Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.002
Filtrar
1.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39201397

RESUMO

This in vivo study performed in rat adjuvant arthritis aims to advance the understanding of astaxanthin's therapeutic properties for the possible treatment of rheumatoid arthritis (RA) in monotherapy and along with the standard RA treatment, methotrexate (MTX), in combination therapy. The main goal was to elucidate astaxanthin's full therapeutic potential, evaluate its dose dependency, and compare its effects in monotherapy with other carotenoids such as ß-carotene and ß-cryptoxanthin (KXAN). Moreover, potential differences in therapeutic activity caused by using different sources of astaxanthin, synthetic (ASYN) versus isolated from Blakeslea trispora (ASTAP), were evaluated using one-way ANOVA (Tukey-Kramer post hoc test). KXAN was the most effective in reducing plasma MMP-9 levels in monotherapy, significantly better than MTX, and in reducing hind paw swelling. The differences in the action of ASTAP and ASYN have been observed across various biometric, anti-inflammatory, and antioxidative parameters. In combined therapy with MTX, the ASYN + MTX combination proved to be better. These findings, especially the significant anti-arthritic effect of KXAN and ASYN + MTX, could be the basis for further preclinical studies.


Assuntos
Artrite Experimental , Metotrexato , Xantofilas , Animais , Xantofilas/farmacologia , Xantofilas/uso terapêutico , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Ratos , Masculino , Carotenoides/farmacologia , Carotenoides/uso terapêutico , Quimioterapia Combinada , Sinergismo Farmacológico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , beta-Criptoxantina/farmacologia , beta Caroteno/farmacologia , Antioxidantes/farmacologia
2.
J Biochem Mol Toxicol ; 38(8): e23804, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39132813

RESUMO

The present study evaluated the cardioprotective effect of astaxanthin (ASX) against isoproterenol (ISO) induced myocardial infarction in rats via the pathway of mitochondrial biogenesis as the possible molecular target of astaxanthin. The control group was injected with normal physiological saline subcutaneously for 2 days. The second group was injected with ISO at a dose of 85 mg/kg bwt subcutaneously for 2 days. The third, fourth and fifth groups were supplemented with ASX at doses of 10, 20, 30 mg/kg bwt, respectively daily by oral gavage for 21 days then injected with ISO dose of 85 mg/kg bwt subcutaneously for 2 successive days. Isoproterenol administration in rats elevated the activities of Creatine kinase-MB (CK-MB), aspartate transaminase (AST), lactate dehydrogenase (LDH), and other serum cardiac biomarkers Troponin-I activities, oxidative stress biomarkers, malondialdehyde(MDA), Nuclear factor-kappa B (NF-KB), while it decreased Peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α), Nuclear factor erythroid-2-related factor 2 (Nfe212), mitochondrial transcriptional factor A (mt TFA), mitochondrial DNA copy number and glutathione system parameters. However, Astaxanthin decreased the activities of serum AST, LDH, CK-MB, and Troponin I that elevated by ISO. In addition, it increased glutathione peroxidase and reductase activities, total glutathione and reduced GSH content, and GSH/GSSG ratio, mtDNA copy number, PGC-1α expression and Tfam expression that improved mitochondrial biogenesis while it decreased GSSG and MDA contents and NF-KB level in the cardiac tissues. This study indicated that astaxanthin relieved isoproterenol induced myocardial infarction via scavenging free radicals and reducing oxidative damage and apoptosis in cardiac tissue.


Assuntos
Antioxidantes , Isoproterenol , Infarto do Miocárdio , Xantofilas , Animais , Xantofilas/farmacologia , Isoproterenol/toxicidade , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Ratos , Masculino , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/efeitos dos fármacos
3.
J Ovarian Res ; 17(1): 163, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127677

RESUMO

CONTEXT: Oxidative stress (OS) plays a harmful role in female reproduction and fertility. Several studies explored various dietary interventions and antioxidant supplements, such as astaxanthin (AST), to mitigate the adverse effects of OS on female fertility. Ameliorative effects of AST on female fertility and the redox status of reproductive organs have been shown in several animal and clinical studies. OBJECTIVES: The main objective of present systematic review and meta-analysis of both animal and clinical studies was to provide a comprehensive overview of the current evidence on the effects of AST on female fertility and reproductive outcomes. The effect of AST on redox status, inflammatory and apoptotic markers in reproductive organs were included as the secondary outcomes. DATA SOURCES: We systematically searched electronic databases including PubMed, Scopus, and Web of Science, until January 1, 2024, using specified search terms related to AST, female reproductive performance, and infertility, considering the diverse synonyms found in the literature for interventional studies that compared oral AST supplementation with placebo or control in human or animal models. DATA EXTRACTION: Two independent reviewers extracted data on study characteristics, outcomes, and risk of bias. We pooled the results using random-effects models and assessed the heterogeneity and quality of evidence. We descriptively reported the data from animal models, as meta-analysis was not possible. DATA ANALYSIS: The meta-analysis of clinical trials showed that AST significantly increased the oocyte maturation rate (MD: 8.40, 95% CI: 4.57 to 12.23, I2: 0%) and the total antioxidant capacity levels in the follicular fluid (MD: 0.04, 95% CI: 0.02 to 0.06, I2: 0%). The other ART and pregnancy outcomes and redox status markers did not show statistically significant changes. The animal studies reported ameliorative effects of AST on redox status, inflammation, apoptosis, and ovarian tissue histomorphology. CONCLUSION: This systematic review shows that AST supplementation may improve assisted reproductive technology outcomes by enhancing oocyte quality and reducing OS in the reproductive organs. However, the evidence is limited by the heterogeneity, risk of bias, and small sample size of the included studies.


