenza A Subtipo H1N2/genética , Vírus da Influenza A Subtipo H1N2/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/genética , Vacinas contra Influenza/imunologia , Virulência , Anticorpos Neutralizantes/sangue , Imunidade Celular
19.
Front Cell Infect Microbiol ; 14: 1369301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774630

RESUMO

Dual-specificity LAMMER kinases are highly evolutionarily conserved in eukaryotes and play pivotal roles in diverse physiological processes, such as growth, differentiation, and stress responses. Although the functions of LAMMER kinase in fungal pathogens in pathogenicity and stress responses have been characterized, its role in Cryptococcus neoformans, a human fungal pathogen and a model yeast of basidiomycetes, remains elusive. In this study, we identified a LKH1 homologous gene and constructed a strain with a deleted LKH1 and a complemented strain. Similar to other fungi, the lkh1Δ mutant showed intrinsic growth defects. We observed that C. neoformans Lkh1 was involved in diverse stress responses, including oxidative stress and cell wall stress. Particularly, Lkh1 regulates DNA damage responses in Rad53-dependent and -independent manners. Furthermore, the absence of LKH1 reduced basidiospore formation. Our observations indicate that Lkh1 becomes hyperphosphorylated upon treatment with rapamycin, a TOR protein inhibitor. Notably, LKH1 deletion led to defects in melanin synthesis and capsule formation. Furthermore, we found that the deletion of LKH1 led to the avirulence of C. neoformans in a systemic cryptococcosis murine model. Taken together, Lkh1 is required for the stress response, sexual differentiation, and virulence of C. neoformans.


Assuntos
Criptococose , Cryptococcus neoformans , Melaninas , Estresse Oxidativo , Estresse Fisiológico , Cryptococcus neoformans/patogenicidade , Cryptococcus neoformans/genética , Cryptococcus neoformans/enzimologia , Virulência , Animais , Criptococose/microbiologia , Camundongos , Melaninas/metabolismo , Modelos Animais de Doenças , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Fosforilação , Dano ao DNA , Parede Celular/metabolismo , Regulação Fúngica da Expressão Gênica , Cápsulas Fúngicas/metabolismo , Cápsulas Fúngicas/genética , Sirolimo/farmacologia , Camundongos Endogâmicos BALB C , Feminino , Esporos Fúngicos/crescimento & desenvolvimento
20.
Appl Environ Microbiol ; 90(5): e0024224, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38690890

RESUMO

Ralstonia solanacearum species complex (RSSC) is a phytopathogenic bacterial group that causes bacterial wilt in several crops, being potato (Solanum tuberosum) one of the most important hosts. The relationship between the potato plant ionome (mineral and trace elements composition) and the resistance levels to this pathogen has not been addressed until now. Mineral content of xylem sap, roots, stems and leaves of potato genotypes with different levels of resistance to bacterial wilt was assessed in this work, revealing a positive correlation between divalent calcium (Ca) cation concentrations and genotype resistance. The aim of this study was to investigate the effect of Ca on bacterial wilt resistance, and on the growth and virulence of RSSC. Ca supplementation significantly decreased the growth rate of Ralstonia pseudosolanacearum GMI1000 in minimal medium and affected several virulence traits such as biofilm formation and twitching motility. We also incorporate for the first time the use of microfluidic chambers to follow the pathogen growth and biofilm formation in conditions mimicking the plant vascular system. By using this approach, a reduction in biofilm formation was observed when both, rich and minimal media, were supplemented with Ca. Assessment of the effect of Ca amendments on bacterial wilt progress in potato genotypes revealed a significant delay in disease progress, or a complete absence of wilting symptoms in the case of partially resistant genotypes. This work contributes to the understanding of Ca effect on virulence of this important pathogen and provides new strategies for an integrated control of bacterial wilt on potato. IMPORTANCE: Ralstonia solanacearum species complex (RSSC) includes a diverse group of bacterial strains that cause bacterial wilt. This disease is difficult to control due to pathogen aggressiveness, persistence, wide range of hosts, and wide geographic distribution in tropical, subtropical, and temperate regions. RSSC causes considerable losses depending on the pathogen strain, host, soil type, environmental conditions, and cultural practices. In potato, losses of $19 billion per year have been estimated for this pathogen worldwide. In this study, we report for the first time the mineral composition found in xylem sap and plant tissues of potato germplasm with different levels of resistance to bacterial wilt. This study underscores the crucial role of calcium (Ca) concentration in the xylem sap and stem in relation to the resistance of different genotypes. Our in vitro experiments provide evidence of Ca's inhibitory effect on the growth, biofilm formation, and twitching movement of the model RSSC strain R. pseudosolanacearum GMI1000. This study introduces a novel element, the Ca concentration, which should be included into the integrated disease control management strategies for bacterial wilt in potatoes.


Assuntos
Cálcio , Doenças das Plantas , Ralstonia solanacearum , Solanum tuberosum , Solanum tuberosum/microbiologia , Doenças das Plantas/microbiologia , Cálcio/metabolismo , Ralstonia solanacearum/fisiologia , Ralstonia solanacearum/genética , Ralstonia solanacearum/patogenicidade , Ralstonia solanacearum/crescimento & desenvolvimento , Virulência , Biofilmes/crescimento & desenvolvimento , Ralstonia/genética , Ralstonia/fisiologia , Raízes de Plantas/microbiologia , Xilema/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA