Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.322
Filtrar
1.
Yakugaku Zasshi ; 144(6): 659-674, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38825475

RESUMO

Serum urate levels are determined by the balance between uric acid production and uric acid excretion capacity from the kidneys and intestinal tract. Dysuricemia, including hyperuricemia and hypouricemia, develops when the balance shifts towards an increase or a decrease in the uric acid pool. Hyperuricemia is mostly a multifactorial genetic disorder involving several disease susceptibility genes and environmental factors. Hypouricemia, on the other hand, is caused by genetic abnormalities. The main genes involved in dysuricemia are xanthine oxidoreductase, an enzyme that produces uric acid, and the urate transporters urate transporter 1/solute carrier family 22 member 12 (URAT1/SLC22A12), glucose transporter 9/solute carrier family 2 member 9 (GLUT9/SLC2A9) and ATP binding cassette subfamily G member 2 (ABCG2). Deficiency of xanthine oxidoreductase results in xanthinuria, a rare disease with marked hypouricemia. Xanthinuria can be due to a single deficiency of xanthine oxidoreductase or in combination with aldehyde oxidase deficiency as well. The latter is caused by a deficiency in molybdenum cofactor sulfurase, which is responsible for adding sulphur atoms to the molybdenum cofactor required for xanthine oxidoreductase and aldehyde oxidase to exert their action. URAT1/SLC22A12 and GLUT9/SLC2A9 are involved in urate reabsorption and their deficiency leads to renal hypouricemia, a condition that is common in Japanese due to URAT1/SLC22A12 deficiency. On the other hand, ABCG2 is involved in the secretion of urate, and many Japanese have single nucleotide polymorphisms that result in its reduced function, leading to hyperuricemia. In particular, severe dysfunction of ABCG2 leads to hyperuricemia with reduced extrarenal excretion.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Proteínas Facilitadoras de Transporte de Glucose , Hiperuricemia , Proteínas de Neoplasias , Transportadores de Ânions Orgânicos , Ácido Úrico , Xantina Desidrogenase , Humanos , Hiperuricemia/etiologia , Hiperuricemia/metabolismo , Hiperuricemia/genética , Ácido Úrico/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Xantina Desidrogenase/metabolismo , Xantina Desidrogenase/genética , Xantina Desidrogenase/deficiência , Animais , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Erros Inatos do Transporte Tubular Renal/genética , Erros Inatos do Transporte Tubular Renal/etiologia , Erros Inatos do Transporte Tubular Renal/metabolismo , Cálculos Urinários/etiologia , Cálculos Urinários/metabolismo , Cálculos Urinários/genética , Erros Inatos do Metabolismo
2.
Sci Rep ; 14(1): 11167, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750091

RESUMO

Xanthine oxidoreductase (XOR) contributes to reactive oxygen species production. We investigated the cytoprotective mechanisms of XOR inhibition against high glucose (HG)-induced glomerular endothelial injury, which involves activation of the AMP-activated protein kinase (AMPK). Human glomerular endothelial cells (GECs) exposed to HG were subjected to febuxostat treatment for 48 h and the expressions of AMPK and its associated signaling pathways were evaluated. HG-treated GECs were increased xanthine oxidase/xanthine dehydrogenase levels and decreased intracellular AMP/ATP ratio, and these effects were reversed by febuxostat treatment. Febuxostat enhanced the phosphorylation of AMPK, the activation of peroxisome proliferator-activated receptor (PPAR)-gamma coactivator (PGC)-1α and PPAR-α and suppressed the phosphorylation of forkhead box O (FoxO)3a in HG-treated GECs. Febuxostat also decreased nicotinamide adenine dinucleotide phosphate oxidase (Nox)1, Nox2, and Nox4 expressions; enhanced superoxide dismutase activity; and decreased malondialdehyde levels in HG-treated GECs. The knockdown of AMPK inhibited PGC-1α-FoxO3a signaling and negated the antioxidant effects of febuxostat in HG-treated GECs. Despite febuxostat administration, the knockdown of hypoxanthine phosphoribosyl transferase 1 (HPRT1) also inhibited AMPK-PGC-1α-FoxO3a in HG-treated GECs. XOR inhibition alleviates oxidative stress by activating AMPK-PGC-1α-FoxO3a signaling through the HPRT1-dependent purine salvage pathway in GECs exposed to HG conditions.