Assuntos
Suplementos Nutricionais , Fertilidade , Reprodução , Xantofilas , Xantofilas/farmacologia , Xantofilas/uso terapêutico , Feminino , Animais , Humanos , Fertilidade/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Gravidez , Infertilidade Feminina/tratamento farmacológico
4.
J Agric Food Chem ; 72(32): 18013-18026, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39088205

RESUMO

Glucose and lipid metabolism dysregulation in skeletal muscle contributes to the development of metabolic disorders. The efficacy of fucoxanthin in alleviating lipid metabolic disorders in skeletal muscle remains poorly understood. In this study, we systematically investigated the impact of fucoxanthin on mitigating lipid deposition and insulin resistance in skeletal muscle employing palmitic acid-induced lipid deposition in C2C12 cells and ob/ob mice. Fucoxanthin significantly alleviated PA-induced skeletal muscle lipid deposition and insulin resistance. In addition, fucoxanthin prominently upregulated the expression of lipid metabolism-related genes (Pparα and Cpt-1), promoting fatty acid ß-oxidation metabolism. Additionally, fucoxanthin significantly increased the expression of Pgc-1α and Tfam, elevated the mtDNA/nDNA ratio, and reduced ROS levels. Further, we identified pyruvate kinase muscle isozyme 1 (PKM1) as a high-affinity protein for fucoxanthin by drug affinity-responsive target stability and LC-MS and confirmed their robust interaction by CETSA, microscale thermophoresis, and circular dichroism. Supplementation with pyruvate, the product of PKM1, significantly attenuated the beneficial effects of fucoxanthin on lipid deposition and insulin resistance. Mechanistically, fucoxanthin reduced glucose glycolysis rate and enhanced mitochondrial biosynthesis and fatty acid ß-oxidation through inhibiting PKM1 activity, thereby alleviating lipid metabolic stress. These findings present a novel clinical strategy for treating metabolic diseases using fucoxanthin.


Assuntos
Resistência à Insulina , Metabolismo dos Lipídeos , Músculo Esquelético , Piruvato Quinase , Xantofilas , Animais , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Xantofilas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Masculino , Humanos , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos
5.
J Agric Food Chem ; 72(34): 19177-19186, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39140411

RESUMO

The common presence of glycidyl esters (GEs) in refined vegetable oils has been a concern for food safety. The present study aimed to investigate the inhibitory effects of three carotenoids derived from Haematococcus pluvialis microalga on GE formation in both rice oil and a chemical model during heating. The addition of astaxanthin (AS), lutein (LU), and ß-carotene (CA) at 0.6 mg/g in rice oil can reduce GE formation by 65.0%, 57.1%, and 57.5%, respectively, which are significantly higher than those achieved by common antioxidants such as l-ascorbyl palmitate (39.0%), α-tocopherol (18.5%), tert-butyl hydroquinone (42.7%), and quercetin (26.2%). UPLC-Q-TOF-MS/MS analysis showed that two new compounds, that is, propylene glycol monoester and diester of palmitic acid, were formed in the CA-added chemical model, which provided direct experimental evidence for the inhibition of antioxidants including AS, LU, and CA against GE formation not only by indirect antioxidative action but also by direct radical reactions to competitively prevent the formation of cyclic acyloxonium intermediates. Furthermore, it was interestingly found that only AS could react with the GEs. The adduct of AS with GEs, astaxanthin-3-O-propanetriol esters, was preliminarily identified using Q-TOF-MS/MS in the heated AS-GE model, suggesting that reacting with GEs might represent another distinct mechanism of AS to eliminate GEs.


Assuntos
Carotenoides , Ésteres , Temperatura Alta , Ésteres/química , Ésteres/farmacologia , Carotenoides/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Xantofilas/química , Xantofilas/farmacologia , Espectrometria de Massas em Tandem , Compostos de Epóxi/química , Modelos Químicos , Antioxidantes/química , Antioxidantes/farmacologia , Luteína/química , Luteína/farmacologia , Clorofíceas/química , Clorófitas/química
6.
Mar Drugs ; 22(8)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39195473

