Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 652
Filtrar
1.
Mar Drugs ; 22(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38921589

RESUMO

Overwhelming evidence points to an aberrant Wnt/ß-catenin signaling as a critical factor in hepatocellular carcinoma (HCC) and cervical cancer (CC) pathogenesis. Dicerandrol C (DD-9), a dimeric tetrahydroxanthenone isolated from the endophytic fungus Phomopsis asparagi DHS-48 obtained from mangrove plant Rhizophora mangle via chemical epigenetic manipulation of the culture, has demonstrated effective anti-tumor properties, with an obscure action mechanism. The objective of the current study was to explore the efficacy of DD-9 on HepG2 and HeLa cancer cells and its functional mechanism amid the Wnt/ß catenin signaling cascade. Isolation of DD-9 was carried out using various column chromatographic methods, and its structure was elucidated with 1D NMR. The cytotoxicity of DD-9 on HepG2 and HeLa cells was observed with respect to the proliferation, clonality, migration, invasion, apoptosis, cell cycle, and Wnt/ß-catenin signaling cascade. We found that DD-9 treatment significantly reduced tumor cell proliferation in dose- and time-dependent manners in HepG2 and HeLa cells. The subsequent experiments in vitro implied that DD-63 could significantly suppress the tumor clonality, metastases, and induced apoptosis, and that it arrested the cell cycle at the G0/G1 phase of HepG2 and HeLa cells. Dual luciferase assay, Western blot, and immunofluorescence assay showed that DD-9 could dose-dependently attenuate the Wnt/ß-catenin signaling by inhibiting ß-catenin transcriptional activity and abrogating ß-catenin translocated to the nucleus; down-regulating the transcription level of ß-catenin-stimulated Wnt target gene and the expression of related proteins including p-GSK3-ß, ß-catenin, LEF1, Axin1, c-Myc, and CyclinD1; and up-regulating GSK3-ß expression, which indicates that DD-9 stabilized the ß-catenin degradation complex, thereby inducing ß-catenin degradation and inactivation of the Wnt/ß-catenin pathway. The possible interaction between DD-9 and ß-catenin and GSK3-ß protein was further confirmed by molecular docking studies. Collectively, DD-9 may suppress proliferation and induce apoptosis of liver and cervical cancer cells, possibly at least in part via GSK3-ß-mediated crosstalk with the Wnt/ß-catenin signaling axis, providing insights into the mechanism for the potency of DD-9 on hepatocellular and cervical cancer.


Assuntos
Apoptose , Proliferação de Células , Via de Sinalização Wnt , Humanos , Células HeLa , Apoptose/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Hep G2 , beta Catenina/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Neoplasias Hepáticas/tratamento farmacológico , Xantonas/farmacologia , Xantonas/química , Xantonas/isolamento & purificação , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Movimento Celular/efeitos dos fármacos , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia
2.
J Cell Mol Med ; 28(11): e18466, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38847482

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a clinical syndrome characterized by pulmonary and systemic congestion resulting from left ventricular diastolic dysfunction and increased filling pressure. Currently, however, there is no evidence on effective pharmacotherapy for HFpEF. In this study, we aimed to investigate the therapeutic effect of total xanthones extracted from Gentianella acuta (TXG) on HFpEF by establishing an high-fat diet (HFD) + L-NAME-induced mouse model. Echocardiography was employed to assess the impact of TXG on the cardiac function in HFpEF mice. Haematoxylin and eosin staining, wheat germ agglutinin staining, and Masson's trichrome staining were utilized to observe the histopathological changes following TXG treatment. The results demonstrated that TXG alleviated HFpEF by reducing the expressions of genes associated with myocardial hypertrophy, fibrosis and apoptosis. Furthermore, TXG improved cardiomyocyte apoptosis by inhibiting the expression of apoptosis-related proteins. Mechanistic investigations revealed that TXG could activate the inositol-requiring enzyme 1α (IRE1α)/X-box-binding protein 1 (Xbp1s) signalling pathway, but the knockdown of IRE1α using the IRE1α inhibitor STF083010 or siRNA-IRE1α impaired the ability of TXG to ameliorate cardiac remodelling in HFpEF models. In conclusion, TXG alleviates myocardial hypertrophy, fibrosis and apoptosis through the activation of the IRE1α/Xbp1s signalling pathway, suggesting its potential beneficial effects on HFpEF patients.


