Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.751
Filtrar
1.
Planta ; 260(1): 16, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833022

RESUMO

MAIN CONCLUSION: A callus-specific CRISPR/Cas9 (CSC) system with Cas9 gene driven by the promoters of ZmCTA1 and ZmPLTP reduces somatic mutations and improves the production of heritable mutations in maize. The CRISPR/Cas9 system, due to its editing accuracy, provides an excellent tool for crop genetic breeding. Nevertheless, the traditional design utilizing CRISPR/Cas9 with ubiquitous expression leads to an abundance of somatic mutations, thereby complicating the detection of heritable mutations. We constructed a callus-specific CRISPR/Cas9 (CSC) system using callus-specific promoters of maize Chitinase A1 and Phospholipid transferase protein (pZmCTA1 and pZmPLTP) to drive Cas9 expression, and the target gene chosen for this study was the bZIP transcription factor Opaque2 (O2). The CRISPR/Cas9 system driven by the maize Ubiquitin promoter (pZmUbi) was employed as a comparative control. Editing efficiency analysis based on high-throughput tracking of mutations (Hi-TOM) showed that the CSC systems generated more target gene mutations than the ubiquitously expressed CRISPR/Cas9 (UC) system in calli. Transgenic plants were generated for the CSC and UC systems. We found that the CSC systems generated fewer target gene mutations than the UC system in the T0 seedlings but reduced the influence of somatic mutations. Nearly 100% of mutations in the T1 generation generated by the CSC systems were derived from the T0 plants. Only 6.3-16.7% of T1 mutations generated by the UC system were from the T0 generation. Our results demonstrated that the CSC system consistently produced more stable, heritable mutants in the subsequent generation, suggesting its potential application across various crops to facilitate the genetic breeding of desired mutations.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Mutação , Plantas Geneticamente Modificadas , Zea mays , Zea mays/genética , Plantas Geneticamente Modificadas/genética , Edição de Genes/métodos , Regiões Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Ligação a DNA
2.
BMC Plant Biol ; 24(1): 490, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825718

RESUMO

The aim of the experiment was to evaluate the potential of promising summer maize genotypes and optimal stage of harvesting these genotypes for ensiling in terms of dry matter (DM), starch, and crude protein (CP) yields, silage fermentation quality, nutrients profile, total digestible nutrients, metabolizable energy (ME) content, Cornell Net Carbohydrate and Protein System (CNCPS) carbohydrate (CHO) subfractions composition, in vitro DM digestibility (DMD) and in situ starch degradation characteristics. Six maize genotypes were chosen for the study: DK9108 from Monsanto, P30Y87, P3939 from Pioneer, QPM-300 (quality protein maize) and W94 from the International Maize and Wheat Improvement Center (CIMMYT), and a local cultivar, Afgoii, from the Cereal Research Institute (Persabaq, KP). A total of 72 plots (8 m × 10 m) were blocked in three replicate fields, and within each field, each genotype was sown in four replicate plots according to a randomized complete block design. For the data analysis, the Proc-Mixed procedure of Statistical Analysis System with repeated measure analysis of variance was used. The DM yield was strongly influenced (P < 0.001) by maize genotypes, varying from 12.6 to 17.0 tons/ha. Except for total CHO and ammonia nitrogen (NH3-N), the contents of all measured chemical components varied (P < 0.001) among the genotypes. Further comparison revealed that, genotype P3939 had a higher (P < 0.05) content of CP (7.27 vs. 6.92%), starch (36.7 vs. 27.9%), DMD (65.4 vs. 60.0%), ME (2.51 vs. 2.30 Mcal/kg) and lactic acid (5.32 vs. 4.83%) and lowest content of NDF (37.3 vs. 43.1%), pH (3.7 vs. 4.10) compared to the local cultivar (Afgoii). Advancement of post-flowering maturity from 25 to 35% DM (23 to 41 days after flowering (DAF)) increased (P < 0.05) the DM yield (10.4 to 17.8 tons/ha), starch content (29.1 to 35.0%), DMD (65.3 to 67.3%) and ME (2.34 to 2.47 Mcal/kg), and decreased (P < 0.001) the contents of CP (7.42-6.73%), NDF (48.8-38.5%), pH (4.10 to 3.60), NH3-N (8.93-7.80%N) and effective degradability of starch (95.4 to 89.4). Results showed that for higher yields and silage nutritional and fermentation quality, maize crops should be harvested at whole crop DM content of 30-35% (34 to 41 DAF). It was further concluded that genotype P3939 is the most suitable summer maize genotype for silage production in terms of yields and silage nutritional and fermentation quality under the hot environmental conditions of the tropics.


