Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 837
Filtrar
1.
Planta ; 260(2): 41, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954109

RESUMO

MAIN CONCLUSION: In this study, six ZaBZRs were identified in Zanthoxylum armatum DC, and all the ZaBZRs were upregulated by abscisic acid (ABA) and drought. Overexpression of ZaBZR1 enhanced the drought tolerance of transgenic Nicotiana benthamian. Brassinosteroids (BRs) are a pivotal class of sterol hormones in plants that play a crucial role in plant growth and development. BZR (brassinazole resistant) is a crucial transcription factor in the signal transduction pathway of BRs. However, the BZR gene family members have not yet been identified in Zanthoxylum armatum DC. In this study, six members of the ZaBZR family were identified by bioinformatic methods. All six ZaBZRs exhibited multiple phosphorylation sites. Phylogenetic and collinearity analyses revealed a closest relationship between ZaBZRs and ZbBZRs located on the B subgenomes. Expression analysis revealed tissue-specific expression patterns of ZaBZRs in Z. armatum, and their promoter regions contained cis-acting elements associated with hormone response and stress induction. Additionally, all six ZaBZRs showed upregulation upon treatment after abscisic acid (ABA) and polyethylene glycol (PEG), indicating their participation in drought response. Subsequently, we conducted an extensive investigation of ZaBZR1. ZaBZR1 showed the highest expression in the root, followed by the stem and terminal bud. Subcellular localization analysis revealed that ZaBZR1 is present in the cytoplasm and nucleus. Overexpression of ZaBZR1 in transgenic Nicotiana benthamiana improved seed germination rate and root growth under drought conditions, reducing water loss rates compared to wild-type plants. Furthermore, ZaBZR1 increased proline content (PRO) and decreased malondialdehyde content (MDA), indicating improved tolerance to drought-induced oxidative stress. The transgenic plants also showed a reduced accumulation of reactive oxygen species. Importantly, ZaBZR1 up-regulated the expression of drought-related genes such as NbP5CS1, NbDREB2A, and NbWRKY44. These findings highlight the potential of ZaBZR1 as a candidate gene for enhancing drought resistance in transgenic N. benthamiana and provide insight into the function of ZaBZRs in Z. armatum.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Plantas Geneticamente Modificadas , Zanthoxylum , Plantas Geneticamente Modificadas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zanthoxylum/genética , Zanthoxylum/fisiologia , Zanthoxylum/metabolismo , Nicotiana/genética , Nicotiana/fisiologia , Nicotiana/efeitos dos fármacos , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Família Multigênica , Brassinosteroides/metabolismo , Brassinosteroides/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Fisiológico/genética , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Resistência à Seca
2.
Huan Jing Ke Xue ; 45(6): 3523-3532, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897772

RESUMO

In this study, the effects of four types of amendments on effective Cd and Cd content in different parts of prickly ash soil and soil enzyme activity were studied, which provided scientific basis for acidification improvement of purple soil and heavy metal pollution control. A field experiment was conducted. Six treatments were set up:no fertilizer (CK), only chemical fertilizer (F), lime + chemical fertilizer (SF), organic fertilizer + chemical fertilizer (OM), biochar + chemical fertilizer (BF), and vinasse biomass ash + chemical fertilizer (JZ). Soil pH; available Cd (DTPA-Cd); Cd content in branches, leaves, shells, and seeds of Zanthoxylum; as well as the activities of catalase (S-CAT), acid phosphatase (S-ACP), and urease (S-UE) in different treatments were studied, and their relationships were clarified. The results showed following:① The two treatments of vinasse biomass ash + chemical fertilizer and lime + chemical fertilizer significantly increased soil pH (P < 0.05) to 3.39 and 2.25 units higher than that in the control, respectively. Compared with that in the control treatment, the content of available Cd in soil under vinasse biomass ash + chemical fertilizer and lime + chemical fertilizer treatment decreased by 28.91 % and 20.90 %, respectively. ② The contents of Cd in leaves, shells, and seeds of Zanthoxylum were decreased by 31.33 %, 30.24 %, and 34.01 %, respectively. The Cd enrichment ability of different parts of Zanthoxylum was different, with the specific performances being leaves > branches > seeds > shells. Compared with that of the control, the enrichment coefficient of each part of Zanthoxylum treated with vinasse biomass ash + chemical fertilizer decreased significantly(P < 0.05)by 27.54 %-40.0 %. ③ The changes in catalase and urease activities in soil treated with amendments were similar. Compared with those in the control group, the above two enzyme activities were significantly increased by 191.26 % and 199.50 %, respectively, whereas the acid phosphatase activities were decreased by 16.45 %. Correlation analysis showed that soil available Cd content was significantly negatively correlated with soil pH value(P < 0.01), S-CAT and S-UE enzyme activities were significantly positively correlated with soil pH(P < 0.01), and the soil available Cd content was significantly negatively correlated (P < 0.01); the S-ACP enzyme showed the complete opposite trends. The application of lime and vinasse biomass ash to acidic purple soil had the most significant effect on neutralizing soil acidity. It was an effective measure to improve acidic purple soil and prevent heavy metal pollution by reducing the effective Cd content in soil and improving the soil environment while inhibiting the absorption and transfer of Cd in various parts of Zanthoxylum.