RESUMO

Fucoxanthin, a carotenoid with remarkable antioxidant properties, has considerable potential for high-value biotechnological applications in the pharmaceutical, nutraceutical, and cosmeceutical fields. However, conventional extraction methods of this molecule from microalgae are limited in terms of cost-effectiveness. This study focused on optimizing biomass and fucoxanthin production from Isochrysis galbana, isolated from the coast of Tadjoura (Djibouti), by testing various culture media. The antioxidant potential of the cultures was evaluated based on the concentrations of fucoxanthin, carotenoids, and total phenols. Different nutrient formulations were tested to determine the optimal combination for a maximum biomass yield. Using the statistical methodology of principal component analysis, Walne and Guillard F/2 media were identified as the most promising, reaching a maximum fucoxanthin yield of 7.8 mg/g. Multiple regression models showed a strong correlation between antioxidant activity and the concentration of fucoxanthin produced. A thorough study of the optimization of I. galbana growth conditions, using a design of experiments, revealed that air flow rate and CO2 flow rate were the most influential factors on fucoxanthin production, reaching a value of 13.4 mg/g. Finally, to validate the antioxidant potential of fucoxanthin, an in silico analysis based on molecular docking was performed, showing that fucoxanthin interacts with antioxidant proteins (3FS1, 3L2C, and 8BBK). This research not only confirmed the positive results of I. galbana cultivation in terms of antioxidant activity, but also provided essential information for the optimization of fucoxanthin production, opening up promising prospects for industrial applications and future research.


Assuntos
Antioxidantes , Biologia Computacional , Haptófitas , Microalgas , Xantofilas , Microalgas/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Xantofilas/isolamento & purificação , Xantofilas/farmacologia , Xantofilas/química , Haptófitas/química , Biomassa , Meios de Cultura/química , Simulação de Acoplamento Molecular , Fenóis/farmacologia , Fenóis/química
7.
Mediators Inflamm ; 2024: 5273198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108992

RESUMO

Tendinopathy is one of the most frequent musculoskeletal disorders characterized by sustained tissue inflammation and oxidative stress, accompanied by extracellular matrix remodeling. Patients suffering from this pathology frequently experience pain, swelling, stiffness, and muscle weakness. Current pharmacological interventions are based on nonsteroidal anti-inflammatory drugs; however, the effectiveness of these strategies remains ambiguous. Accumulating evidence supports that oral supplementation of natural compounds can provide preventive, and possibly curative, effects. Vitamin C (Vit C), collagen peptides (Coll), resveratrol (Res), and astaxanthin (Asx) were reported to be endowed with potential beneficial effects based on their anti-inflammatory and antioxidant activities. Here, we analyzed the efficacy of a novel combination of these compounds (Mix) in counteracting proinflammatory (IL-1ß) and prooxidant (H2O2) stimuli in human tenocytes. We demonstrated that Mix significantly impairs IL-6-induced IL-1ß secretion, NF-κB nuclear translocation, and MMP-2 production; notably, a synergistic effect of Mix over the single compounds could be observed. Moreover, Mix was able to significantly counteract H2O2-triggered ROS production. Together, these results point out that Mix, a novel combination of Vit C, Coll, Resv, and Asx, significantly impairs proinflammatory and prooxidant stimuli in tenocytes, mechanisms that contribute to the onset of tendinopathies.


Assuntos
Anti-Inflamatórios , Antioxidantes , Ácido Ascórbico , Colágeno , Resveratrol , Tendinopatia , Tenócitos , Xantofilas , Humanos , Ácido Ascórbico/farmacologia , Ácido Ascórbico/uso terapêutico , Resveratrol/farmacologia , Antioxidantes/farmacologia , Xantofilas/farmacologia , Xantofilas/uso terapêutico , Tendinopatia/tratamento farmacológico , Tendinopatia/metabolismo , Colágeno/metabolismo , Anti-Inflamatórios/farmacologia , Tenócitos/metabolismo , Tenócitos/efeitos dos fármacos , Interleucina-1beta/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Peróxido de Hidrogênio/metabolismo , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Células Cultivadas , Estresse Oxidativo/efeitos dos fármacos
8.
J Biochem Mol Toxicol ; 38(8): e23788, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39087918

RESUMO

In this study, we evaluated the hepatoprotective effects of astaxanthin, a natural carotenoid, against the cholestatic liver fibrosis induced by bile duct ligation (BDL). Toward this end, male rats were subjected to BDL and treated with astaxanthin for 35 days. Afterwards, their serum and liver biochemical factors were assessed. Also, histopathological and immunohistochemical analyses were performed to determine the fibrosis and the expression levels of alpha-smooth muscle actin (α-SMA) and transforming growth factor beta (TGF-ß1) in the liver tissue. Based on the results, BDL caused a significant increase in liver enzyme levels, blood lipids, and bilirubin, while decreasing the activity of superoxide dismutase(SOD), catalase (CAT), and glutathione (GSH) enzymes. Also, in the BDL rats, hepatocyte necrosis, infiltration of inflammatory lymphocytes, and hyperplasia of bile ducts were detected, along with a significant increase in α-SMA and TGF-ß1 expression. Astaxanthin, however, significantly prevented the BDL's detrimental effects. In all, 10 mg/kg of this drug maintained the bilirubin and cholesterol serum levels of BDL rats at normal levels. It also reduced the liver enzymes' activity and serum lipids, while increasing the SOD, CAT, and GSH activity in BDL rats. The expression of α-SMA and TGF-ß1 in the BDL rats treated with 10 mg/kg of astaxanthin was moderate (in 34%-66% of cells) and no considerable cholestatic fibrosis was observed in this group. However, administrating the 20 mg/kg of astaxanthin was not effective in this regard. These findings showed that astaxanthin could considerably protect the liver from cholestatic damage by improving the biochemical features and regulating the expression of related proteins.