Assuntos
Apoptose , Endorribonucleases , Insuficiência Cardíaca , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteína 1 de Ligação a X-Box , Xantonas , Animais , Endorribonucleases/metabolismo , Endorribonucleases/genética , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Camundongos , Masculino , Xantonas/farmacologia , Xantonas/isolamento & purificação , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Dieta Hiperlipídica/efeitos adversos , Fibrose , Volume Sistólico/efeitos dos fármacos
3.
J Nat Prod ; 87(6): 1628-1634, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38869194

RESUMO

The unfolded protein response (UPR) is a key component of fungal virulence. The prenylated xanthone γ-mangostin isolated from Garcinia mangostana (Clusiaceae) fruit pericarp, has recently been described to inhibit this fungal adaptative pathway. Considering that Calophyllum caledonicum (Calophyllaceae) is known for its high prenylated xanthone content, its stem bark extract was fractionated using a bioassay-guided procedure based on the cell-based anti-UPR assay. Four previously undescribed xanthone derivatives were isolated, caledonixanthones N-Q (3, 4, 8, and 12), among which compounds 3 and 8 showed promising anti-UPR activities with IC50 values of 11.7 ± 0.9 and 7.9 ± 0.3 µM, respectively.


Assuntos
Calophyllum , Resposta a Proteínas não Dobradas , Xantonas , Xantonas/farmacologia , Xantonas/química , Xantonas/isolamento & purificação , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Calophyllum/química , Estrutura Molecular , Humanos , Casca de Planta/química
4.
J Org Chem ; 89(11): 7692-7704, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38768258

RESUMO

A MS/MS-based molecular networking approach compared to the Global Natural Product Social Molecular Networking library, in association with genomic annotation of natural product biosynthetic gene clusters within a marine-derived fungus, Aspergillus sydowii, identified a suite of xanthone metabolites. Chromatographic techniques applied to the cultured fungus led to the isolation of 11 xanthone-based alkaloids, dubbed sydoxanthones F-M. The structures of these alkaloids were elucidated using extensive spectroscopic data, including electronic circular dichroism and single-crystal X-ray diffraction data for configurational assignments. Among these analogues, sydoxanthones F-K exhibit structure features typical of nucleobase-coupled xanthones, with sydoxanthone H being an N-bonded xanthone dimer. Notably, (±)sydoxanthones F (1a/1b), (±)sydoxanthones H (3b/3a), and (±)sydoxanthones J (5b/5a) are enantiomeric pairs, while sydoxanthones G (2), I (4), and K (6) are stereoisomers of 1, 3, and 5, respectively. Furthermore, (+)sydoxanthone H (3a) demonstrated significant rescue of cell viability in H2O2-injuried SH-SY5Y cells by inhibiting reactive oxygen species production, suggesting its potential for neuroprotection.


Assuntos
Aspergillus , Espécies Reativas de Oxigênio , Xantonas , Xantonas/química , Xantonas/farmacologia , Xantonas/isolamento & purificação , Aspergillus/química , Humanos , Espécies Reativas de Oxigênio/metabolismo , Estrutura Molecular , Linhagem Celular Tumoral
5.
Adv Colloid Interface Sci ; 329: 103188, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761602

RESUMO

With the target of fabricating healthier products, food manufacturing companies look for natural-based nutraceuticals that can potentially improve the physicochemical properties of food systems while being nutritive to the consumer and providing additional health benefits (biological activities). In this regard, Mangiferin joins all these requirements as a potential nutraceutical, which is typically contained in Mangifera indica products and its by-products. Unfortunately, knowing the complex chemical composition of Mango and its by-products, the extraction and purification of Mangiferin remains a challenge. Therefore, this comprehensive review revises the main strategies proposed by scientists for the extraction and purification of Mangiferin. Importantly, this review identifies that there is no report reviewing and criticizing the literature in this field so far. Our attention has been targeted on the timely findings on the primary extraction techniques and the relevant insights into isolation and purification. Our discussion has emphasized the advantages and limitations of the proposed strategies, including solvents, extracting conditions and key interactions with the target xanthone. Additionally, we report the current research gaps in the field after analyzing the literature, as well as some examples of functional food products containing Mangiferin.