Assuntos
Cádmio , Fertilizantes , Poluentes do Solo , Solo , Poluentes do Solo/metabolismo , Cádmio/metabolismo , Solo/química , Urease/metabolismo , Zanthoxylum/química , Zanthoxylum/metabolismo , Fosfatase Ácida/metabolismo , Catalase/metabolismo , Disponibilidade Biológica , Óxidos/química , Compostos de Cálcio/química , Carvão Vegetal/química
3.
Genes (Basel) ; 15(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38927601

RESUMO

Apomixis is a common reproductive characteristic of Zanthoxylum plants, and RWP-RKs are plant-specific transcription factors known to regulate embryonic development. However, the genome-wide analysis and function prediction of RWP-RK family genes in Z. armatum are unclear. In this study, 36 ZaRWP-RK transcription factors were identified in the genome of Z. armatum, among which 15 genes belonged to the RKD subfamily and 21 belonged to the NLP subfamily. Duplication events of ZaRWP-RK genes were mainly segmental duplication, and synteny analysis revealed a close phylogenetic relationship between Z. armatum and Arabidopsis. The analysis of cis-elements indicated that ZaRWP-RK genes may be involved in the regulation of the embryonic development of Z. armatum by responding to plant hormones such as abscisic acid, auxin, and gibberellin. Results of a real-time PCR showed that the expression levels of most ZaRWP-RK genes were significantly increased from flowers to young fruits. Protein-protein interaction network analysis further revealed the potential roles of the ZaRWP-RK proteins in apomixis. Collectively, this study is expected to improve our understanding of ZaRWP-RK transcription factors and provide a theoretical basis for future investigations into the ZaRWP-RK genes and their regulatory mechanisms in the apomixis process of Z. armatum.


Assuntos
Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas , Fatores de Transcrição , Zanthoxylum , Zanthoxylum/genética , Zanthoxylum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genoma de Planta , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/genética , Apomixia/genética , Arabidopsis/genética
4.
Sci Rep ; 14(1): 13192, 2024 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851826

RESUMO

Water eutrophication has emerged as a pressing concern for massive algal blooms, and these harmful blooms can potentially generate harmful toxins, which can detrimentally impact the aquatic environment and human health. Consequently, it is imperative to identify a safe and efficient approach to combat algal blooms to safeguard the ecological safety of water. This study aimed to investigate the procedure for extracting total flavonoids from Z. bungeanum residue and assess its antioxidant properties. The most favorable parameters for extracting total flavonoids from Z. bungeanum residue were a liquid-solid ratio (LSR) of 20 mL/g, a solvent concentration of 60%, an extraction period of 55 min, and an ultrasonic temperature of 80 °C. Meanwhile, the photosynthetic inhibitory mechanism of Z. bungeanum residue extracts against M. aeruginosa was assessed with a particular focus on the concentration-dependent toxicity effect. Z. bungeanum residue extracts damaged the oxygen-evolving complex structure, influenced energy capture and distribution, and inhibited the electron transport of PSII in M. aeruginosa. Furthermore, the enhanced capacity for ROS detoxification enables treated cells to sustain their photosynthetic activity. The findings of this study hold considerable relevance for the ecological management community and offer potential avenues for the practical utilization of resources in controlling algal blooms.