Assuntos
Proteínas Quinases Ativadas por AMP , Células Endoteliais , Glucose , Xantina Desidrogenase , Humanos , Glucose/metabolismo , Xantina Desidrogenase/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Purinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Febuxostat/farmacologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Glomérulos Renais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
4.
Eur J Med Chem ; 271: 116407, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38663283

RESUMO

Xanthine oxidoreductase (XOR) and uric acid transporter 1 (URAT1) are two most widely studied targets involved in production and reabsorption of uric acid, respectively. Marketed drugs almost target XOR or URAT1, but sometimes, single agents might not achieve aim of lowering uric acid to ideal value in clinic. Thus, therapeutic strategies of combining XOR inhibitors with uricosuric drugs were proposed and implemented. Based on our initial work of virtual screening, A and B were potential hits for dual-targeted inhibitors on XOR/URAT1. By docking A/B with XOR/URAT1 respectively, compounds I1-7 were designed to get different degree of inhibition effect on XOR and URAT1, and I7 showed the best inhibitory effect on XOR (IC50 = 0.037 ± 0.001 µM) and URAT1 (IC50 = 546.70 ± 32.60 µM). Further docking research on I7 with XOR/URAT1 led to the design of compounds II with the significantly improved inhibitory activity on XOR and URAT1, such as II11 and II15. Especially, for II15, the IC50 of XOR is 0.006 ± 0.000 µM, superior to that of febuxostat (IC50 = 0.008 ± 0.000 µM), IC50 of URAT1 is 12.90 ± 2.30 µM, superior to that of benzbromarone (IC50 = 27.04 ± 2.55 µM). In acute hyperuricemia mouse model, II15 showed significant uric acid lowering effect. The results suggest that II15 had good inhibitory effect on XOR/URAT1, with the possibility for further investigation in in-vivo models of hyperuricemia.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Transportadores de Ânions Orgânicos , Proteínas de Transporte de Cátions Orgânicos , Piridinas , Animais , Piridinas/farmacologia , Piridinas/química , Piridinas/síntese química , Camundongos , Humanos , Relação Estrutura-Atividade , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Simulação de Acoplamento Molecular , Xantina Desidrogenase/antagonistas & inibidores , Xantina Desidrogenase/metabolismo , Relação Dose-Resposta a Droga , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Masculino , Ácido Úrico/metabolismo
5.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474193

RESUMO

Upregulation of free radical-generating NADPH oxidases (NOX), xanthine oxidoreductase (XOR), and neutrophil infiltration-induced, NOX2-mediated respiratory burst contribute to renal ischemia-reperfusion injury (IRI), but their roles may depend on the severity of IRI. We investigated the role of NOX, XOR, and neutrophils in developing IRI of various severities. C57BL/6 and Mcl-1ΔMyelo neutrophil-deficient mice were used. Oxidases were silenced by RNA interference (RNAi) or pharmacologically inhibited. Kidney function, morphology, immunohistochemistry and mRNA expression were assessed. After reperfusion, the expression of NOX enzymes and XOR increased until 6 h and from 15 h, respectively, while neutrophil infiltration was prominent from 3 h. NOX4 and XOR silencing or pharmacological XOR inhibition did not protect the kidney from IRI. Attenuation of NOX enzyme-induced oxidative stress by apocynin and neutrophil deficiency improved kidney function and ameliorated morphological damage after mild but not moderate/severe IRI. The IR-induced postischemic renal functional impairment (BUN, Lcn-2), tubular necrosis score, inflammation (TNF-α, F4/80), and decreases in the antioxidant enzyme (GPx3) mRNA expression were attenuated by both apocynin and neutrophil deficiency. Inhibition of NOX enzyme-induced oxidative stress or the lack of infiltration by NOX2-expressing neutrophils can attenuate reperfusion injury after mild but not moderate/severe renal IR.