Assuntos
Ductos Biliares , Colestase , Cirrose Hepática , Ratos Wistar , Xantofilas , Animais , Xantofilas/farmacologia , Xantofilas/uso terapêutico , Masculino , Ratos , Colestase/patologia , Colestase/metabolismo , Colestase/tratamento farmacológico , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/prevenção & controle , Ligadura , Ductos Biliares/cirurgia , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
9.
Molecules ; 29(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125009

RESUMO

Human pharyngeal squamous cell carcinoma (HPSCC) is the most common malignancy in the head and neck region, characterized by high mortality and a propensity for metastasis. Fucoxanthin, a carotenoid isolated from brown algae, exhibits pharmacological properties associated with the suppression of tumor proliferation and metastasis. Nevertheless, its potential to inhibit HPSCC proliferation and metastasis has not been fully elucidated. This study represents the first exploration of the inhibitory effects of fucoxanthin on two human pharyngeal squamous carcinoma cell lines (FaDu and Detroit 562), as well as the mechanisms underlying those effects. The results showed dose-dependent decreases in the proliferation, migration, and invasion of HPSCC cells after fucoxanthin treatment. Further studies indicated that fucoxanthin caused a significant reduction in the expression levels of proteins in the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) pathway, as well as the downstream proteins matrix metalloproteinase (MMP)-2 and MMP-9. Specific activators of PI3K/AKT reversed the effects of fucoxanthin on these proteins, as well as on cell proliferation and metastasis, in FaDu and Detroit 562 cells. Molecular docking assays confirmed that fucoxanthin strongly interacted with PI3K, AKT, mTOR, MMP-2, and MMP-9. Overall, fucoxanthin, a functional food component, is a potential therapeutic agent for HPSCC.


Assuntos
Movimento Celular , Proliferação de Células , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Serina-Treonina Quinases TOR , Xantofilas , Humanos , Serina-Treonina Quinases TOR/metabolismo , Xantofilas/farmacologia , Xantofilas/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Neoplasias Faríngeas/tratamento farmacológico , Neoplasias Faríngeas/patologia , Neoplasias Faríngeas/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Metástase Neoplásica , Simulação de Acoplamento Molecular
10.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063101

RESUMO

Astaxanthin (ATX) is a carotenoid nutraceutical with poor bioavailability due to its high lipophilicity. We tested a new tailored nanodroplet capable of solubilizing ATX in an oil-in-water micro-environment (LDS-ATX) for its capacity to improve the ATX pharmacokinetic profile and therapeutic efficacy. We used liquid chromatography tandem mass spectrometry (LC-MS/MS) to profile the pharmacokinetics of ATX and LDS-ATX, superoxide mutase (SOD) activity to determine their antioxidant capacity, protein carbonylation and lipid peroxidation to compare their basal and lipopolysaccharide (LPS)-induced oxidative damage, and ELISA-based detection of IL-2 and IFN-γ to determine their anti-inflammatory capacity. ATX and LDS-ATX corrected only LPS-induced SOD inhibition and oxidative damage. SOD activity was restored only by LDS-ATX in the liver and brain and by both ATX and LDS-ATX in muscle. While in the liver and muscle, LDS-ATX attenuated oxidative damage to proteins and lipids better than ATX; only oxidative damage to lipids was preferably corrected by LDS-ATX in the brain. IL-2 and IFN-γ pro-inflammatory response was corrected by LDS-ATX and not ATX in the liver and brain, but in muscle, the IL-2 response was not corrected and the IFN-γ response was mitigated by both. These results strongly suggest an organ-dependent improvement of ATX bioavailability and efficacy by the LDS-ATX nanoformulation.


Assuntos
Anti-Inflamatórios , Antioxidantes , Xantofilas , Xantofilas/farmacocinética , Xantofilas/farmacologia , Xantofilas/química , Xantofilas/administração & dosagem , Antioxidantes/farmacocinética , Antioxidantes/farmacologia , Antioxidantes/química , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Animais , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Masculino , Nanopartículas/química , Espectrometria de Massas em Tandem/métodos , Fígado/metabolismo , Fígado/efeitos dos fármacos , Portadores de Fármacos/química , Peroxidação de Lipídeos/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Lipopolissacarídeos , Interferon gama/metabolismo
11.
Neuromolecular Med ; 26(1): 29, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39014255