Assuntos
Silagem , Zea mays , Zea mays/genética , Genótipo , Clima Tropical , Fermentação , Amido , Carboidratos , Proteínas de Plantas , Paquistão , Agricultura
3.
BMC Plant Biol ; 24(1): 496, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38831278

RESUMO

BACKGROUND: Monosaccharide transporter (MST) family, as a carrier for monosaccharide transport, plays an important role in carbon partitioning and widely involves in plant growth and development, stress response, and signaling transduction. However, little information on the MST family genes is reported in maize (Zea mays), especially in response to abiotic stresses. In this study, the genome-wide identification of MST family genes was performed in maize. RESULT: A total of sixty-six putative members of MST gene family were identified and divided into seven subfamilies (including SPT, PMT, VGT, INT, pGlcT, TMT, and ERD) using bioinformatics approaches, and gene information, phylogenetic tree, chromosomal location, gene structure, motif composition, and cis-acting elements were investigated. Eight tandem and twelve segmental duplication events were identified, which played an important role in the expansion of the ZmMST family. Synteny analysis revealed the evolutionary features of MST genes in three gramineous crop species. The expression analysis indicated that most of the PMT, VGT, and ERD subfamilies members responded to osmotic and cadmium stresses, and some of them were regulated by ABA signaling, while only a few members of other subfamilies responded to stresses. In addition, only five genes were induced by NaCl stress in MST family. CONCLUSION: These results serve to understand the evolutionary relationships of the ZmMST family genes and supply some insight into the processes of monosaccharide transport and carbon partitioning on the balance between plant growth and development and stress response in maize.


Assuntos
Proteínas de Transporte de Monossacarídeos , Família Multigênica , Filogenia , Proteínas de Plantas , Estresse Fisiológico , Zea mays , Zea mays/genética , Zea mays/fisiologia , Estresse Fisiológico/genética , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Evolução Molecular , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genes de Plantas
4.
Theor Appl Genet ; 137(7): 159, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872054

RESUMO

KEY MESSAGE: Integrated linkage and association analysis revealed genetic basis across multiple environments. The genes Zm00001d003102 and Zm00001d015905 were further verified to influence amylose content using gene-based association study. Maize kernel amylose is an important source of human food and industrial raw material. However, the genetic basis underlying maize amylose content is still obscure. Herein, we used an intermated B73 × Mo17 (IBM) Syn10 doubled haploid population composed of 222 lines and a germplasm set including 305 inbred lines to uncover the genetic control for amylose content under four environments. Linkage mapping detected 16 unique QTL, among which four were individually repeatedly identified across multiple environments. Genome-wide association study revealed 17 significant (P = 2.24E-06) single-nucleotide polymorphisms, of which two (SYN19568 and PZE-105090500) were located in the intervals of the mapped QTL (qAC2 and qAC5-3), respectively. According to the two population co-localized loci, 20 genes were confirmed as the candidate genes for amylose content. Gene-based association analysis indicated that the variants in Zm00001d003102 (Beta-16-galactosyltransferase GALT29A) and Zm00001d015905 (Sugar transporter 4a) affected amylose content across multi-environment. Tissue expression analysis showed that the two genes were specifically highly expressed in the ear and stem, respectively, suggesting that they might participate in sugar transport from source to sink organs. Our study provides valuable genetic information for breeding maize varieties with high amylose.