Assuntos
Acetofenonas , Injúria Renal Aguda , Traumatismo por Reperfusão , Camundongos , Animais , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Camundongos Endogâmicos C57BL , Rim/metabolismo , Traumatismo por Reperfusão/genética , Xantina Desidrogenase/metabolismo , RNA Mensageiro
6.
Clin Sci (Lond) ; 138(5): 269-288, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38358003

RESUMO

The development of the kidney involves essential cellular processes, such as cell proliferation and differentiation, which are led by interactions between multiple signaling pathways. Xanthine dehydrogenase (XDH) catalyzes the reaction producing uric acid in the purine catabolism, which plays a multifaceted role in cellular metabolism. Our previous study revealed that the genetic ablation of the Xdh gene in rats leads to smaller kidneys, kidney damage, decline of renal functions, and failure to thrive. Rats, unlike humans, continue their kidney development postnatally. Therefore, we explored whether XDH plays a critical role in kidney development using SS-/- rats during postnatal development phase. XDH expression was significantly increased from postnatal day 5 to 15 in wild-type but not homozygote rat kidneys. The transcriptomic profile of renal tissue revealed several dysregulated pathways due to the lack of Xdh expression with the remodeling in inflammasome, purinergic signaling, and redox homeostasis. Further analysis suggested that lack of Xdh affects kidney development, likely via dysregulation of epidermal growth factor and its downstream STAT3 signaling. The present study showed that Xdh is essential for kidney maturation. Our data, alongside the previous research, suggests that loss of Xdh function leads to developmental issues, rendering them vulnerable to kidney diseases in adulthood.


Assuntos
Rim , Xantina Desidrogenase , Humanos , Ratos , Animais , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo , Rim/metabolismo , Ácido Úrico
7.
Curr Hypertens Rev ; 20(1): 10-22, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318826

RESUMO

Xanthine oxidoreductase (XOR) is a rate-limiting enzyme in the formation of uric acid (UA) and is involved in the generation of reactive oxygen species (ROS). Overproduction of ROS has been linked to the pathogenesis of hypertension, atherosclerosis, and cardiovascular disease, with multiple studies over the last 30 years demonstrating that XOR inhibition is beneficial. The involvement of XOR and its constituents in the advancement of chronic inflammation and ROS, which are responsible for endothelial dysfunction, is the focus of this evidence-based review. An overabundance of XOR products and ROS appears to drive the inflammatory response, resulting in significant endothelium damage. It has also been demonstrated that XOR activity and ED are connected. Diabetes, hypertension, and cardiovascular disease are all associated with endothelial dysfunction. ROS mainly modifies the activity of vascular cells and can be important in normal vascular physiology as well as the development of vascular disease. Suppressing XOR activity appears to decrease endothelial dysfunction, probably because it lessens the generation of reactive oxygen species and the oxidative stress brought on by XOR. Although there has long been a link between higher vascular XOR activity and worse clinical outcomes, new research suggests a different picture in which positive results are mediated by XOR enzymatic activity. Here in this study, we aimed to review the association between XOR and vascular endothelial dysfunction. The prevention and treatment approaches against vascular endothelial dysfunction in atherosclerotic disease.


Assuntos
Endotélio Vascular , Estresse Oxidativo , Espécies Reativas de Oxigênio , Xantina Desidrogenase , Humanos , Xantina Desidrogenase/metabolismo , Endotélio Vascular/fisiopatologia , Endotélio Vascular/metabolismo , Endotélio Vascular/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Hipertensão/fisiopatologia , Hipertensão/enzimologia , Hipertensão/metabolismo , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/metabolismo , Ácido Úrico/metabolismo , Ácido Úrico/sangue , Inibidores Enzimáticos/farmacologia
10.
FEBS J ; 291(3): 527-546, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37899720

RESUMO

Xanthine oxidoreductase (XOR) catalyzes the oxidation of purines (hypoxanthine and xanthine) to uric acid. XOR is widely used in various therapeutic and biotechnological applications. In this study, we characterized the biophysical and mechanistic properties of a novel bacterial XOR from Sulfobacillus acidophilus TPY (SaXOR). Our results showed that SaXOR is a heterotrimer consisting of three subunits, namely XoA, XoB, and XoC, which denote the molybdenum cofactor (Moco), 2Fe-2S, and FAD-binding domains, respectively. XoC was found to be stable when co-expressed with XoB, forming an XoBC complex. Furthermore, we prepared a fusion of XoB and XoC via a flexible linker (fusXoBC) and evaluated its function in comparison to that of XoBC. Spectroscopic analysis revealed that XoB harbors two 2Fe-2S clusters, whereas XoC bears a single-bound FAD cofactor. Electron transfer from reduced forms of XoC, XoBC, and fusXoBC to molecular oxygen (O2 ) during oxidative half-reaction yielded no flavin semiquinones, implying ultrafast single-electron transfer from 2Fe-2Sred to FAD. In the presence of XoA, XoBC and fusXoBC exhibited comparable XoA affinity and exploited a shared overall mechanism. Nonetheless, the linkage may accelerate the two-step, single-electron transfer cascade from 2Fe-2Sred to FAD while augmenting protein stability. Collectively, our findings provide novel insights into SaXOR properties and oxidation mechanisms divergent from prior mammalian and bacterial XOR paradigms.