RESUMO

Vascular dementia (VaD) is a cognitive disorder characterized by a decline in cognitive function resulting from cerebrovascular disease. The hippocampus is particularly susceptible to ischemic insults, leading to memory deficits in VaD. Astaxanthin (AST) has shown potential therapeutic effects in neurodegenerative diseases. However, the mechanisms underlying its protective effects in VaD and against hippocampal neuronal death remain unclear. In this study, We used the bilateral common carotid artery occlusion (BCCAO) method to establish a chronic cerebral hypoperfusion (CCH) rat model of VaD and administered a gastric infusion of AST at 25 mg/kg per day for 4 weeks to explore its therapeutic effects. Memory impairments were assessed using Y-maze and Morris water maze tests. We also performed biochemical analyses to evaluate levels of hippocampal neuronal death and apoptosis-related proteins, as well as the impact of astaxanthin on the PI3K/Akt/mTOR pathway and oxidative stress. Our results demonstrated that AST significantly rescued memory impairments in VaD rats. Furthermore, astaxanthin treatment protected against hippocampal neuronal death and attenuated apoptosis. We also observed that AST modulated the PI3K/Akt/mTOR pathway, suggesting its involvement in promoting neuronal survival and synaptic plasticity. Additionally, AST exhibited antioxidant properties, mitigating oxidative stress in the hippocampus. These findings provide valuable insights into the potential therapeutic effects of AST in VaD. By elucidating the mechanisms underlying the actions of AST, this study highlights the importance of protecting hippocampal neurons and suggests potential targets for intervention in VaD. There are still some unanswered questions include long-term effects and optimal dosage of the use in human. Further research is warranted to fully understand the therapeutic potential of AST and its application in the clinical treatment of VaD.


Assuntos
Apoptose , Demência Vascular , Hipocampo , Transtornos da Memória , Neurônios , Fármacos Neuroprotetores , Estresse Oxidativo , Ratos Sprague-Dawley , Xantofilas , Animais , Xantofilas/uso terapêutico , Xantofilas/farmacologia , Hipocampo/efeitos dos fármacos , Demência Vascular/tratamento farmacológico , Ratos , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Estresse Oxidativo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Morte Celular/efeitos dos fármacos , Antioxidantes/uso terapêutico , Antioxidantes/farmacologia , Teste do Labirinto Aquático de Morris/efeitos dos fármacos
12.
Ren Fail ; 46(2): 2378999, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39011603

RESUMO

Objectives: Astaxanthin (ATX) is a strong antioxidant drug. This study aimed to investigate the effects of ATX on podocytes in diabetic nephropathy and the underlying renal protective mechanism of ATX, which leads to pathological crosstalk with mesangial cells.Methods: In this study, diabetic rats treated with ATX exhibited reduced 24-h urinary protein excretion and decreased blood glucose and lipid levels compared to vehicle-treated rats. Glomerular mesangial matrix expansion and renal tubular epithelial cell injury were also attenuated in ATX-treated diabetic rats compared to control rats.Results: ATX treatment markedly reduced the α-SMA and collagen IV levels in the kidneys of diabetic rats. Additionally, ATX downregulated autophagy levels. In vitro, compared with normal glucose, high glucose inhibited LC3-II expression and increased p62 expression, whereas ATX treatment reversed these changes. ATX treatment also inhibited α-SMA and collagen IV expression in cultured podocytes. Secreted factors (vascular endothelial growth factor B and transforming growth factor-ß) generated by high glucose-induced podocytes downregulated autophagy in human mesangial cells (HMCs); however, this downregulation was upregulated when podocytes were treated with ATX.Conclusions: The current study revealed that ATX attenuates diabetes-induced kidney injury likely through the upregulation of autophagic activity in podocytes and its antifibrotic effects. Crosstalk between podocytes and HMCs can cause renal injury in diabetes, but ATX treatment reversed this phenomenon.


Assuntos
Autofagia , Diabetes Mellitus Experimental , Nefropatias Diabéticas , Células Mesangiais , Podócitos , Regulação para Cima , Xantofilas , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Podócitos/patologia , Autofagia/efeitos dos fármacos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/patologia , Animais , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Xantofilas/farmacologia , Xantofilas/uso terapêutico , Ratos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Masculino , Humanos , Regulação para Cima/efeitos dos fármacos , Ratos Sprague-Dawley , Actinas/metabolismo , Colágeno Tipo IV/metabolismo , Células Cultivadas , Antioxidantes/farmacologia
13.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000216

RESUMO

Astaxanthin (3,3'-dihydroxy-ß,ß-carotene-4,4'-dione; AXT) is a xanthophyll ß-carotenoid found in microalgae, seafood, fungi, complex plants, flamingos, and quail. It is well known that AXT plays a role as a drug with antioxidant and antitumor properties. Furthermore, several studies have reported that the reagent shows anti-inflammatory and neuroprotective effects. Recently, it was found that AXT acts as a peroxisome proliferator-activated receptor γ (PPARγ) modulator. To investigate the effect of AXT on MCF-7 cells (a human breast cancer cell line), the cells were treated with various concentrations of AXT. The treatment induced the decrease in cell number in a dose-dependent manner. Additionally, the Annexin V-positive cells were increased by the AXT treatment. These results indicated that apoptosis was induced in the tumor cells through the treatment of AXT. To elucidate the connection between apoptosis and p53, the levels of p53 and p21 proteins were assessed. Consequently, it was observed that the expression of p53 and p21 increased proportionally to the concentration of the AXT treatment. These findings suggest that the apoptosis of MCF-7 cells induced by AXT operates through a p53-dependent pathway, implying that AXT could potentially have a beneficial role in future breast cancer treatments. Thus, our results will provide a direction for future cancer challenges.