Assuntos
Amilose , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Zea mays , Zea mays/genética , Amilose/metabolismo , Amilose/genética , Estudo de Associação Genômica Ampla , Fenótipo , Ligação Genética , Genes de Plantas , Genótipo , Estudos de Associação Genética
5.
Plant Mol Biol ; 114(4): 75, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878261

RESUMO

Prolonged exposure to abiotic stresses causes oxidative stress, which affects plant development and survival. In this research, the overexpression of ZmARF1 improved tolerance to low Pi, drought and salinity stresses. The transgenic plants manifested tolerance to low Pi by their superior root phenotypic traits: root length, root tips, root surface area, and root volume, compared to wide-type (WT) plants. Moreover, the transgenic plants exhibited higher root and leaf Pi content and upregulated the high affinity Pi transporters PHT1;2 and phosphorus starvation inducing (PSI) genes PHO2 and PHR1 under low Pi conditions. Transgenic Arabidopsis displayed tolerance to drought and salt stress by maintaining higher chlorophyll content and chlorophyll fluorescence, lower water loss rates, and ion leakage, which contributed to the survival of overexpression lines compared to the WT. Transcriptome profiling identified a peroxidase gene, POX, whose transcript was upregulated by these abiotic stresses. Furthermore, we confirmed that ZmARF1 bound to the auxin response element (AuxRE) in the promoter of POX and enhanced its transcription to mediate tolerance to oxidative stress imposed by low Pi, drought and salt stress in the transgenic seedlings. These results demonstrate that ZmARF1 has significant potential for improving the tolerance of crops to multiple abiotic stresses.


Assuntos
Arabidopsis , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Estresse Fisiológico , Zea mays , Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/fisiologia , Zea mays/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Estresse Oxidativo , Plântula/genética , Plântula/fisiologia , Plântula/efeitos dos fármacos , Perfilação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Theor Appl Genet ; 137(7): 158, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864891

RESUMO

Examining the connection between P and starch-related signals can help elucidate the balance between nutrients and yield. This study utilized 307 diverse maize inbred lines to conduct multi-year and multi-plot trials, aiming to explore the relationship among P content, starch content, and 100-kernel weight (HKW) of mature grains. A significant negative correlation was found between P content and both starch content and HKW, while starch content showed a positive correlation with HKW. The starch granules in grains with high-P and low-starch content (HPLS) were significantly smaller compared to grains with low-P high-starch content (LPHS). Additionally, mian04185-4 (HPLS) exhibited irregular and loosely packed starch granules. A significant decrease in ZmPHOs genes expression was detected in the HPLS line ZNC442 as compared to the LPHS line SCML0849, while no expression difference was observed in AGPase encoding genes between these two lines. The down-regulated genes in ZNC442 grains were enriched in nucleotide sugar and fatty acid anabolic pathways, while up-regulated genes were enriched in the ABC transporters pathway. An accelerated breakdown of fat as the P content increased was also observed. This implied that HPLS was resulted from elevated lipid decomposition and inadequate carbon sources. The GWAS analysis identified 514 significantly associated genes, out of which 248 were differentially expressed. Zm00001d052392 was found to be significantly associated with P content/HKW, exhibiting high expression in SCML0849 but almost no expression in ZNC442. Overall, these findings suggested new approaches for achieving a P-yield balance through the manipulation of lipid metabolic pathways in grains.