Assuntos
Flavonoides , Microcystis , Fotossíntese , Zanthoxylum , Flavonoides/química , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Zanthoxylum/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Alelopatia , Proliferação Nociva de Algas , Espécies Reativas de Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
5.
J Agric Food Chem ; 72(20): 11531-11548, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38700894

RESUMO

Although recent evidence indicated significant phenol and alkylamide interaction in aqueous solutions, the gastrointestinal digestion influence of the combination remains unclear. This study aims to investigate phenol and alkylamide interaction during in vitro digestion, focusing on bioaccessibility and bioactivity, including α-glucosidase inhibition and cellular antioxidant activity. Additionally, the structural mechanism of phenol and alkylamide interaction during in vitro digestion was explored. The results indicated that the presence of phenols and alkylamides significantly increased or decreased their respective bioaccessibility, depending on the Zanthoxylum varieties. Furthermore, although antagonistic phenol/alkylamide interaction was evident during α-glucosidase inhibition, cellular oxidative stress alleviation, and antioxidant gene transcription upregulation, this effect weakened gradually as digestion progressed. Glycoside bond cleavage and the methylation of phenols as well as alkylamide isomerization and addition were observed during digestion, modifying the hydrogen bonding sites and interaction behavior. This study provided insights into the phenol/alkylamide interaction in the gastrointestinal tract.


Assuntos
Amidas , Antioxidantes , Digestão , Inibidores de Glicosídeo Hidrolases , Extratos Vegetais , Zanthoxylum , alfa-Glucosidases , Zanthoxylum/química , Zanthoxylum/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/metabolismo , Inibidores de Glicosídeo Hidrolases/farmacologia , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química , alfa-Glucosidases/genética , Humanos , Amidas/química , Amidas/metabolismo , Amidas/farmacologia , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Fenóis/química , Fenóis/metabolismo , Modelos Biológicos , Fenol/metabolismo , Fenol/química
6.
Pak J Biol Sci ; 27(3): 142-151, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38686736

RESUMO

<b>Background and Objective:</b> Pain is caused by damaged tissue on the outside or inside of an organ and it is regulated by chemicals. Synthetic drugs are used to ease pain because they are analgesics in the field of medicine. Traditional medicine is known to help people all over the world, in both rich and developing nations. The Andaliman fruit, or <i>Zanthoxylum acanthopodium</i> DC., comes from a spice plant that grows naturally in Toba Regency, North Sumatra, Indonesia. This study aims to determine the formulation of the nanoherbal analgesic spray gel preparation of Andaliman fruit (<i>Zanthoxylum acanthopodium</i> DC.) in terms of its effectiveness as a pain reliever. <b>Materials and Methods:</b> There were three amounts of spray gel made, namely 5, 10 and 15% and tests were done to see how well they worked. <i>Staphylococcus aureus</i> bacteria were used in the bacterial blocking test. To test how well painkillers worked, five groups of mice were used. Using a hot iron, tests for anti-inflammatory activity and wound healing were done. The tissue was then watched for 14 days and analysed using Hematoxylin and Eosin (H&E) stains. <b>Results:</b> The 15% concentration reduces pain and the time it takes for the body to respond to it. The clear zone size is the same as (K<sup>+</sup>) and it can lower the number of inflammatory cells and help wounds heal by adding fibroblast and collagen cells. These findings are supported by significant data results (p<0.05, p = 0.018). <b>Conclusion:</b> Finally, analgesic gel spray made from the Andaliman fruit at a 15% concentration can help with pain and also be antibacterial, reduce inflammation and help wounds heal.</p>.


Assuntos
Frutas , Géis , Extratos Vegetais , Cicatrização , Zanthoxylum , Zanthoxylum/química , Extratos Vegetais/farmacologia , Animais , Frutas/química , Cicatrização/efeitos dos fármacos , Camundongos , Inflamação/tratamento farmacológico , Analgésicos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças
7.
J Ethnopharmacol ; 330: 118218, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38677570