Assuntos
Clostridiales , Proteínas Ferro-Enxofre , Xantina Desidrogenase , Animais , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo , Ferro/metabolismo , Oxirredução , Flavinas/metabolismo , Enxofre/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Mamíferos/metabolismo
11.
JCI Insight ; 9(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38032735

RESUMO

Hyperuricemia is implicated in numerous pathologies, but the mechanisms underlying uric acid production are poorly understood. Using a combination of mouse studies, cell culture studies, and human serum samples, we sought to determine the cellular source of uric acid. In mice, fasting and glucocorticoid treatment increased serum uric acid and uric acid release from ex vivo-incubated skeletal muscle. In vitro, glucocorticoids and the transcription factor FoxO3 increased purine nucleotide degradation and purine release from differentiated muscle cells, which coincided with the transcriptional upregulation of AMP deaminase 3, a rate-limiting enzyme in adenine nucleotide degradation. Heavy isotope tracing during coculture experiments revealed that oxidation of muscle purines to uric acid required their transfer from muscle cells to a cell type that expresses xanthine oxidoreductase, such as endothelial cells. Last, in healthy women, matched for age and body composition, serum uric acid was greater in individuals scoring below average on standard physical function assessments. Together, these studies reveal skeletal muscle purine degradation is an underlying driver of uric acid production, with the final step of uric acid production occurring primarily in a nonmuscle cell type. This suggests that skeletal muscle fiber purine degradation may represent a therapeutic target to reduce serum uric acid and treat numerous pathologies.


Assuntos
Células Endoteliais , Ácido Úrico , Humanos , Feminino , Camundongos , Animais , Ácido Úrico/metabolismo , Células Endoteliais/metabolismo , Xantina Desidrogenase , Músculo Esquelético/metabolismo , Oxirredução
12.
Nutrients ; 15(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37892555

RESUMO

Hyperuricemia is influenced by diet and can cause gout. Whether it is a potential risk factor for cardiovascular disease (CVD) remains controversial, and the mechanism is unclear. Similar to CVDs, gout attacks occur more frequently in the morning and at night. A possible reason for this is the diurnal variation in uric acid (UA), However, scientific data regarding this variation in patients with CVD are not available. Thus, we aimed to investigate diurnal variations in serum levels of UA and plasma levels of xanthine, hypoxanthine, and xanthine oxidoreductase (XOR) activity, which were measured at 18:00, 6:00, and 12:00 in male patients with coronary artery disease. Thirty eligible patients participated in the study. UA and xanthine levels significantly increased from 18:00 to 6:00 but significantly decreased from 6:00 to 12:00. By contrast, XOR activity significantly increased both from 18:00 to 6:00 and 6:00 to 12:00. Furthermore, the rates of increase in UA and xanthine levels from night to morning were significantly and positively correlated. In conclusion, UA and xanthine showed similar diurnal variations, whereas XOR activity showed different diurnal variations. The morning UA surge could be due to UA production. The mechanism involved XOR activity, but other factors were also considered.


Assuntos
Doença da Artéria Coronariana , Gota , Humanos , Masculino , Xantina , Ácido Úrico , Xantina Desidrogenase
13.
Redox Biol ; 67: 102864, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37713777

RESUMO

Several rare genetic variations of human XDH have been shown to alter xanthine oxidoreductase (XOR) activity leading to impaired purine catabolism. However, XOR is a multi-functional enzyme that depending upon the environmental conditions also expresses oxidase activity leading to both O2·- and H2O2 and nitrite (NO2-) reductase activity leading to nitric oxide (·NO). Since these products express important, and often diametrically opposite, biological activity, consideration of the impact of XOR mutations in the context of each aspect of the biochemical activity of the enzyme is needed to determine the potential full impact of these variants. Herein, we show that known naturally occurring hXDH mutations do not have a uniform impact upon the biochemical activity of the enzyme in terms of uric acid (UA), reactive oxygen species (ROS) and nitric oxide ·NO formation. We show that the His1221Arg mutant, in the presence of xanthine, increases UA, O2·- and NO generation compared to the WT, whilst the Ile703Val increases UA and ·NO formation, but not O2·-. We speculate that this change in the balance of activity of the enzyme is likely to endow those carrying these mutations with a harmful or protective influence over health that may explain the current equipoise underlying the perceived importance of XDH mutations. We also show that, in presence of inorganic NO2-, XOR-driven O2·- production is substantially reduced. We suggest that targeting enzyme activity to enhance the NO2--reductase profile in those carrying such mutations may provide novel therapeutic options, particularly in cardiovascular disease.