Assuntos
Mangifera , Xantonas , Xantonas/isolamento & purificação , Xantonas/química , Mangifera/química , Suplementos Nutricionais/análise , Humanos , Solventes/química
6.
Pak J Biol Sci ; 27(3): 132-141, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38686735

RESUMO

<b>Background and Objective:</b> The SU84 was isolated from the rhizosphere of <i>Curcuma longa</i> and identified to be <i>Streptomyces</i> sp. via analysis of its 16S rDNA sequence, chemotaxonomy and morphology. This study aimed to isolate major compounds from the extract culture of strain SU84 and evaluate their antibacterial activity. <b>Materials and Methods:</b> The TLC and silica gel column chromatography were used to purify major compounds, elucidate 1,3-dihydroxy-,2',2'-dimethylpyrano-(5,6)-xanthone (compound <b>1</b>) and lupeol (compound <b>2</b>) using mass spectrometry and nuclear magnetic resonance. One new chemical, compound <b>1</b>, was first isolated from microbial sources. Antibacterial, antioxidant and cytotoxic properties of these compounds were carried out. <b>Results:</b> Various bioassays showed that compound <b>1</b> displayed antibacterial property against Gram-positive bacteria, with a minimum inhibitory concentration of 8-32 µg/mL and minimum bactericidal concentration of 32-128 µg/mL. In addition, the purified compounds were tested against normal cell lines using tetrazolium assay. The results did not show cytotoxic property against L929 and Vero cells, with IC<sub>50</sub> values of >512.00 µg/mL. Compounds <b>1</b> and <b>2</b> have also antioxidant properties, with IC<sub>50</sub> values of 16.67±7.48 and 38.86±8.45 µg/mL, respectively. <b>Conclusion:</b> The findings suggested that compounds of <i>Streptomyces</i> sp. SU84 displayed antibacterial and antioxidant properties without cytotoxic activity. Extensive studies of compound <b>1</b> may be useful for the advancement of improved methods for avoidance, control and management of bacterial infections and metabolic-related free radical contribution.


Assuntos
Antibacterianos , Antioxidantes , Testes de Sensibilidade Microbiana , Streptomyces , Xantonas , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Xantonas/farmacologia , Xantonas/isolamento & purificação , Streptomyces/metabolismo , Animais , Células Vero
7.
Fitoterapia ; 175: 105952, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614405

RESUMO

Three new xanthone derivatives irpexols A-C (1-3) and five known xanthones including three dimeric ones were successfully isolated from Irpex laceratus A878, an endophytic fungus of the family Irpicaceae from the medicinal plant Pogostemon cablin (Blanco) Bentham (Lamiaceae). The structures of these compounds were elucidated by extensive spectroscopic analyses including ultraviolet-visible spectroscopy (UV), infrared spectroscopy (IR), mass spectrometry (MS), and nuclear magnetic resonance (NMR). All of the three new compounds (1-3) share a de-aromatic and highly­oxygenated xanthone skeleton. In addition, the cytotoxic activity of compounds 1-8 were evaluated against SF-268, MCF-7, HepG2, and A549 tumor cell lines. The results revealed that compound 6 showed moderate cytotoxic activity with the IC50 values ranging from 24.83 to 45.46 µM, while the IC50 values of the positive control adriamycin was ranging from 1.11 to 1.44 µM.


Assuntos
Endófitos , Xantonas , Xantonas/isolamento & purificação , Xantonas/farmacologia , Xantonas/química , Estrutura Molecular , Humanos , Endófitos/química , Linhagem Celular Tumoral , Pogostemon/química , Antineoplásicos/farmacologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/química , China
8.
Cent Nerv Syst Agents Med Chem ; 24(2): 182-195, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38305392