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: Zanthoxylum bungeanum Maxim. (Z. bungeanum), a member of the Rutaceae family, has a rich history of traditional use in Asia for treating arthritis and toothache conditions. As characteristic chemical components, numerous kinds of alkaloids have been extracted from plants and their diverse biological activities have been reported. However, research on the isoquinoline alkaloid, a specific type of alkaloids, in Z. bungeanum was scarce. AIM OF THE STUDY: The study aimed to isolate a novel isoquinoline alkaloid from Z. bungeanum and explore its pharmacological activity in vitro and analgesic activity in vivo. MATERIALS AND METHODS: Isoquinoline alkaloid isolation and identification from Z. bungeanum were conducted using chromatographic and spectroscopic methods. The whole-cell patch-clamp technique was applied to assess its impact on neuronal excitability, and endogenous voltage-gated potassium (Kv) and sodium (Nav) currents in acutely isolated mouse small-diameter dorsal root ganglion (DRG) neurons. Its inhibitory impacts on channels were further validated with HEK293 cells stably expressing Nav1.7 and Nav1.8, and Chinese hamster ovary (CHO) cells transiently expressing Kv2.1. The formalin inflammatory pain model was utilized to evaluate the potential analgesic activity in vivo. RESULTS: A novel isoquinoline alkaloid named HJ-69 (N-13-(3-methoxyprop-1-yl)rutaecarpine) was isolated and identified from Z. bungeanum for the first time. HJ-69 significantly suppressed the firing frequency and amplitudes of action potentials in DRG neurons. Consistently, it state-dependently inhibited endogenous Nav currents of DRG neurons, with half maximal inhibitory concentration (IC50) values of 13.06 ± 2.06 µM and 30.19 ± 2.07 µM for the inactivated and resting states, respectively. HJ-69 significantly suppressed potassium currents in DRG neurons, which notably inhibited the delayed rectifier potassium (IK) currents (IC50 = 6.95 ± 1.29 µM) and slightly affected the transient outward potassium (IA) currents (IC50 = 523.50 ± 39.16 µM). Furtherly, HJ-69 exhibited similar potencies on heterologously expressed Nav1.7, Nav1.8, and Kv2.1 channels, which correspondingly represent the main components in neurons. Notably, intraperitoneal administration of 30 mg/kg and 100 mg/kg HJ-69 significantly alleviated pain behaviors in the mouse inflammatory pain model induced by formalin. CONCLUSION: The study concluded that HJ-69 is a novel and active isoquinoline alkaloid, and the inhibition of Nav and Kv channels contributes to its analgesic activity. HJ-69 may be a promising prototype for future analgesic drug discovery based on the isoquinoline alkaloid.


Assuntos
Analgésicos , Gânglios Espinais , Dor , Zanthoxylum , Animais , Zanthoxylum/química , Humanos , Células HEK293 , Analgésicos/farmacologia , Analgésicos/química , Analgésicos/isolamento & purificação , Analgésicos/uso terapêutico , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Camundongos , Masculino , Dor/tratamento farmacológico , Isoquinolinas/farmacologia , Isoquinolinas/isolamento & purificação , Isoquinolinas/química , Alcaloides/farmacologia , Alcaloides/isolamento & purificação , Alcaloides/química , Alcaloides/uso terapêutico , Bloqueadores dos Canais de Potássio/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Inflamação/tratamento farmacológico , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/isolamento & purificação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/química , Camundongos Endogâmicos C57BL , Cricetulus
8.
Biol Pharm Bull ; 47(4): 758-763, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38569843

RESUMO

Enoxaparin and daikenchuto are commonly administered to prevent venous thromboembolism and intestinal obstruction after gynecological malignancy surgery. However, the effects of their combined use on hepatic function are not well studied. This study aimed to clarify the effects of the coadministration of enoxaparin and daikenchuto on hepatic function. First, Japanese Adverse Drug Event Report (JADER) data were analyzed to identify signals of hepatic disorders. Second, a retrospective observational study of patients who underwent surgery for gynecological malignancies was conducted. This study defined hepatic disorders as an increase in aspartate aminotransferase (AST) or alanine aminotransaminase (ALT) levels above the reference values, using 1-h postoperative values as the baseline. The analysis of JADER data revealed an increased risk for hepatic disorders with the coadministration of enoxaparin and daikenchuto. An observational study also showed higher odds ratios (95% confidence intervals) for the occurrence of hepatic disorders in the coadministration group (4.27; 2.11-8.64) and enoxaparin alone group (2.48; 1.31-4.69) than in the daikenchuto alone group. The median increase in the ALT level was also higher in the coadministration group (34; 15-59) than in the enoxaparin alone (19; 6-38) and daikenchuto alone groups (8; 3-33). In conclusion, our study suggests that compared with the use of enoxaparin or daikenchuto alone, enoxaparin and daikenchuto coadministration increases the risk of hepatic disorders, with more significant increases in AST and ALT levels. Healthcare workers need to be aware of these potential side effects when combining these drugs after surgery for gynecological malignancies.


