Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 809
Filtrar
1.
Skin Res Technol ; 30(8): e13875, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39120064

RESUMO

BACKGROUND: Recent studies increasingly suggest that microbial infections and the immune responses they elicit play significant roles in the pathogenesis of chronic inflammatory skin diseases. This study uses Mendelian randomization (MR) and Bayesian weighted Mendelian randomization (BWMR) to explore the causal relationships between immune antibody responses and four common skin diseases: psoriasis, atopic dermatitis (AD), rosacea, and vitiligo. METHODS: We utilized summary statistics from genome-wide association studies (GWAS) for antibody responses to 13 infectious pathogens and four skin diseases. Single nucleotide polymorphisms (SNPs) were selected as instrumental variables (IVs) to assess causal relationships using multiple MR methods, including inverse variance weighted (IVW), MR Egger, and weighted median. BWMR was also employed to confirm findings and address potential pleiotropy. RESULTS: The IVW analysis identified significant associations between specific antibody responses and the skin diseases studied. Key findings include protective associations of anti-Epstein-Barr virus (EBV) IgG seropositivity and Helicobacter pylori UREA antibody levels with psoriasis and AD. anti-chlamydia trachomatis IgG seropositivity, anti-polyomavirus 2 IgG seropositivity, and varicella zoster virus glycoprotein E and I antibody levels were negatively associated with rosacea, while EBV Elevated levels of the early antigen (EA-D) antibody levels and HHV-6 IE1B antibody levels were positively associated with rosacea. H. pylori Catalase antibody levels were protectively associated with vitiligo, whereas anti-herpes simplex virus 2 (HSV-2) IgG seropositivity was positively associated with vitiligo. The BWMR analysis confirmed these associations. CONCLUSION: This study underscores the significant role of H. pylori and other pathogens in these skin diseases, suggesting both protective and exacerbating effects depending on the specific condition. Understanding these pathogen-immune interactions can lead to the development of more effective, personalized treatments and preventative strategies, ultimately improving patient outcomes and quality of life.


Assuntos
Teorema de Bayes , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Humanos , Dermatite Atópica/imunologia , Dermatite Atópica/genética , Dermatite Atópica/microbiologia , Dermatite Atópica/sangue , Rosácea/imunologia , Rosácea/genética , Vitiligo/genética , Vitiligo/imunologia , Formação de Anticorpos/genética , Psoríase/imunologia , Psoríase/genética , Dermatopatias/imunologia , Dermatopatias/genética
3.
Clin Immunol ; 265: 110300, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38950722

RESUMO

A comprehensive analysis of spatial transcriptomics was carried out to better understand the progress of halo nevus. We found that halo nevus was characterized by overactive immune responses, triggered by chemokines and dendritic cells (DCs), T cells, and macrophages. Consequently, we observed abnormal cell death, such as apoptosis and disulfidptosis in halo nevus, some were closely related to immunity. Interestingly, we identified aberrant metabolites such as uridine diphosphate glucose (UDP-G) within the halo nevus. UDP-G, accompanied by the infiltration of DCs and T cells, exhibited correlations with certain forms of cell death. Subsequent experiments confirmed that UDP-G was increased in vitiligo serum and could activate DCs. We also confirmed that oxidative response is an inducer of UDP-G. In summary, the immune response in halo nevus, including DC activation, was accompanied by abnormal cell death and metabolites. Especially, melanocyte-derived UDP-G may play a crucial role in DC activation.


Assuntos
Células Dendríticas , Melanócitos , Nevo com Halo , Humanos , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Melanócitos/metabolismo , Melanócitos/imunologia , Nevo com Halo/metabolismo , Nevo com Halo/imunologia , Uridina Difosfato Glucose/metabolismo , Vitiligo/imunologia , Vitiligo/metabolismo , Masculino , Feminino , Adulto , Apoptose , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adulto Jovem , Adolescente
4.
Arch Dermatol Res ; 316(7): 478, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023568