Assuntos
Apoptose , Transdução de Sinais , Proteína Supressora de Tumor p53 , Xantofilas , Humanos , Proteína Supressora de Tumor p53/metabolismo , Xantofilas/farmacologia , Células MCF-7 , Apoptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Feminino , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo
14.
Mar Drugs ; 22(7)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39057436

RESUMO

The marine kingdom is an important source of a huge variety of scaffolds inspiring the design of new drugs. The complex molecules found in the oceans present a great challenge to organic and medicinal chemists. However, the wide variety of biological activities they can display is worth the effort. In this article, we present an overview of different seaweeds as potential sources of bioactive pigments with activity against neurodegenerative diseases, especially due to their neuroprotective effects. Along with a broad introduction to seaweed as a source of bioactive pigments, this review is especially focused on astaxanthin and fucoxanthin as potential neuroprotective and/or anti-neurodegenerative agents. PubMed and SciFinder were used as the main sources to search and select the most relevant scientific articles within the field.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Alga Marinha , Xantofilas , Xantofilas/farmacologia , Xantofilas/química , Xantofilas/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Alga Marinha/química , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Pigmentos Biológicos/farmacologia , Pigmentos Biológicos/química , Pigmentos Biológicos/isolamento & purificação
15.
J Cell Mol Med ; 28(14): e18464, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39036884

RESUMO

Polycystic ovarian syndrome (PCOS) is related to pro-apoptotic and pro-inflammatory conditions generated by Endoplasmic reticulum (ER) stress. This study aimed to determine the effect of Astaxanthin (ASX), as carotenoid with potent antioxidant and anti-inflammatory properties, on serum inflammatory markers, apoptotic factors and ER stress-apoptotic genes in peripheral blood mononuclear cells (PBMCs) of women with PCOS. This randomized, double-blind clinical trial included 56 PCOS patients aged 18-40. For 8 weeks, subjects were randomly assigned to one of two groups: either 12 mg ASX (n = 28) or placebo (n = 28). Real-time PCR was used to quantify gene expression associated with ER stress-apoptosis in PCOS women's PBMCs. The levels of TNF-α, IL18, IL6 and CRP were determined by obtaining blood samples from all patients before and after the intervention using Enzyme-linked immunosorbent assay (ELISA). Also, the levels of active caspase-3 and caspase-8 were detected in the PBMC by ELISA kit. Furthermore, we evaluated the efficacy of ASX on disease symptoms. Following the 8-week intervention, ASX supplementation was able to reduce the expression of GRP78 (p = 0.051), CHOP (p = 0.008), XBP1 (p = 0.002), ATF4 (0.038), ATF6 (0.157) and DR5 (0.016) when compared to the placebo. However, this decrease was not statistically significant for ATF6 (p = 0.067) and marginally significant for GRP78 (p = 0.051). The levels of TNF-α (p = 0.009), IL-18 (p = 0.003), IL-6 (p = 0.013) and active caspase-3 (p = 0.012) were also statistically significant lower in the therapy group. However, there was no significant difference in CRP (p = 0.177) and caspase-8 (p = 0.491) levels between the treatment and control groups. In our study, ASX had no significant positive effect on BMI, hirsutism, hair loss and regularity of the menstrual cycle. It appears that ASX may benefit PCOS by changing the ER stress-apoptotic pathway and reducing serum inflammatory markers; however, additional research is required to determine this compound's potential relevance.


Assuntos
Apoptose , Biomarcadores , Suplementos Nutricionais , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Leucócitos Mononucleares , Síndrome do Ovário Policístico , Xantofilas , Humanos , Feminino , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Xantofilas/farmacologia , Xantofilas/administração & dosagem , Xantofilas/uso terapêutico , Adulto , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Biomarcadores/sangue , Adulto Jovem , Adolescente , Método Duplo-Cego , Regulação da Expressão Gênica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/sangue , Interleucina-18/sangue , Interleucina-18/genética , Inflamação/sangue , Inflamação/tratamento farmacológico , Inflamação/genética , Interleucina-6/sangue , Interleucina-6/genética , Caspase 8/genética , Caspase 8/metabolismo
16.
Ecotoxicol Environ Saf ; 281: 116674, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964056