RESUMO

BACKGROUND: Oxidative stress has an important role in the pathogenesis and development of diabetic peripheral neuropathy (DPN), the most common and debilitating complication of diabetes mellitus. Swertia chirayita is a rich source of phenolic constituents and has hypoglycemic, anti-inflammatory, and antioxidant properties. AIMS: This study was performed to evaluate the neuroprotective effect in diabetes by enhancing antioxidant defense against oxidative stress, which exhibits a neuroprotective effect in streptozotocin- induced diabetic rats. OBJECTIVES: The objective of this study was to elucidate the therapeutic potential of bioactive compounds of Swertia chirayita for diabetic complications. METHODS: The present work focused on isolating the bioactive from the leaves of Swertia absinthe for acute toxicity studies, assessing its protective effects against diabetes and diabetic neuropathy as well as its mode of action in STZ-induced Wistar rats. The local area of Moradabad is the place from where the leaves of Swertia chirayita were gathered. Mangiferin was isolated and identified using spectroscopic techniques, such as UV, HPLC, 1H NMR, C13 NMR, MAS, and FTIR. Mangiferin was administered in doses of 15 and 30 mg/kg to test its effect on experimentally induced diabetes. The sciatic nerves of all groups were examined histopathologically. The protective effect of the drug against diabetes and diabetic neuropathy was demonstrated by measures, such as blood glucose level, body weight, food intake, thermal hyperalgesia, grip strength, spontaneous locomotor test, and lipid profile analysis. Sciatic nerve cells of the treated groups showed less inflammation, degeneration, and necrosis. RESULTS: The results of this study confirmed that mangiferin alleviated diabetic neuropathic pain, possibly by reducing inflammatory cytokines (TNF-α, TGF-ß1, IL-1ß, and IL-6), strong antioxidant activity, and NGF in sciatic nerves. It may be a therapeutic agent. CONCLUSION: Our results suggested that active phytochemicals of Swertia chirayita showed preventive and curative effects against STZ-induced diabetic neuropathy in rats, which might be due to its antioxidant, anti-inflammatory, and anti-apoptotic properties.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Fármacos Neuroprotetores , Estresse Oxidativo , Folhas de Planta , Ratos Wistar , Estreptozocina , Swertia , Xantonas , Animais , Xantonas/farmacologia , Xantonas/isolamento & purificação , Folhas de Planta/química , Swertia/química , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/metabolismo , Ratos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/uso terapêutico , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia
9.
J Nat Prod ; 85(11): 2541-2546, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36367222

RESUMO

Cladoxanthones A (1) and B (2), two xanthone-derived metabolites featuring a new spiro[cyclopentane-1,2'-[3,9a]ethanoxanthene]-2,4',9',11'(4a'H)-tetraone skeleton, were isolated from cultures of the ascomycete fungus Cladosporium sp., together with the known mangrovamide J (3). Their structures were elucidated primarily by NMR experiments. The absolute configurations of 1 and 2 were assigned by X-ray crystallography using Cu Kα radiation. Compound 1 could be generated from the hypothetical precursors related to α-methylene ketone and dihydro-xanthone via a Diels-Alder reaction, while 2 could be an oxidative coupling product resulting from 1 and 3. Compounds 1 and 2 showed weakly cytotoxic effects.


Assuntos
Antineoplásicos , Cladosporium , Ciclopentanos , Xantonas , Humanos , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cladosporium/química , Cristalografia por Raios X , Ciclopentanos/química , Ciclopentanos/isolamento & purificação , Ciclopentanos/farmacologia , Estrutura Molecular , Xantonas/química , Xantonas/isolamento & purificação , Xantonas/farmacologia
10.
Fitoterapia ; 157: 105127, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35033607

RESUMO

One new xanthone, griseophenexanthone A (1), one new benzophenone, digriseophene A (2), and 14 previously reported compounds were isolated from the culture of Penicillium sp. ct-28, an endophytic fungus of Corydlis tomentella. The structures of the isolated compounds were identified by an extensive analysis of HRESIMS, 1D and 2D NMR. MTT assay showed that six xanthones (1 and 3-7) significantly inhibited cell proliferation in four cancer cell lines, with IC50 values ranging from 18.12 ± 2.42 to 85.55 ± 7.66 µM. Our results showed that slight structural changes led to obvious activity differences among these compounds. We also investigated the effects of the six xanthones on cell cycle and apoptosis in human hepatoma HepG2 cells. Compound 7 caused cell cycle arrest at G1 phase, compounds 5 and 6 caused cell cycle arrest at S phase, whereas compounds 1, 3 and 4 had no effects on cell cycle distribution. All six xanthones induced apoptosis in dose-dependent manners in HepG2 cells accompanied by degradation of PARP and activation of caspase 3. The structure-activity relationship analysis revealed that the effects of these xanthones on cell cycle and apoptosis in HepG2 cells were closely related to the substituent groups on their skeleton. Our studies provide novel insights for the structural optimization of xanthones in the development of new anticancer drugs.