Assuntos
Nitritos , Xantina Desidrogenase , Humanos , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo , Nitritos/metabolismo , Óxido Nítrico/metabolismo , Oxirredutases/metabolismo , Dióxido de Nitrogênio , Peróxido de Hidrogênio , Oxirredução , Ácido Úrico/metabolismo , Mutação , Xantina Oxidase/metabolismo
14.
Redox Biol ; 67: 102866, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37703667

RESUMO

We recently reported a previously unknown salutary role for xanthine oxidoreductase (XOR) in intravascular heme overload whereby hepatocellular export of XOR to the circulation was identified as a seminal step in affording protection. However, the cellular signaling and export mechanisms underpinning this process were not identified. Here, we present novel data showing hepatocytes upregulate XOR expression/protein abundance and actively release it to the extracellular compartment following exposure to hemopexin-bound hemin, hemin or free iron. For example, murine (AML-12 cells) hepatocytes treated with hemin (10 µM) exported XOR to the medium in the absence of cell death or loss of membrane integrity (2.0 ± 1.0 vs 16 ± 9 µU/mL p < 0.0001). The path of exocytosis was found to be noncanonical as pretreatment of the hepatocytes with Vaculin-1, a lysosomal trafficking inhibitor, and not Brefeldin A inhibited XOR release and promoted intracellular XOR accumulation (84 ± 17 vs 24 ± 8 hemin vs 5 ± 3 control µU/mg). Interestingly, free iron (Fe2+ and Fe3+) induced similar upregulation and release of XOR compared to hemin. Conversely, concomitant treatment with hemin and the classic transition metal chelator DTPA (20 µM) or uric acid completely blocked XOR release (p < 0.01). Our previously published time course showed XOR release from hepatocytes likely required transcriptional upregulation. As such, we determined that both Sp1 and NF-kB were acutely activated by hemin treatment (∼2-fold > controls for both, p < 0.05) and that silencing either or TLR4 with siRNA prevented hemin-induced XOR upregulation (p < 0.01). Finally, to confirm direct action of these transcription factors on the Xdh gene, chromatin immunoprecipitation was performed indicating that hemin significantly enriched (∼5-fold) both Sp1 and NF-kB near the transcription start site. In summary, our study identified a previously unknown pathway by which XOR is upregulated via SP1/NF-kB and subsequently exported to the extracellular environment. This is, to our knowledge, the very first study to demonstrate mechanistically that XOR can be specifically targeted for export as the seminal step in a compensatory response to heme/Fe overload.


Assuntos
Hemina , Xantina Desidrogenase , Animais , Camundongos , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo , Hemina/farmacologia , Ferro , NF-kappa B , Heme , Hepatócitos/metabolismo
15.
Chem Biol Drug Des ; 102(6): 1553-1567, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700463

RESUMO

Xanthine oxidoreductase (XOR) and uric acid transporter 1 (URAT1) are involved in the production and reabsorption of uric acid, respectively. However, the currently available individual XOR- or URAT1-targeted drugs have limited efficacy. Thus, strategies for combining XOR inhibitors with uricosuric drugs have been developed. Previous virtual screening identified Compounds 1-5 as hits for the potential dual inhibition of XOR/URAT1. Nevertheless, in vitro experiments yielded unsatisfactory results. The first round of optimization work on those hits was performed, and two series of compounds were designed and synthesized. Compounds of the A series exerted moderate inhibitory effects on URAT1, but extremely weak inhibitory effects on XOR. Compounds of the B series exerted strong inhibitory effects on both XOR and URAT1. B5 exhibited the greatest inhibitory activity, with similar inhibitory effects on XOR and URAT1. The half maximal inhibitory concentration (IC50 ) of XOR was 0.012 ± 0.001 µM, equivalent to that of febuxostat (IC50 = 0.010 ± 0.001 µM). The IC50 of URAT1 was 30.24 ± 3.46 µM, equivalent to that of benzbromarone (IC50 = 24.89 ± 7.53 µM). Through this optimization, the in vitro activity of most compounds of the A and B series against XOR and URAT1 was significantly improved versus that of the hits. Compound B5 should be further investigated.