RESUMO

The efficacy of ritlecitinib, an oral JAK3/TEC family kinase inhibitor, on active and stable lesions was evaluated in patients with active non-segmental vitiligo in a phase 2b trial (NCT03715829). Patients were randomized to placebo or daily ritlecitinib 50 mg (with or without 4-week 100-mg or 200-mg loading dose), 30 mg, or 10 mg for 24 weeks. Active lesions showed greater baseline expression of inflammatory/immune markers IFNG and CCL5, levels of CD103, and T-cell infiltrates than stable lesions. Patients with more active than stable vitiligo lesions showed higher baseline serum levels of CXCL9 and PD-L1, while patients with more stable than active lesions showed higher baseline serum levels of HO-1. At Week 24, ritlecitinib 50 mg significantly stabilized mean percent change from baseline in depigmentation extent in both active lesions and stable lesions vs. placebo-response, with stable lesions showing greater repigmentation. After 24 weeks of treatment, ritlecitinib 50 mg increased expression of melanocyte markers in stable lesions, while Th1/Th2-related and co-stimulatory molecules decreased significantly in both stable and active lesions. Serum from patients with more active than stable lesions showed decreased levels of ICOS and NK cell activation markers. These data, confirmed at transcription/protein levels, indicate that stable lesion repigmentation occurs early with ritlecitinib, while active lesions require stabilization of inflammation first. ClinicalTrials.gov: NCT03715829.


Assuntos
Janus Quinase 3 , Inibidores de Proteínas Quinases , Vitiligo , Humanos , Vitiligo/tratamento farmacológico , Vitiligo/diagnóstico , Vitiligo/imunologia , Masculino , Feminino , Adulto , Janus Quinase 3/antagonistas & inibidores , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/administração & dosagem , Resultado do Tratamento , Quimiocina CXCL9/sangue , Quimiocina CCL5/sangue , Adulto Jovem , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Antígeno B7-H1/sangue , Melanócitos/efeitos dos fármacos , Método Duplo-Cego , Pigmentação da Pele/efeitos dos fármacos , Administração Oral , Interferon gama
6.
Inflamm Res ; 73(8): 1311-1332, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38839628

RESUMO

BACKGROUND: Regulatory T cells (Tregs) play vital roles in controlling immune reactions and maintaining immune tolerance in the body. The targeted destruction of epidermal melanocytes by activated CD8+T cells is a key event in the development of vitiligo. However, Tregs may exert immunosuppressive effects on CD8+T cells, which could be beneficial in treating vitiligo. METHODS: A comprehensive search of PubMed and Web of Science was conducted to gather information on Tregs and vitiligo. RESULTS: In vitiligo, there is a decrease in Treg numbers and impaired Treg functions, along with potential damage to Treg-related signaling pathways. Increasing Treg numbers and enhancing Treg function could lead to immunosuppressive effects on CD8+T cells. Recent research progress on Tregs in vitiligo has been summarized, highlighting various Treg-related therapies being investigated for clinical use. The current status of Treg-related therapeutic strategies and potential future directions for vitiligo treatment are also discussed. CONCLUSIONS: A deeper understanding of Tregs will be crucial for advancing Treg-related drug discovery and treatment development in vitiligo.


Assuntos
Linfócitos T Reguladores , Vitiligo , Vitiligo/imunologia , Vitiligo/terapia , Humanos , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia
7.
Front Immunol ; 15: 1391186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887286

RESUMO

Background: The pathogenesis of vitiligo remains elusive. Emerging evidence suggests that vitiligo is an immune-mediated disorder, in which a plethora of immune cells play pivotal roles. However, the association between circulating immune cells and vitiligo continues to be enigmatic. Materials and methods: We extracted single nucleotide polymorphisms (SNPs) associated with immune circulating cells at a genome-wide significance level from the BLOOD CELL CONSORTIUM's genome-wide association study (GWAS) dataset. Summary data for 385,801 cases of vitiligo were obtained from a large-scale Finnish genome-wide association study (ncases=292, ncontrols=385,509). The inverse variance weighted (IVW) method was employed as the primary analytical approach for Mendelian randomization (MR) analysis. Additionally, heterogeneity was assessed using Cochran's Q value, and horizontal pleiotropy was evaluated using MR-Egger Mendelian Randomization Pleiotropy RESidual Sum and Outlier and leave-one-out analyses. Results: The risk of vitiligo was found to increase with the elevation of 4 circulating immune cells, as evidenced by the odds ratios (ORs) and 95% confidence intervals (CIs): basophils (OR=1.81; 95% CI: 1.01-3.24, p=0.0450), monocytes (OR=1.67; 95% CI: 1.23-2.26, p=0.0009), eosinophils (OR=1.78; 95% CI: 1.22-2.59, p=0.0028), and neutrophils (OR=1.65; 95% CI: 1.08-2.54, p=0.0208). After removing outliers, the sensitivity analysis of the above indicators did not show heterogeneity and pleiotropy. Conclusion: Our findings illuminate the association between circulating immune cells and vitiligo, offering insights that could guide clinical practices in the treatment of vitiligo.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Vitiligo , Vitiligo/genética , Vitiligo/imunologia , Vitiligo/sangue , Humanos
8.
Front Immunol ; 15: 1405215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38868763