RESUMO

The persistence of the novel brominated flame retardant, bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBPH), in the environment and its potential for bioaccumulation in living organisms, including humans, further exacerbate its health risks. Therefore, ongoing research is crucial for fully understanding the extent of TBPH's neurotoxicity and for developing effective mitigation strategies. This study aims to investigate the potential neurotoxicity of TBPH on mouse neurobehavior and to evaluate the protective effects of the natural antioxidant astaxanthin (AST) against TBPH-induced neurotoxicity. The results indicate that exposure to TBPH can lead to a decline in learning and memory abilities and abnormal behaviors in mice, which may be associated with oxidative stress responses and apoptosis in the hippocampus. TBPH may disrupt the normal function of hippocampal neurons by activating the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. Mice exposed to TBPH treated with AST showed improved learning and memory abilities in the Morris water maze (MWM) and Step-down test (SDT). AST, through its antioxidant action, was able to significantly reduce the increase in reactive oxygen species (ROS) levels induced by TBPH, the increased expression of apoptosis markers, and the activation of the ERK1/2-FOS signaling pathway, alleviating TBPH-induced apoptosis in hippocampal neurons and improving neurobehavioral outcomes. These findings suggest that AST may alleviate the neurotoxicity of TBPH by modulating molecular events related to apoptosis and the ERK1/2-FOS signaling pathway. Thus, this study provides evidence for AST as a potential interventional strategy for the prevention or treatment of cognitive decline associated with environmental neurotoxicant exposure.


Assuntos
Hipocampo , Sistema de Sinalização das MAP Quinases , Espécies Reativas de Oxigênio , Xantofilas , Animais , Xantofilas/farmacologia , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Hipocampo/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Comportamento Animal/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Retardadores de Chama/toxicidade , Antioxidantes/farmacologia , Ácidos Ftálicos/toxicidade , Apoptose/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos
17.
Adv Sci (Weinh) ; 11(30): e2403148, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38874408

RESUMO

Astaxanthin (ASX) is an oxygen-containing non-vitamin A carotenoid pigment. However, the role of ASX in autoimmune hepatitis (AIH) remains unclear. In this study, a mouse model of AIH is established induced by concanavalin A (ConA). Mass cytometry and single-cell RNA sequencing (scRNA-seq) are used to analyze the potential role of ASX in regulating the immune microenvironment of AIH. ASX treatment effectively alleviated liver damage induced by ConA and downregulated pro-inflammatory cytokines production in mice. Mass cytometry and scRNA-seq analyses revealed a significant increase in the number of CD8+ T cells following ASX treatment. Functional markers of CD8+ T cells, such as CD69, MHC II, and PD-1, are significantly downregulated. Additionally, specific CD8+ T cell subclusters (subclusters 4, 13, 24, and 27) are identified, each displaying distinct changes in marker gene expression after ASX treatment. This finding suggests a modulation of CD8+ T cell function by ASX. Finally, the key transcription factors for four subclusters of CD8+ T cells are predicted and constructed a cell-to-cell communication network based on receptor-ligand interactions probability. In conclusion, ASX holds the potential to ameliorate liver damage by regulating the number and function of CD8+ T cells.


Assuntos
Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Hepatite Autoimune , Xantofilas , Animais , Hepatite Autoimune/tratamento farmacológico , Hepatite Autoimune/genética , Hepatite Autoimune/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Camundongos , Xantofilas/farmacologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Citometria de Fluxo/métodos , Camundongos Endogâmicos C57BL
18.
Discov Med ; 36(185): 1180-1188, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38926104

RESUMO

BACKGROUND: Facilitating the healing process of skin post-trauma is crucial for minimizing infection risks and reinstating normal tissue functionality. While past studies have established astaxanthin (ASX) as an effective compound in promoting wound healing, the precise mechanism of its action remains unclear. Consequently, the objective of this study was to explore the impact of ASX on the acute wound healing of rat skin by modulating macrophage polarization. METHODS: Eighteen male SD rats were randomly assigned to control, dimethylsulfoxide (DMSO), and ASX groups. Acute skin wounds were induced in the rats, and the effects of different treatments on wound area and healing were assessed. Hematoxylin-eosin (H&E) staining was employed to detect histopathological changes in the skin, while Masson staining was utilized to observe collagen expression. Immunohistochemistry was conducted to identify clusters of differentiation (CD) 206 macrophages in the tissues. Furthermore, enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-8, IL-10, IL-4, and IL-13. The expression of inducible nitric oxide synthase (iNOS), arginase (Arg)-1, and mannose receptor C-type 1 (Mrc1) proteins in the injured skin of rats was assessed through Western blot analysis. RESULTS: On postoperative days 7 and 14, the ASX treatment demonstrated notable reductions in inflammatory cell infiltration and inflammatory cytokine expression when compared to the Control and DMSO groups. This was accompanied by evident improvements in the pathological changes in skin tissue, characterized by the regeneration of new epidermis, dermal repair, and increased thickness of granulation, contributing to enhanced scar formation. Furthermore, ASX therapy exhibited an upregulation in the expression levels of collagen I and collagen III, along with markers indicative of M2 macrophages. These findings collectively signify the accelerated progression of wound healing attributed to ASX intervention. CONCLUSIONS: In summary, these findings collectively indicate that ASX facilitates the healing of rat skin wounds by suppressing inflammatory responses and fostering M2 macrophage polarization. Consequently, ASX holds promise as a potentially effective drug for the treatment of skin wounds.