Assuntos
Transportadores de Ânions Orgânicos , Ácido Úrico , Ácido Úrico/farmacologia , Xantina Desidrogenase , Ácido Benzoico , Proteínas de Transporte de Cátions Orgânicos
17.
Microbiol Spectr ; 11(4): e0481422, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37458582

RESUMO

The xanthine oxidoreductase (XOR) family are metal-containing enzymes that use the molybdenum cofactor (Moco), 2Fe-2S clusters, and flavin adenine dinucleotide (FAD) for their catalytic activity. This large molybdoenzyme family includes xanthine, aldehyde, and CO dehydrogenases. XORs are widely distributed from bacteria to humans due to their key roles in the catabolism of purines, aldehydes, drugs, and xenobiotics, as well as interconversions between CO and CO2. Assessing the effect of excess metals on the Rubrivivax gelatinosus bacterium, we found that exposure to copper (Cu) or cadmium (Cd) caused a dramatic decrease in the activity of a high-molecular-weight soluble complex exhibiting nitroblue tetrazolium reductase activity. Mass spectrometry and genetic analyses showed that the complex corresponds to a putative CO dehydrogenase (pCOD). Using mutants that accumulate either Cu+ or Cd2+ in the cytoplasm, we show that Cu+ or Cd2+ is a potent inhibitor of XORs (pCOD and the xanthine dehydrogenase [XDH]) in vivo. This is the first in vivo demonstration that Cu+ affects Moco-containing enzymes. The specific inhibitory effect of these compounds on the XOR activity is further supported in vitro by direct addition of competing metals to protein extracts. Moreover, emphasis is given on the inhibitory effect of Cu on bovine XOR, showing that the XOR family could be a common target of Cu. Given the conservation of XOR structure and function across the tree of life, we anticipate that our findings could be transferable to other XORs and organisms. IMPORTANCE The high toxicity of Cu, Cd, Pb, As, and other metals arises from their ability to cross membranes and target metalloenzymes in the cytoplasm. Identifying these targets provides insights into the toxicity mechanisms. The vulnerability of metalloenzymes arises from the accessibility of their cofactors to ions. Accordingly, many enzymes whose cofactors are solvent exposed are likely to be targets of competing metals. Here, we describe for the first time, with in vivo and in vitro experiments, a direct effect of excess Cu on the xanthine oxidoreductase family (XOR/XDH/pCOD). We show that toxic metal affects these Moco enzymes, and we suggest that access to the Moco center by Cu ions could explain the Cu inhibition of XORs in living organisms. Human XOR activity is associated with hyperuricemia, xanthinuria, gout arthritis, and other diseases. Our findings in vivo highlight XOR as a Cu target and thus support the potential use of Cu in metal-based therapeutics against these diseases.


Assuntos
Metaloproteínas , Xantina Desidrogenase , Animais , Bovinos , Humanos , Xantina Desidrogenase/química , Xantina Desidrogenase/genética , Xantina Desidrogenase/metabolismo , Cádmio/toxicidade , Metais
18.
Respir Res ; 24(1): 177, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415141