RESUMO

Chronic inflammatory skin diseases are multifactorial diseases that combine genetic predisposition, environmental triggers, and metabolic disturbances associated with abnormal immune responses. From an immunological perspective, the better understanding of their physiopathology has demonstrated a large complex network of immune cell subsets and related cytokines that interact with both epidermal and dermal cells. For example, in type-1-associated diseases such as alopecia areata, vitiligo, and localized scleroderma, recent evidence suggests the presence of a type-2 inflammation that is well known in atopic dermatitis. Whether this type-2 immune response has a protective or detrimental impact on the development and chronicity of these diseases remains to be fully elucidated, highlighting the need to better understand its involvement for the management of patients. This mini-review explores recent insights regarding the potential role of type-2-related immunity in alopecia areata, vitiligo, and localized scleroderma.


Assuntos
Vitiligo , Humanos , Vitiligo/imunologia , Animais , Alopecia em Áreas/imunologia , Células Th2/imunologia , Citocinas/metabolismo , Citocinas/imunologia , Dermatite Atópica/imunologia , Dermatite Atópica/etiologia , Esclerodermia Localizada/imunologia , Inflamação/imunologia , Pele/imunologia , Pele/patologia
9.
Adv Sci (Weinh) ; 11(31): e2404064, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38887870

RESUMO

Vitiligo is an autoimmune disease characterized by epidermal melanocyte destruction, with abnormal autoimmune responses and excessive oxidative stress as two cardinal mechanisms. Human umbilical mesenchymal stem cells-derived exosomes (hUMSCs-Exos) are regarded as promising therapeutic choice for autoimmune diseases due to potent immunosuppressive and anti-oxidative properties, which can be potentiated under 3D cell culture condition. Nevertheless, whether exosomes derived from 3D spheroids of hUMSCs (3D-Exos) exhibit considerable therapeutic effect on vitiligo and the underlying mechanism remain elusive. In this study, systemic administration of 3D-Exos showed a remarkable effect in treating mice with vitiligo, as revealed by ameliorated skin depigmentation, less CD8+T cells infiltration, and expanded Treg cells in skin, and 3D-Exos exerted a better effect than 2D-Exos. Mechanistically, 3D-Exos can prominently facilitate the expansion of Treg cells in vitiligo lesion and suppress H2O2-induced melanocytes apoptosis. Forward miRNA profile analysis and molecular experiments have demonstrated that miR-132-3p and miR-125b-5p enriched in 3D-Exos greatly contributed to these biological effects by targeting Sirt1 and Bak1 respectively. In aggregate, 3D-Exos can efficiently ameliorate vitiligo by simultaneously potentiating Treg cells-mediated immunosuppression and suppressing oxidative stress-induced melanocyte damage via the delivery of miR-132-3p and miR-125b-5p. The employment of 3D-Exos will be a promising treament for vitiligo.


Assuntos
Modelos Animais de Doenças , Exossomos , Melanócitos , Células-Tronco Mesenquimais , Estresse Oxidativo , Linfócitos T Reguladores , Vitiligo , Vitiligo/terapia , Vitiligo/imunologia , Animais , Exossomos/metabolismo , Exossomos/imunologia , Camundongos , Linfócitos T Reguladores/imunologia , Melanócitos/imunologia , Humanos , Células-Tronco Mesenquimais/imunologia , Células-Tronco Mesenquimais/metabolismo , Terapia de Imunossupressão/métodos , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos Endogâmicos C57BL
10.
Hum Immunol ; 85(4): 110812, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38755031