Assuntos
Colágeno , Macrófagos , Ratos Sprague-Dawley , Pele , Cicatrização , Xantofilas , Animais , Cicatrização/efeitos dos fármacos , Masculino , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Ratos , Xantofilas/farmacologia , Xantofilas/uso terapêutico , Colágeno/metabolismo , Pele/patologia , Pele/lesões , Pele/efeitos dos fármacos , Pele/metabolismo , Citocinas/metabolismo , Ativação de Macrófagos/efeitos dos fármacos
19.
Molecules ; 29(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930897

RESUMO

This study investigated the mechanism by which fucoxanthin acts as a novel ferroptosis inducer to inhibit tongue cancer. The MTT assay was used to detect the inhibitory effects of fucoxanthin on SCC-25 human tongue squamous carcinoma cells. The levels of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), and total iron were measured. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blotting were used to assess glutathione peroxidase 4 (GPX4), nuclear factor erythroid 2-related factor 2 (Nrf2), Keap1, solute carrier family 7 member 11 (SLC7A11), transferrin receptor protein 1 (TFR1), p53, and heme oxygenase 1 (HO-1) expression. Molecular docking was performed to validate interactions. Compared with the control group, the activity of fucoxanthin-treated SCC-25 cells significantly decreased in a dose- and time-dependent manner. The levels of MMP, GSH, and SOD significantly decreased in fucoxanthin-treated SCC-25 cells; the levels of ROS, MDA, and total iron significantly increased. mRNA and protein expression levels of Keap1, GPX4, Nrf2, and HO-1 in fucoxanthin-treated cells were significantly decreased, whereas levels of TFR1 and p53 were significantly increased, in a concentration-dependent manner. Molecular docking analysis revealed that binding free energies of fucoxanthin with p53, SLC7A11, GPX4, Nrf2, Keap1, HO-1, and TFR1 were below -5 kcal/mol, primarily based on active site hydrogen bonding. Our findings suggest that fucoxanthin can induce ferroptosis in SCC-25 cells, highlighting its potential as a treatment for tongue cancer.


Assuntos
Ferroptose , Heme Oxigenase-1 , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2 , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Xantofilas , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Ferroptose/efeitos dos fármacos , Xantofilas/farmacologia , Xantofilas/química , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Linhagem Celular Tumoral , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias da Língua/tratamento farmacológico , Neoplasias da Língua/metabolismo , Neoplasias da Língua/patologia , Receptores da Transferrina/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Superóxido Dismutase/metabolismo , Regulação para Baixo/efeitos dos fármacos , Antígenos CD
20.
Biomed Pharmacother ; 176: 116856, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852510

RESUMO

Fibromyalgia is characterised by widespread chronic pain and is often accompanied by comorbidities such as sleep disorders, anxiety, and depression. Because it is often accompanied by many adverse symptoms and lack of effective treatment, it is important to search for the pathogenesis and treatment of fibromyalgia. Astaxanthin, a carotenoid pigment known for its anti-inflammatory and antioxidant properties, has demonstrated effective analgesic effects in neuropathic pain. However, its impact on fibromyalgia remains unclear. Therefore, in this study, we constructed a mouse model of fibromyalgia and investigated the effect of astaxanthin on chronic pain and associated symptoms through multiple intragastrical injections. We conducted behavioural assessments to detect pain and depression-like states in mice, recorded electroencephalograms to monitor sleep stages, examined c-Fos activation in the anterior cingulate cortex, measured activation of spinal glial cells, and assessed levels of inflammatory factors in the brain and spinal cord, including interleukin (IL)-1ß, IL-6, and tumour necrosis factor- α(TNF-α).Additionally, we analysed the expression levels of IL-6, IL-10, NOD-like receptor thermal protein domain associated protein 3 (NLRP3), Apoptosis-associated speck-like protein containing CARD, and Caspase-1 proteins. The findings revealed that astaxanthin significantly ameliorated mechanical and thermal pain in mice with fibromyalgia and mitigated sleep disorders and depressive-like symptoms induced by pain. A potential mechanism underlying these effects is the anti-inflammatory action of astaxanthin, likely mediated through the inhibition of the NLRP3 inflammasome, which could be one of the pathways through which astaxanthin alleviates fibromyalgia. In conclusion, our study suggests that astaxanthin holds promise as a potential analgesic medication for managing fibromyalgia and its associated symptoms.


Assuntos
Depressão , Fibromialgia , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Xantofilas , Animais , Xantofilas/farmacologia , Fibromialgia/tratamento farmacológico , Fibromialgia/complicações , Fibromialgia/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Inflamassomos/metabolismo , Inflamassomos/antagonistas & inibidores , Depressão/tratamento farmacológico , Depressão/metabolismo , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Dor Crônica/tratamento farmacológico , Dor Crônica/metabolismo , Citocinas/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Comportamento Animal/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...