Assuntos
Neoplasias dos Genitais Femininos , Panax , Extratos Vegetais , Zanthoxylum , Zingiberaceae , Feminino , Humanos , Enoxaparina/efeitos adversos , Neoplasias dos Genitais Femininos/cirurgia , Neoplasias dos Genitais Femininos/tratamento farmacológico , Anticoagulantes/efeitos adversos , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/induzido quimicamente , Complicações Pós-Operatórias/tratamento farmacológico
9.
Molecules ; 29(8)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38675629

RESUMO

In this study, we prepared high-nitrogen self-doped porous carbons (NPC1 and NPC2) derived from the pruned branches and seeds of Zanthoxylum bungeanum using a simple one-step method. NPC1 and NPC2 exhibited elevated nitrogen contents of 3.56% and 4.22%, respectively, along with rich porous structures, high specific surface areas of 1492.9 and 1712.7 m2 g-1 and abundant surface groups. Notably, both NPC1 and NPC2 demonstrated remarkable adsorption abilities for the pollutant methylene blue (MB), with maximum monolayer adsorption capacities of 568.18 and 581.40 mg g-1, respectively. The adsorption kinetics followed the pseudo-second-order kinetics and the adsorption isotherms conformed to the Langmuir isotherm model. The adsorption mechanism primarily relied on the hierarchical pore structures of NPC1 and NPC2 and their diverse strong interactions with MB molecules. This study offers a new approach for the cost-effective design of nitrogen self-doped porous carbons, facilitating the efficient removal of MB from wastewater.


Assuntos
Carbono , Azul de Metileno , Nitrogênio , Zanthoxylum , Zanthoxylum/química , Adsorção , Nitrogênio/química , Azul de Metileno/química , Porosidade , Carbono/química , Cinética , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Águas Residuárias/química
10.
Microsc Res Tech ; 87(8): 1849-1861, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38533861

RESUMO

The order Sapindales is comprised of nine families and in Brazil it is represented by six, including Rutaceae Juss., which constitutes the largest group of this order. A variety of species of Zanthoxylum L. are distributed throughout the country, and among them is the species Zanthoxylum kleinii (R.S. Cowan) P.G. Waterman, which is found in the states of Brazil. This study aimed to characterize the morphoanatomy of the leaf, petiole, rachis, and stem of the species Z. kleinii. Histochemical tests were performed, and the sections were visualized under optical and scanning electron microscopy. The analysis showed that the morphoanatomical characteristics of the species are: hypoestomatic leaflets; stomata classified as anomocytic, tetracytic, and anisocytic; dorsiventral mesophyll; cavities that produce a secretion of lipid nature, present in the leaflet, rachis, and petiole; colleters distributed in the leaf; presence of simple non-glandular trichomes in all structures; and prismatic crystals in the petiole. Histochemical tests indicated the presence of phenolic and lipophilic compounds, mucilage, and lignin. With the result of this research, it was possible to identify the nature of the compounds secreted by the secretory structures of the leaves; in addition, the morphoanatomical characterization of Z. kleinii can provide relevant data for future studies for other organs of the species not yet described. Furthermore, contributing concomitantly with data for the genus, in this way, supporting to differentiate them. RESEARCH HIGHLIGHTS: Ultrastructural features observed by microscopic techniques. Calcium oxalate crystals present in the rachis. Microchemical tests confirmed the presence of colleters in the leaflet.


Assuntos
Microscopia Eletrônica de Varredura , Folhas de Planta , Zanthoxylum , Folhas de Planta/anatomia & histologia , Folhas de Planta/ultraestrutura , Folhas de Planta/química , Zanthoxylum/química , Zanthoxylum/anatomia & histologia , Zanthoxylum/ultraestrutura , Brasil , Caules de Planta/anatomia & histologia , Caules de Planta/ultraestrutura , Caules de Planta/química , Microscopia , Tricomas/ultraestrutura , Tricomas/anatomia & histologia
11.
J Agric Food Chem ; 72(15): 8550-8568, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38546976

RESUMO

Pathogenic fungi pose a significant threat to crop yields and human healthy, and the subsequent fungicide resistance has greatly aggravated these agricultural and medical challenges. Hence, the development of new fungicides with higher efficiency and greater environmental friendliness is urgently required. In this study, luvangetin, isolated and identified from the root of Zanthoxylum avicennae, exhibited wide-spectrum antifungal activity in vivo and in vitro. Integrated omics and in vitro and in vivo transcriptional analyses revealed that luvangetin inhibited GAL4-like Zn(II)2Cys6 transcriptional factor-mediated transcription, particularly the FvFUM21-mediated FUM cluster gene expression, and decreased the biosynthesis of fumonisins inFusarium verticillioides. Moreover, luvangetin binds to the double-stranded DNA helix in vitro in the groove mode. We isolated and identified luvangetin, a natural metabolite from a traditional Chinese edible medicinal plant and uncovered its multipathogen resistance mechanism. This study is the first to reveal the mechanism underlying the antifungal activity of luvangetin and provides a promising direction for the future use of plant-derived natural products to prevent and control plant and animal pathogenic fungi.