RESUMO

Generalized vitiligo(GV) is a skin depigmenting condition due to loss of melanocytes. Regulatory T cells(Tregs), responsible for peripheral tolerance, show altered numbers and functions in GV patients, likely influenced by the aging process. Therefore, the present study was focused on measuring the relative telomere length of Tregs in 96 GV patients and 90 controls by qPCR, along with correlation of relative telomere length with in vitro Treg suppressive capacity. Interestingly, we found significantly decreased relative telomere length in Tregs of GV patients as compared to controls(p = 0.0001). Additionally, age based-analysis suggested significant decrease in relative telomere length in elderly GV patients(>40 years) in comparison to young GV patients(0-20 years; p = 0.0027). Furthermore, age of onset analysis suggested for reduced relative telomere length in early onset GV patients (0-20 years) in comparison to late onset GV patients(>40 years; p = 0.0036). The correlation analysis suggested positive correlation for relative telomere length with in vitro Tregs suppressive capacity(r = 0.68 & r = 0.45; p < 0.0001). Additionally, the in vitro Tregs suppressive capacity was significantly reduced in elderly GV patients(p = 0.003) and early onset GV patients(p = 0.0074). Overall, our study for the first time demonstrated that, the Tregs ageing due to telomere shortening may be responsible for altered Treg functions and number.


Assuntos
Linfócitos T Reguladores , Encurtamento do Telômero , Vitiligo , Humanos , Linfócitos T Reguladores/imunologia , Vitiligo/genética , Vitiligo/imunologia , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Adulto Jovem , Adolescente , Criança , Pré-Escolar , Idoso , Lactente , Telômero/genética , Idade de Início , Tolerância Imunológica , Estudos de Casos e Controles , Recém-Nascido
12.
Front Immunol ; 15: 1386727, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720888

RESUMO

Introduction: Vitiligo is an acquired de-pigmentation disorder characterized by the post-natal loss of epidermal melanocytes (pigment-producing cells) resulting in the appearance of white patches in the skin. The Smyth chicken is the only model for vitiligo that shares all the characteristics of the human condition including: spontaneous post-natal loss of epidermal melanocytes, interactions between genetic, environmental and immunological factors, and associations with other autoimmune diseases. In addition, an avian model for vitiligo has the added benefit of an easily accessible target tissue (a growing feather) that allows for the repeated sampling of an individual and thus the continuous monitoring of local immune responses over time. Methods: Using a combination of flow cytometry and gene expression analyses, we sought to gain a comprehensive understanding of the initiating events leading to expression of vitiligo in growing feathers by monitoring the infiltration of leukocytes and concurrent immunological activities in the target tissue beginning prior to visual onset and continuing throughout disease development. Results: Here, we document a sequence of immunologically significant events, including characteristic rises in infiltrating B and αß T cells as well as evidence of active leukocyte recruitment and cell-mediated immune activities (CCL19, IFNG, GZMA) leading up to visual vitiligo onset. Examination of growing feathers from vitiligo-susceptible Brown line chickens revealed anti-inflammatory immune activities which may be responsible for preventing vitiligo (IL10, CTLA4, FOXP3). Furthermore, we detected positive correlations between infiltrating T cells and changes in their T cell receptor diversity supporting a T cell-specific immune response. Conclusion: Collectively, these results further support the notion of cell-mediated immune destruction of epidermal melanocytes in the pulp of growing feathers and open new avenues of study in the vitiligo-prone Smyth and vitiligo-susceptible Brown line chickens.


Assuntos
Galinhas , Modelos Animais de Doenças , Plumas , Melanócitos , Vitiligo , Animais , Vitiligo/imunologia , Galinhas/imunologia , Plumas/imunologia , Melanócitos/imunologia , Melanócitos/metabolismo , Linfócitos T/imunologia
14.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 147-151, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678613

RESUMO

Vitiligo belongs to a frequent chronic autoimmune skin disease with the features of pigmented plaques on the diseased skin along with potential damage of melanocytes. There are many factors underlying the pathogenesis of vitiligo, among which oxidative stress is extensively regarded to be the critical factor leading to the loss of melanocytes. The changed redox state resulting from oxidative stress, containing ROS overproduction along with the reduced activity of the skin's antioxidant system, makes melanocytes less resistant to exogenous or endogenous stimuli, and ultimately pushes normal defense mechanisms, resulting in the loss of melanocytes. Given the crucial potential of innate together with adaptive immunity in vitiligo, there is growing evidence of a relation between oxidative stress and autoimmunity. Our review offers estimable insights into the possible properties of oxidative stress and autoimmunity in pathogenesis of vitiligo, as well as the potential role of antioxidant-based supportive therapy in vitiligo repigmentation, providing a hopeful value for further research and development of effective treatments.