Assuntos
Benzofenonas/toxicidade , Proliferação de Células/efeitos dos fármacos , Corydalis/microbiologia , Penicillium/química , Xantonas/toxicidade , Apoptose/efeitos dos fármacos , Benzofenonas/química , Benzofenonas/isolamento & purificação , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Relação Estrutura-Atividade , Xantonas/química , Xantonas/isolamento & purificação
11.
Fitoterapia ; 156: 105092, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34826556

RESUMO

Caged-polyprenylated xanthonoids represent a rare class of natural products. This type of compounds is mainly isolated from Genus Garcinia. Phytochemical studies on the leaves and twigs of Garcinia oligantha led to the isolation of four new caged-polyprenylated xanthonoids, oliganthone CF (1-4), and two new simple xanthones (5-6), oliganthaxanthone D and oliganthaxanthone E. Eight known other polyprenylated xanthones (7-14) including five caged-polyprenylated xanthonoids (7-11) were also isolated. Their structures were elucidated based on the analyses of extensive spectroscopic data. All the isolated compounds except for 5, 6 and 14 showed cell viability reducing effect against human lung cancer A549 cells. Compounds 1-3 were proved to be potential apoptosis inducing agents.


Assuntos
Citotoxinas/toxicidade , Garcinia/química , Extratos Vegetais/toxicidade , Xantonas/toxicidade , Células A549 , Apoptose , Western Blotting , Citotoxinas/química , Citotoxinas/isolamento & purificação , Humanos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Caules de Planta/química , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Xantonas/química , Xantonas/isolamento & purificação
12.
Molecules ; 26(21)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34770957

RESUMO

Polyphenolic compounds-mangiferin and hesperidin-are, among others, the most important secondary metabolites of African shrub Cyclopia sp. (honeybush). The aim of this study was to compare the percutaneous absorption of mangiferin and hesperidin from solutions (water, ethanol 50%, (v/v)) and extracts obtained from green and fermented honeybush (water, ethanol 50%, (v/v)). Research was performed with the Bronaugh cells, on human dorsal skin. The mangiferin and hesperidin distributions in skin layers (stratum corneum, epidermis, and dermis) and in acceptor fluid (in every 2, 4, 6, and 24 h) were evaluated by HPLC-Photodiode Array Coulometric and Coulometric Electrochemical Array Detection. The transdermal distribution of hesperidin was also demonstrated by fluorescence microscopy. Results indicated that mangiferin and hesperidin were able to cross the stratum corneum and penetrate into the epidermis and dermis. An advantage of hesperidin penetration into the skin from the water over ethanol solution was observed (451.02 ± 14.50 vs. 357.39 ± 4.51 ng/cm2), as well as in the mangiferin study (127.56 ± 9.49 vs. 97.23 ± 2.92 ng/cm2). Furthermore, mangiferin penetration was more evident from nonfermented honeybush ethanol extract (189.85 ± 4.11 ng/cm2) than from solutions. The permeation of mangiferin and hesperidin through the skin to the acceptor fluid was observed regardless of whether the solution or the honeybush extract was applied. The highest ability to permeate the skin was demonstrated for the water solution of hesperidin (250.92 ± 16.01 ng/cm2), while the hesperidin occurring in the extracts permeated in a very low capacity. Mangiferin from nonfermented honeybush ethanol extract had the highest ability to permeate to the acceptor fluid within 24 h (152.36 ± 8.57 ng/cm2).


Assuntos
Cyclopia (Planta)/química , Hesperidina/farmacologia , Extratos Vegetais/farmacologia , Pele/efeitos dos fármacos , Xantonas/farmacologia , Administração Cutânea , Adulto , Hesperidina/administração & dosagem , Hesperidina/isolamento & purificação , Humanos , Microscopia de Fluorescência , Pessoa de Meia-Idade , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Soluções , Xantonas/administração & dosagem , Xantonas/isolamento & purificação
13.
Molecules ; 26(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34771035