Assuntos
Fumonisinas , Fungicidas Industriais , Fusarium , Zanthoxylum , Animais , Humanos , Fungicidas Industriais/farmacologia , Fungicidas Industriais/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Zanthoxylum/metabolismo , Fumonisinas/metabolismo
12.
Molecules ; 29(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38542978

RESUMO

Essential oils are secondary metabolites in plants with a variety of biological activities. The flavor and quality of Zanthoxylum armatum DC. are mainly determined by the essential oil components in the Chinese prickly ash peels. In this study, the correlation between climate change in different regions and the content of essential oils of Z. armatum was investigated using gas chromatography-mass spectrometry (GC/MS) and multivariate statistical analysis. The Z1-24 refers to 24 batches of samples from different habitats. A total of 145 essential oils were detected in 24 batches of samples, with the highest number of terpene species and the highest content of alcohol. The relative odor activity (ROAV) values identified nine main flavor compounds affecting the odor of Z. armatum. Linalool, decanal, and d-limonene were the most critical main flavor compounds, giving Z. armatum a spicy, floral, oily, and fruity odor. The results of hierarchical cluster analysis (HCA) and principal component analysis (PCA) classified Z5 into a separate group, Z2 and Z7 were clustered into one group, and the rest of the samples were classified into another group. Correlation analysis and path analysis showed that temperature and precipitation were the main climatic factors affecting essential oils. Comparisons can be made with other plants in the genus Zanthoxylum to analyze differences in essential oil type and content. This study contributes to the identification of Z. armatum quality, promotes the accumulation of theories on the effects of climatic factors on essential oils, and enriches the site selection and breeding of Z. armatum under similar climatic conditions.


Assuntos
Óleos Voláteis , Zanthoxylum , Óleos Voláteis/química , Zanthoxylum/química , Melhoramento Vegetal , Terpenos/análise , China
13.
Anal Methods ; 16(8): 1196-1205, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38312040

RESUMO

In the present study, an efficient and rapid method for the preparation of high-purity typical alkylamides from Zanthoxylum bungeanum (Z. bungeanum) pericarps using medium-pressure liquid chromatography (MPLC) was developed. Under the optimized conditions using a mobile phase of methanol : water (70 : 30, v/v) at a flow rate of 25 mL min-1 and one run for 30 min, hydroxy-α-sanshool with a purity of 97.85% could be obtained. Sensory evaluation and electronic tongue analysis of the hydroxyl-α-sanshool were performed, and the aftertastes of bitterness and astringency were found to be more representative of the compounds in Chinese prickly ash that causes numbness, which has not been reported in the literature before. An electronic tongue prediction model for the evaluation of numbing intensity was established: Y = 20.452X1 - 7.594X2 - 2.876, R2 = 0.973, where Y is a sensory evaluation value based on the 15 cm linear scale method and X1 and X2 are the aftertastes from astringency and bitterness, respectively. The evaluation model can be used for the evaluation of the numbing intensity of amides of Zanthoxylum bungeanum.


Assuntos
Amidas , Zanthoxylum , Zanthoxylum/química , Hipestesia , Nariz Eletrônico , Cromatografia Líquida
14.
BMC Plant Biol ; 24(1): 81, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38302884