Assuntos
Autoimunidade , Melanócitos , Estresse Oxidativo , Vitiligo , Vitiligo/imunologia , Vitiligo/metabolismo , Humanos , Melanócitos/metabolismo , Melanócitos/imunologia , Antioxidantes/metabolismo , Antioxidantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Pigmentação da Pele , Animais
15.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673994

RESUMO

Both alopecia areata (AA) and vitiligo are distinct, heterogenous, and complex disease entities, characterized by nonscarring scalp terminal hair loss and skin pigment loss, respectively. In AA, inflammatory cell infiltrates are in the deep reticular dermis close to the hair bulb (swarm of bees), whereas in vitiligo the inflammatory infiltrates are in the epidermis and papillary dermis. Immune privilege collapse has been extensively investigated in AA pathogenesis, including the suppression of immunomodulatory factors (e.g., transforming growth factor-ß (TGF-ß), programmed death-ligand 1 (PDL1), interleukin-10 (IL-10), α-melanocyte-stimulating hormone (α-MSH), and macrophage migration inhibitory factor (MIF)) and enhanced expression of the major histocompatibility complex (MHC) throughout hair follicles. However, immune privilege collapse in vitiligo remains less explored. Both AA and vitiligo are autoimmune diseases that share commonalities in pathogenesis, including the involvement of plasmacytoid dendritic cells (and interferon-α (IFN- α) signaling pathways) and cytotoxic CD8+ T lymphocytes (and activated IFN-γ signaling pathways). Blood chemokine C-X-C motif ligand 9 (CXCL9) and CXCL10 are elevated in both diseases. Common factors that contribute to AA and vitiligo include oxidative stress, autophagy, type 2 cytokines, and the Wnt/ß-catenin pathway (e.g., dickkopf 1 (DKK1)). Here, we summarize the commonalities and differences between AA and vitiligo, focusing on their pathogenesis.


Assuntos
Alopecia em Áreas , Vitiligo , Alopecia em Áreas/imunologia , Alopecia em Áreas/patologia , Alopecia em Áreas/etiologia , Alopecia em Áreas/metabolismo , Humanos , Vitiligo/imunologia , Vitiligo/patologia , Vitiligo/metabolismo , Vitiligo/etiologia , Animais , Privilégio Imunológico , Citocinas/metabolismo
16.
J Invest Dermatol ; 144(7): 1622-1632.e5, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38246583

RESUMO

Calreticulin (CRT), a damage-associated molecular pattern molecule, is reported to translocate from the endoplasmic reticulum to the membrane in melanocytes under oxidative stress. To investigate the potential role of CRT in the pathogenesis of vitiligo, we analyzed the correlation between CRT and ROS in serum and lesions of vitiligo, detected CRT and protein kinase RNA-like endoplasmic reticulum kinase (PERK) expression in vitiligo lesions, and studied the production of CRT and mediators of unfolded protein response (UPR) pathway and then tested the chemotactic migration of CD8+ T cells or CD11c+ CD86+ cells. Initially, we verified the overexpression of CRT in perilesional epidermis that was positively correlated with the disease severity of vitiligo. Furthermore, the PERK branch of UPR was confirmed to be responsible for the overexpression and membranal translocation of CRT in melanocytes under oxidative stress. We also found that oxidative stress-induced membranal translocation of CRT promoted the activation and migration of CD8+ T cells in vitiligo. In addition, dendritic cells from patients with vitiligo were also prone to maturation with the coincubation of melanocytes harboring membranal CRT. CRT could be induced on the membrane of melanocytes through UPR and might play a role in oxidative stress-triggered CD8+ T-cell response in vitiligo.


Assuntos
Autoimunidade , Linfócitos T CD8-Positivos , Calreticulina , Melanócitos , Estresse Oxidativo , Resposta a Proteínas não Dobradas , Vitiligo , Vitiligo/imunologia , Vitiligo/metabolismo , Vitiligo/patologia , Humanos , Melanócitos/metabolismo , Melanócitos/imunologia , Estresse Oxidativo/imunologia , Calreticulina/metabolismo , Resposta a Proteínas não Dobradas/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Feminino , Masculino , Adulto , eIF-2 Quinase/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Pessoa de Meia-Idade , Espécies Reativas de Oxigênio/metabolismo , Adulto Jovem , Membrana Celular/metabolismo , Epiderme/imunologia , Epiderme/metabolismo , Epiderme/patologia
17.
Autoimmun Rev ; 23(4): 103515, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38185189

RESUMO

Vitiligo is a chronic skin condition marked by the gradual loss of pigmentation, leading to the emergence of white or depigmented patches on the skin. The exact cause of vitiligo remains not entirely understood, although it is thought to involve a blend of genetic, autoimmune, and environmental factors. While there is currently no definitive cure for vitiligo, diverse treatments exist that may assist in managing the condition and fostering repigmentation in specific instances. Animal models play a pivotal role in comprehending the intricate mechanisms that underlie vitiligo, providing valuable insights into the progression and onset of the disease, as well as potential therapeutic interventions. Although induced experimental models lack the nuanced characteristics observed in natural experimental models, relying solely on a single animal model might not fully capture the intricate pathogenesis of vitiligo. Different animal models simulate specific aspects of human vitiligo pathogenesis to varying degrees. This review extensively explores the array of animal models utilized in vitiligo research, shedding light on their respective advantages, disadvantages, and applications.