RESUMO

Garcinia picrorhiza, a woody plant native to Sulawesi and Maluku Islands, Indonesia, has been traditionally used as a wound healing ointment. In our continuous search for bioactive compounds from this plant, 15 phenolic compounds were isolated from its stem bark, including a previously undescribed dihydroisocoumarin, 2'-hydroxyannulatomarin, and two undescribed furanoxanthones, gerontoxanthone C hydrate and 3'-hydroxycalothorexanthone. The structures of the new metabolites were elucidated on the basis of spectroscopic analysis, including 1D and 2D NMR and HRESIMS. Gerontoxanthone C hydrate possessed cytotoxicity against four cancer cells (KB, HeLa S3, MCF-7, and Hep G2) with IC50 values ranging from 5.6 to 7.5 µM. Investigation on the anti-inflammatory activities showed that 3'-hydroxycalothorexanthone inhibited NO production in RAW 264.7 and BV-2 cell lines with IC50 values of 16.4 and 13.8 µM, respectively, whereas only (-)-annulatomarin possessed inhibition activity on COX-2 enzyme over 10% at 20 µM. This work describes the presence of 3,4-dihydroisocoumarin structures with a phenyl ring substituent at C-3, which are reported the first time in genus Garcinia. These findings also suggest the potential of furanxanthone derivatives as cytotoxic and anti-inflammatory agents for further pharmacological studies.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Isocumarinas/farmacologia , Xantonas/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isocumarinas/química , Isocumarinas/isolamento & purificação , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Xantonas/química , Xantonas/isolamento & purificação
14.
Chem Biodivers ; 18(11): e2100396, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34529335

RESUMO

A new racemic xanthone, garmckeanin A (1), and eight known analogs 2-9 were isolated from the ethyl acetate (AcOEt) extract of the Vietnamese Garcinia mckeaniana leaves. Their structures were determined by MS and NMR spectral analyses and compared with the literature. The AcOEt extract showed good cytotoxicity against cancer cell lines KB, Lu, Hep-G2 and MCF7, with IC50 values of 5.40-8.76 µg/mL, and it also possessed α-glucosidase inhibitory activity, with an IC50 value of 9.17 µg/mL. Garmckeanin A (1) exhibited inhibition of all cancer cell lines, with an IC50 value of 7.3-0.9 µM. Allanxanthone C (5) successfully controlled KB growth, with an IC50 value of 0.54 µM, higher than that of the positive control, ellipticine (IC50 1.22 µM). Norathyriol (8) was a promising α-glucosidase inhibitor, with an IC50 value of 0.07 µM, much higher than that of the positive control, acarbose (IC50 161.0 µM). The interactions of the potential α-glucosidase inhibitors with the C- and N-terminal domains of human intestinal α-glucosidase were also investigated by molecular docking study. The results indicated that bannaxanthone D (2), garcinone E (4), bannaxanthone E (6), and norathyriol (8) exhibit higher binding affinity to the C-terminal than to the N-terminal domain through essential residues in the active sites. In particular, compound 8 could be assumed to be the most potent mixed inhibitor.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Garcinia/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Simulação de Acoplamento Molecular , Xantonas/farmacologia , alfa-Glucosidases/metabolismo , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Humanos , Estrutura Molecular , Células Tumorais Cultivadas , Xantonas/química , Xantonas/isolamento & purificação
15.
J Sep Sci ; 44(21): 3904-3913, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34463429

RESUMO

The global natural product-based industry is growing fast with the introduction of new phytochemicals and herbal extract products from different geographical regions. Swertia paniculata is a well-known plant with medicinal properties; however, the quality control for its major phytochemical constituents from the Himalayan geographical region is nevertheless reported. Therefore, the first objective of this investigation was to characterize and optimize the extraction process while the second objective was to validate a quantitative analytical method for chiratol from S. paniculata herbal extract. The chiratol was characterized with spectral analysis. The optimum extraction condition for the highest yield of metabolite was realized in chloroform as a solvent system under ultrasonication. The ultra-high performance liquid chromatography coupled with photodiode array detection method for analytical quantification was validated for specificity, linearity, limits of detection, limits of quantification, precision, repeatability, recovery, and robustness using Eclipse Plus C18 column (100 mm × 4.6 mm × 3.5 µm id). The gradient elution of water/acetonitrile as mobile phase was used at a flow rate of 0.5 ml/min. The recovery percentage was very satisfactory with values within specification. The robustness parameters showed no substantial influence of evaluated parameters by the Youden test. The developed method was ascertained to be appropriate for the proposed purpose.