RESUMO

BACKGROUND: Sepsis and associated organ failures confer substantial morbidity and mortality. Xanthine oxidoreductase (XOR) is implicated in the development of tissue oxidative damage in a wide variety of respiratory and cardiovascular disorders including sepsis and sepsis-associated acute respiratory distress syndrome (ARDS). We examined whether single nucleotide polymorphisms (SNPs) in the XDH gene (encoding XOR) might influence susceptibility to and outcome in patients with sepsis. METHODS: We genotyped 28 tag SNPs in XDH gene in the CELEG cohort, including 621 European American (EA) and 353 African American (AA) sepsis patients. Serum XOR activity was measured in a subset of CELEG subjects. Additionally, we assessed the functional effects of XDH variants utilizing empirical data from different integrated software tools and datasets. RESULTS: Among AA patients, six intronic variants (rs206805, rs513311, rs185925, rs561525, rs2163059, rs13387204), in a region enriched with regulatory elements, were associated with risk of sepsis (P < 0.008-0.049). Two out of six SNPs (rs561525 and rs2163059) were associated with risk of sepsis-associated ARDS in an independent validation cohort (GEN-SEP) of 590 sepsis patients of European descent. Two common SNPs (rs1884725 and rs4952085) in tight linkage disequilibrium (LD) provided strong evidence for association with increased levels of serum creatinine (Padjusted<0.0005 and 0.0006, respectively), suggesting a role in increased risk of renal dysfunction. In contrast, among EA ARDS patients, the missense variant rs17011368 (I703V) was associated with enhanced mortality at 60-days (P < 0.038). We found higher serum XOR activity in 143 sepsis patients (54.5 ± 57.1 mU/mL) compared to 31 controls (20.9 ± 12.4 mU/mL, P = 1.96 × 10- 13). XOR activity was associated with the lead variant rs185925 among AA sepsis patients with ARDS (P < 0.005 and Padjusted<0.01). Multifaceted functions of prioritized XDH variants, as suggested by various functional annotation tools, support their potential causality in sepsis. CONCLUSIONS: Our findings suggest that XOR is a novel combined genetic and biochemical marker for risk and outcome in patients with sepsis and ARDS.


Assuntos
Síndrome do Desconforto Respiratório , Sepse , Humanos , Xantina Desidrogenase/genética , Genótipo , Polimorfismo de Nucleotídeo Único/genética , Sepse/diagnóstico , Sepse/genética , Sepse/complicações
19.
Endocr J ; 70(7): 663-675, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37316258

RESUMO

Visceral fat-based metabolic syndrome has a strong impact on atherosclerotic cardiovascular disease (CVD), clustering diabetes, dyslipidemia, hypertension, hyperuricemia, and non-alcoholic fatty liver disease (NAFLD). Adiponectin, a protein specifically secreted by adipocytes, circulates abundantly in the human bloodstream, but its concentration decreases under pathological conditions such as visceral fat accumulation. Extensive clinical evidence has demonstrated that hypoadiponectinemia is associated with the development of CVD and chronic organ diseases. Although several binding partners of adiponectin, such as AdipoR1/2, have been identified, how adiponectin exerts its multiple beneficial effects on various organs remains to be fully elucidated. Recent progress in adiponectin research has revealed that adiponectin accumulates on cardiovascular tissues by binding to a unique glycosylphosphatidylinositol-anchored T-cadherin. The adiponectin/T-cadherin complex enhances exosome biogenesis and secretion, which may contribute to the maintenance of cellular homeostasis and tissue regeneration, particularly in the vasculature. Xanthine oxidoreductase (XOR) is a rate-limiting enzyme that catabolizes hypoxanthine and xanthine to uric acid. XOR produces reactive oxygen species in the reaction process, suggesting that XOR is involved in the pathological mechanism underlying CVD progression. Recent findings from clinical and laboratory studies have shown strong positive correlations between plasma XOR activity and liver enzymes. Furthermore, especially in NAFLD conditions, excessive hepatic XOR leaked into the bloodstream accelerates purine catabolism in the circulation, using hypoxanthine secreted from vascular endothelial cells and adipocytes, which can promote vascular remodeling. In this review, we focused on the cardiovascular significance of adipose-derived adiponectin and liver-derived XOR in the development of CVD associated with metabolic syndrome.


Assuntos
Hipertensão , Síndrome Metabólica , Hepatopatia Gordurosa não Alcoólica , Humanos , Adiponectina , Xantina Desidrogenase , Células Endoteliais/metabolismo , Obesidade , Hipoxantinas
20.
Molecules ; 28(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298917

RESUMO

The author will outline the research history of the main issues addressed in this paper. The author has worked on this research himself. XDH, which is responsible for purine degradation, is present in various organisms. However, conversion to XO only occurs in mammals. The molecular mechanism of this conversion was elucidated in this study. The physiological and pathological significance of this conversion is presented. Finally, enzyme inhibitors were successfully developed, two of which are used as therapeutic agents for gout. Their wide application potential is also discussed.


Assuntos
Xantina Desidrogenase , Xantina Oxidase , Animais , Xantina Oxidase/metabolismo , Xantina Desidrogenase/metabolismo , Inibidores Enzimáticos/farmacologia , Descoberta de Drogas , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...