Assuntos
Modelos Animais de Doenças , Vitiligo , Vitiligo/etiologia , Vitiligo/imunologia , Animais , Humanos , Camundongos
18.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675078

RESUMO

The skin is exposed to environmental challenges and contains skin-resident immune cells, including mast cells (MCs) and CD8 T cells that act as sentinels for pathogens and environmental antigens. Human skin MCs and their mediators participate in the maintenance of tissue homeostasis and regulate the recruitment and activity of immune cells involved in the pathogenesis of skin diseases. The cutaneous CD8 T cell compartment is comprised of long-persisting resident memory T cells (TRM) and migratory or recirculating cells; both populations provide durable site immune surveillance. Several lines of evidence indicate that MC-derived products, such as CCL5 and TNF-α, modulate the migration and function of CD8 T cells. Conversely, activated CD8 T cells induce the upregulation of MC costimulatory molecules. Moreover, the close apposition of MCs and CD8 T cells has been recently identified in the skin of several dermatoses, such as alopecia areata. This review outlines the current knowledge about bidirectional interactions between human MCs and CD8 T cells, analyses the alteration of their communication in the context of three common skin disorders in which these cells have been found altered in number or function-psoriasis, atopic dermatitis, and vitiligo-and discusses the current unanswered questions.


Assuntos
Linfócitos T CD8-Positivos , Comunicação Celular , Mastócitos , Dermatopatias , Humanos , Linfócitos T CD8-Positivos/imunologia , Comunicação Celular/imunologia , Mastócitos/imunologia , Psoríase/imunologia , Pele/imunologia , Dermatite Atópica , Vitiligo/imunologia , Dermatopatias/imunologia , Inflamação/imunologia
19.
Nature ; 601(7891): 118-124, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34912121

RESUMO

The skin serves as a physical barrier and an immunological interface that protects the body from the external environment1-3. Aberrant activation of immune cells can induce common skin autoimmune diseases such as vitiligo, which are often characterized by bilateral symmetric lesions in certain anatomic regions of the body4-6. Understanding what orchestrates the activities of cutaneous immune cells at an organ level is necessary for the treatment of autoimmune diseases. Here we identify subsets of dermal fibroblasts that are responsible for driving patterned autoimmune activity, by using a robust mouse model of vitiligo that is based on the activation of endogenous auto-reactive CD8+ T cells that target epidermal melanocytes. Using a combination of single-cell analysis of skin samples from patients with vitiligo, cell-type-specific genetic knockouts and engraftment experiments, we find that among multiple interferon-γ (IFNγ)-responsive cell types in vitiligo-affected skin, dermal fibroblasts are uniquely required to recruit and activate CD8+ cytotoxic T cells through secreted chemokines. Anatomically distinct human dermal fibroblasts exhibit intrinsic differences in the expression of chemokines in response to IFNγ. In mouse models of vitiligo, regional IFNγ-resistant fibroblasts determine the autoimmune pattern of depigmentation in the skin. Our study identifies anatomically distinct fibroblasts with permissive or repressive IFNγ responses as the key determinant of body-level patterns of lesions in vitiligo, and highlights mesenchymal subpopulations as therapeutic targets for treating autoimmune diseases.


Assuntos
Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Fibroblastos/imunologia , Pele/imunologia , Pele/patologia , Vitiligo/imunologia , Vitiligo/patologia , Adolescente , Adulto , Animais , Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL10/imunologia , Quimiocina CXCL9/imunologia , Criança , Modelos Animais de Doenças , Feminino , Fibroblastos/patologia , Humanos , Interferon gama/imunologia , Masculino , Melanócitos/imunologia , Melanócitos/patologia , Camundongos , Pessoa de Meia-Idade , Comunicação Parácrina , RNA-Seq , Análise de Célula Única , Células Estromais/imunologia , Linfócitos T Citotóxicos/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...