RESUMO

BACKGROUND: As a xerophytic shrub, forming developed root system dominated with lateral roots is one of the effective strategies for Zygophyllum xanthoxylum to adapt to desert habitat. However, the molecular mechanism of lateral root formation in Z. xanthoxylum is still unclear. Auxin response factors (ARFs) are a master family of transcription factors (TFs) in auxin-mediated biological processes including root growth and development. RESULTS: Here, to determine the relationship between ARFs and root system formation in Z. xanthoxylum, a total of 30 potential ZxARF genes were first identified, and their classifications, evolutionary relationships, duplication events and conserved domains were characterized. 107 ARF protein sequences from alga to higher plant species including Z. xanthoxylum are split into A, B, and C 3 Clades, consisting with previous studies. The comparative analysis of ARFs between xerophytes and mesophytes showed that A-ARFs of xerophytes expanded considerably more than that of mesophytes. Furthermore, in this Clade, ZxARF5b and ZxARF8b have lost the important B3 DNA-binding domain partly and completely, suggesting both two proteins may be more functional in activating transcription by dimerization with AUX/IAA repressors. qRT-PCR results showed that all A-ZxARFs are high expressed in the roots of Z. xanthoxylum, and they were significantly induced by drought stress. Among these A-ZxARFs, the over-expression assay showed that ZxARF7c and ZxARF7d play positive roles in lateral root formation. CONCLUSION: This study provided the first comprehensive overview of ZxARFs and highlighted the importance of A-ZxARFs in the lateral root development.


Assuntos
Zanthoxylum , Zygophyllum , Ácidos Indolacéticos/metabolismo , Zygophyllum/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
J Sep Sci ; 47(3): e2300670, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356230

RESUMO

Zanthoxylum, as a medicinal and edible herbal medicine, has a long history and complex chemical composition. There are many varieties of Zanthoxylum, and there are differences in composition between varieties. In this study, a rapid classification and identification method for the main components of Zanthoxylum was established using ultra-high-performance-liquid chromatography quadrupole-orbitrap-mass spectrometry. The components of Shandong Zanthoxylum bungeanum, Wudu Zanthoxylum bungeanum, and Zanthoxylum schinifolium were identified by studying the characteristic fragmentations and neutral losses of characteristic components. A total of 48 common components and 24 different components were identified and the fragmentation patterns of the main components, such as flavonoids, alkaloids, and organic acids were summarized. These findings provided a reference for the study of pharmacodynamic substance basis and quality control of different varieties of Zanthoxylum.


Assuntos
Alcaloides , Medicamentos de Ervas Chinesas , Plantas Medicinais , Zanthoxylum , Zanthoxylum/química , Plantas Medicinais/química , Medicamentos de Ervas Chinesas/química , Espectrometria de Massas , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão
16.
Food Chem ; 445: 138771, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38394912

RESUMO

Zanthoxylum bungeanum essential oil (ZBEO) Pickering emulsion was incorporated into rice protein (RP)/sodium alginate (SA)-based film to enhance the antioxidant activity and compatibility. With increasing ZBEO content from 2 % to 4 %, the average size of ZBEO Pickering emulsion ranged from 124.28 to 165.65 nm. The best mechanical property with a tensile strength of 14.56 MPa and hydrophobicity with a water vapor permeability of 2.11 × 10-12 g⋅cm-1⋅s-1⋅Pa-1 of emulsion film were achieved with 0.8 % ZBEO. In addition, the loss of ZBEO in the emulsion films was reduced by 11-14 %. The DPPH radical scavenging activity of emulsion film with 1.2 % ZBEO was 65.54 % in 95 % ethanol. The results of Fourier transform infrared spectroscopy and molecular dynamics simulation showed that electrostatic interactions played a leading role in film formation. Overall, ZBEO Pickering emulsion is an effective method to enhance the antioxidant activity, mechanical strength and hydrophobicity of RP/SA film.


Assuntos
Óleos Voláteis , Zanthoxylum , Óleos Voláteis/química , Alginatos/química , Antioxidantes/química , Zanthoxylum/química , Emulsões
17.
Adv Sci (Weinh) ; 11(16): e2310012, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359060

RESUMO

Natural evolution has nurtured a series of active molecules that play vital roles in physiological systems, but their further applications have been severely limited by rapid deactivation, short cycle time, and potential toxicity after isolation. For instance, the instability of structures and properties has greatly descended when sanshool is derived from Zanthoxylum xanthoxylum. Herein, natural polyphenols are employed to boost the key properties of sanshool by fabricating a series of nanoparticles (NPs). The intracellular evaluation and in vivo animal model are conducted to demonstrate the decreased photodamage score and skin-fold thickness of prepared NPs, which can be attributed to the better biocompatibility, improved free radical scavenging, down-regulated apoptosis ratios, and reduced DNA double-strand breaks compared to naked sanshool. This work proposes a novel strategy to boost the key properties of naturally occurring active molecules with the assistance of natural polyphenol-based platforms.