Assuntos
Cromatografia Líquida de Alta Pressão , Compostos Fitoquímicos , Swertia , Xantonas , Cromatografia Líquida de Alta Pressão/métodos , Limite de Detecção , Modelos Lineares , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Reprodutibilidade dos Testes , Swertia/química , Xantonas/análise , Xantonas/química , Xantonas/isolamento & purificação
16.
Future Med Chem ; 13(19): 1679-1694, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34410182

RESUMO

α-Mangostin is a xanthone natural product isolated as a secondary metabolite from the mangosteen tree. It has attracted a great deal of attention due to its wide-ranging effects on certain biological activity, such as apoptosis, tumorigenesis, proliferation, metastasis, inflammation, oxidation, bacterial growth and metabolism. This review focuses on the key pathways directly affected by α-mangostin and how this varies between disease states. Insight is also provided, where investigated, into the key structural features of α-mangostin that produce these biological effects. The review then sheds light on the utility of α-mangostin as a investigational tool for certain diseases and demonstrate how future derivatives may increase selectivity and potency for specific disease states.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Produtos Biológicos/farmacologia , Hipoglicemiantes/farmacologia , Xantonas/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus/tratamento farmacológico , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Inflamação/tratamento farmacológico , Estrutura Molecular , Xantonas/química , Xantonas/isolamento & purificação
17.
Plant J ; 107(6): 1711-1723, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34245606

RESUMO

Cultivated Japanese gentians traditionally produce vivid blue flowers because of the accumulation of delphinidin-based polyacylated anthocyanins. However, recent breeding programs developed several red-flowered cultivars, but the underlying mechanism for this red coloration was unknown. Thus, we characterized the pigments responsible for the red coloration in these cultivars. A high-performance liquid chromatography with photodiode array analysis revealed the presence of phenolic compounds, including flavones and xanthones, as well as the accumulation of colored cyanidin-based anthocyanins. The chemical structures of two xanthone compounds contributing to the coloration of red-flowered gentian petals were determined by mass spectrometry and nuclear magnetic resonance spectroscopy. The compounds were identified as norathyriol 6-O-glucoside (i.e., tripteroside designated as Xt1) and a previously unreported norathyriol-6-O-(6'-O-malonyl)-glucoside (designated Xt2). The copigmentation effects of these compounds on cyanidin 3-O-glucoside were detected in vitro. Additionally, an RNA sequencing analysis was performed to identify the cDNAs encoding the enzymes involved in the biosynthesis of these xanthones. Recombinant proteins encoded by the candidate genes were produced in a wheat germ cell-free protein expression system and assayed. We determined that a UDP-glucose-dependent glucosyltransferase (StrGT9) catalyzes the transfer of a glucose moiety to norathyriol, a xanthone aglycone, to produce Xt1, which is converted to Xt2 by a malonyltransferase (StrAT2). An analysis of the progeny lines suggested that the accumulation of Xt2 contributes to the vivid red coloration of gentian flowers. Our data indicate that StrGT9 and StrAT2 help mediate xanthone biosynthesis and contribute to the coloration of red-flowered gentians via copigmentation effects.


Assuntos
Flores/fisiologia , Gentiana/fisiologia , Pigmentação/genética , Proteínas de Plantas/genética , Xantonas/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Antocianinas/genética , Antocianinas/metabolismo , Cromatografia Líquida de Alta Pressão , Flores/genética , Gentiana/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Estrutura Molecular , Pigmentos Biológicos/genética , Pigmentos Biológicos/metabolismo , Proteínas de Plantas/metabolismo , Análise de Sequência de RNA , Xantenos/metabolismo , Xantonas/química , Xantonas/isolamento & purificação
18.
Biomed Pharmacother ; 141: 111876, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34328085

RESUMO

Gastric cancer (GC) is one of the most common malignancies and has the second highest lethal rate in the world; thus, finding new medicines with high potency and low toxicity is urgent. Cudrania tricuspidata (Carr.) Bur. ex Lavallee (Moraceae) is a traditional medicinal herb that is considered to have antitumour efficacy. We extracted and isolated cudraxanthone L (CXL) from Cudrania tricuspidata and evaluated its anti-cancer efficacy. CXL treatment inhibited angiogenesis of chorioallantoic membrane (CAM) and repressed the cell viability of various human cancer cells, indicating it presented the antitumour potential. Among them, CXL presented the best inhibitory effects on MGC803 cells. In addition, the invasion, migration and clonogenicity were significantly repressed, S phase of the cell cycle was arrested, and apoptosis was induced when MGC803 cells were treated with CXL. The results of RNA sequencing, qRT-PCR and western blotting verified that CXL regulated the MAPK signalling pathway and induced apoptosis by FAS-mediated pathway. The in vivo data revealed that CXL arrested tumour growth without toxic effects and upregulated the protein levels in FAS-mediated pathway in MGC803 gastric cancer-bearing mice. In summary, we demonstrate CXL presents impactful anti-GC efficacy by regulating the MAPK signalling pathway and promoting the FAS-mediated pathway.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/metabolismo , Xantonas/uso terapêutico , Receptor fas/metabolismo , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Moraceae , Neoplasias Gástricas/patologia , Xantonas/isolamento & purificação , Xantonas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
19.
J Ethnopharmacol ; 279: 114373, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34181959