Assuntos
Polifenóis , Pele , Polifenóis/farmacologia , Animais , Camundongos , Pele/efeitos dos fármacos , Pele/metabolismo , Nanopartículas/química , Zanthoxylum/química , Apoptose/efeitos dos fármacos , Extratos Vegetais/farmacologia , Modelos Animais de Doenças , Humanos
18.
Front Immunol ; 15: 1305886, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343532

RESUMO

Zanthoxylum bungeanum Maxim., commonly known as Chinese prickly ash, is a well-known spice and traditional Chinese medicine ingredient with a rich history of use in treating inflammatory conditions. This review provides a comprehensive overview of the botanical classification, traditional applications, and anti-inflammatory effects of Z. bungeanum, with a specific focus on its polyphenolic components. These polyphenols have exhibited considerable promise, as evidenced by preclinical studies in animal models, suggesting their therapeutic potential in human inflammatory diseases such as ulcerative colitis, arthritis, asthma, chronic obstructive pulmonary disease, cardiovascular disease, and neurodegenerative conditions. This positions them as a promising class of natural compounds with the potential to enhance human well-being. However, further research is necessary to fully elucidate their mechanisms of action and develop safe and effective therapeutic applications.


Assuntos
Asma , Colite Ulcerativa , Zanthoxylum , Animais , Humanos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Medicina Tradicional Chinesa
19.
Int J Biol Macromol ; 262(Pt 1): 129683, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296664

RESUMO

In this study, a novel edible composite film was prepared by chitosan, konjac glucomannan oxidized with ozone for 60 min (OKGM), and Zanthoxylum Bungeanum essential oil (ZEO). The chitosan/OKGM film was fortified with ZEO to assess the physical properties, structure, antioxidant and antibacterial abilities, and pork preservation systematically. Compared to the control group, the addition of 1 % ZEO increased tensile strength by 18.92 % and decreased water solubility, water vapor permeability, and moisture content by 10.05 %, 6.60 %, and 1.03 %, respectively. However, the treatment with ZEO (1.5 % and 2 %) decreased mechanical properties and increased the water vapor permeability. The ultraviolet barrier, antioxidant, and antibacterial abilities of composite films were enhanced by increasing the ZEO addition. Moreover, the COZ-1 film was used to protect the freshness of pork with slow-release behavior of ZEO. The results showed that addition of ZEO significantly decreased the pH value, total viable count, redness, total volatile basic nitrogen, and thiobarbituric acid and increased the hardness of pork after preservation for 10 days. Therefore, the chitosan/OKGM loaded with ZEO film can potentially be used as food packaging, providing new ideas for the research on active packaging materials.


Assuntos
Quitosana , Mananas , Óleos Voláteis , Zanthoxylum , Antioxidantes/farmacologia , Antioxidantes/química , Quitosana/química , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Vapor , Embalagem de Alimentos/métodos , Antibacterianos/química , Carne/microbiologia
20.
Int J Biol Macromol ; 262(Pt 1): 129703, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296667

RESUMO

This study aimed to produce chitosan films incorporated with Zanthoxylum limonella essential oil for extending shelf life. The volatile compounds of Z. limonella essential oil were identified by gas chromatography-mass spectrometry consisting of limonene, α-phellandrene, ρ-cymene, and sabinene as major compounds. In this study, the addition of Z. limonella essential oil at concentrations of 0 %, 2 %, and 4 % in chitosan film was assessed for its antibacterial activity against Escherichia coli and Staphylococcus aureus. Chitosan film incorporated with 4 % essential oil demonstrated the most significant antibacterial effect against E. coli and S. aureus in comparison to the chitosan film without essential oil due to the synergistic effects on antibacterial activity. The physical and mechanical properties of the chitosan films incorporated with Z. limonella oil developed were also assessed. The addition of essential oil to chitosan films led to improvements in mechanical strength and flexibility, while minimal changes were observed in terms of water solubility, water vapor permeability, and thermal stability. The findings emphasize that this innovative film not only extends the shelf life of pork without chemical preservatives but is also a fully bio-based material. Consequently, it shows great potential to be used as active packaging within the food industry.


Assuntos
Quitosana , Óleos Voláteis , Carne de Porco , Carne Vermelha , Zanthoxylum , Animais , Suínos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Quitosana/farmacologia , Quitosana/química , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Embalagem de Alimentos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...