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Prunella vulgaris L. (P. vulgaris) is a medicinal plant belonging to the Labiatae family, and its dried spikes is called as Xiakucao in China, which is a common traditional Chinese medicine with the activities of clearing the liver and expelling fire, improving eyesight, dispersing nodules and detumescence. Modern pharmacological studies have proved that P. vulgaris has various pharmacological activities such as immunomodulatory, antiviral, antibacterial and anti-insomnia activities. AIMS OF THIS REVIEW: P. vulgaris have been reported to have anti-insomnia effects. Nevertheless, the pharmacodynamic substance basis of this anti-insomnia effect is still unclear. The aim of this study was to identify the active components responsible for evoking the anti-insomnia effect of P. vulgaris and to evaluate its anti-insomnia effect. MATERIALS AND METHODS: In this study, we proposed a method combined with pharmacodynamic experiments, extraction and enrichment of chemical components, and the plasma pharmacochemistry to screen out the anti-insomnia components of P. vulgaris. Firstly, the active eluted fraction of the ethanol extract was screened out based on pharmacodynamic tracing method, and then the chemical composition was analyzed systematically by UPLC-MS/MS. Thirdly, pharmacodynamic tracing method and silica gel column chromatography were employed to screen out the active fraction of 70% ethanol eluted fraction, and its bioactive components in vitro and in vivo were identified by UPLC-MS/MS. Finally, screening out the anti-insomnia components of P. vulgaris by comparing the difference between in vivo and in vitro components, and three potentially bioactive ingredients were validated experimentally. RESULTS: It was confirmed that the fraction eluted with 70% ethanol from macroporous adsorption resin column was responsible for the anti-insomnia efficacy, and 55 compounds were identified or preliminarily identified. Then totally 9 compounds in vitro and 12 compounds in vivo from the active fraction of 70% ethanol eluted fraction were tentatively identified. Among them, mangiferin, rosmarinic acid and salviaflaside were the prototype components of P. vulgaris, which indicated that the three compounds might play the key role in the anti-insomnia activities. In vivo, compared to blank control group, the three compounds significantly shortened the sleeping latency and prolonged the sleeping time produced by pentobarbital sodium. CONCLUSIONS: This study clarified that mangiferin, rosmarinic acid and salviaflaside were considered as the anti-insomnia components of P. vulgaris. This is the first study on screening out the active ingredients responsible for evoking the anti-insomnia effect of P. vulgaris. The three compounds of P. vulgaris may help develop one or more drugs to prevent or treat insomnia. Further investigations are recommended to define the mechanism of the anti-insomnia activity of P. vulgaris.


Assuntos
Extratos Vegetais/farmacologia , Prunella/química , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Animais , Cromatografia Líquida de Alta Pressão , Cinamatos/isolamento & purificação , Cinamatos/farmacologia , Depsídeos/isolamento & purificação , Depsídeos/farmacologia , Glucosídeos/isolamento & purificação , Glucosídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fenilpropionatos/isolamento & purificação , Fenilpropionatos/farmacologia , Extratos Vegetais/química , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem , Xantonas/isolamento & purificação , Xantonas/farmacologia , Ácido Rosmarínico
20.
Fitoterapia ; 154: 104923, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33984437

RESUMO

Acmoxanthones A-E (1-5), five new lavandulylated xanthones, were isolated from the aerial parts of Hypericum acmosepalum, together with four known xanthones. Their structures with absolute configurations were elucidated on the basis of analysis of MS, NMR and chiroptical properties. A bioassay against high glucose-induced damage on human umbilical vein endothelial cells (HUVECs) showed ananixanthone (6) and osajaxanthone (7) had potential antioxidative damage activity with EC50 values of 10.5 µg/mL and 7.6 µg/mL, respectively, while 3-hydroxy-2,4-dimethoxyxanthone (8) exhibited cytotoxic effect on the damaged cells with IC50 values of 7.1 µg/mL.


Assuntos
Hypericum/química , Xantonas/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Isoflavonas , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Componentes Aéreos da Planta/química , Xantonas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...