Assuntos
Fósforo , Amido , Transcriptoma , Zea mays , Zea mays/genética , Zea mays/metabolismo , Amido/metabolismo , Fósforo/metabolismo , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Fenótipo
7.
Proc Natl Acad Sci U S A ; 121(25): e2406090121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38865274

RESUMO

Endoplasmic reticulum (ER)-associated degradation (ERAD) plays key roles in controlling protein levels and quality in eukaryotes. The Ring Finger Protein 185 (RNF185)/membralin ubiquitin ligase complex was recently identified as a branch in mammals and is essential for neuronal function, but its function in plant development is unknown. Here, we report the map-based cloning and characterization of Narrow Leaf and Dwarfism 1 (NLD1), which encodes the ER membrane-localized protein membralin and specifically interacts with maize homologs of RNF185 and related components. The nld1 mutant shows defective leaf and root development due to reduced cell number. The defects of nld1 were largely restored by expressing membralin genes from Arabidopsis thaliana and mice, highlighting the conserved roles of membralin proteins in animals and plants. The excessive accumulation of ß-hydroxy ß-methylglutaryl-CoA reductase in nld1 indicates that the enzyme is a membralin-mediated ERAD target. The activation of bZIP60 mRNA splicing-related unfolded protein response signaling and marker gene expression in nld1, as well as DNA fragment and cell viability assays, indicate that membralin deficiency induces ER stress and cell death in maize, thereby affecting organogenesis. Our findings uncover the conserved, indispensable role of the membralin-mediated branch of the ERAD pathway in plants. In addition, ZmNLD1 contributes to plant architecture in a dose-dependent manner, which can serve as a potential target for genetic engineering to shape ideal plant architecture, thereby enhancing high-density maize yields.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Proteínas de Plantas , Ubiquitina-Proteína Ligases , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Retículo Endoplasmático/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Animais , Regulação da Expressão Gênica de Plantas , Estresse do Retículo Endoplasmático , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Resposta a Proteínas não Dobradas
8.
Plant Physiol Biochem ; 212: 108740, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797007

RESUMO

The metal tolerance protein (MTP) gene family plays an essential role in the transport of heavy metals, however the function of the MTP family in transporting lead (Pb) was still unclear in plants. In this study, we identified and characterized 12 ZmMTPs in the whole genome of maize. These ZmMTP genes were divided into three subfamilies in evolution, namely Zn-CDF, Zn/Fe-CDF, Mn-CDF subfamilies, which showed diverse expression patterns in different tissues of maize. Using gene-based association analyses, we identified a Pb accumulation-related MTP member in maize, ZmMTP11, which was located in plasma membrane and had the potential of transporting Pb ion. Under the Pb treatment, ZmMTP11 showed a generally decreased expression relative to the normal conditions. Heterologous expressions of ZmMTP11 in yeast, Arabidopsis, and rice demonstrated that ZmMTP11 enhanced Pb accumulation in the cells without affecting yeast and plant growth under Pb stress. Remarkably, the increased Pb concentration in the plant roots did not cause changes in Pb content in the shoots. Our study provides new insights into the genetic improvement of heavy metal tolerance in plants and contributes to bioremediation of Pb-contaminant soils.


Assuntos
Regulação da Expressão Gênica de Plantas , Chumbo , Proteínas de Plantas , Zea mays , Chumbo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Oryza/genética , Oryza/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Poluentes do Solo/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Família Multigênica , Filogenia
9.
Plant Physiol Biochem ; 211: 108684, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710113

RESUMO

Abscisic acid-, stress-, and ripening-induced (ASR) proteins in plants play a significant role in plant response to diverse abiotic stresses. However, the functions of ASR genes in maize remain unclear. In the present study, we identified a novel drought-induced ASR gene in maize (ZmASR1) and functionally characterized its role in mediating drought tolerance. The transcription of ZmASR1 was upregulated under drought stress and abscisic acid (ABA) treatment, and the ZmASR1 protein was observed to exhibit nuclear and cytoplasmic localization. Moreover, ZmASR1 knockout lines generated with the CRISPR-Cas9 system showed lower ROS accumulation, higher ABA content, and a higher degree of stomatal closure than wild-type plants, leading to higher drought tolerance. Transcriptome sequencing data indicated that the significantly differentially expressed genes in the drought treatment group were mainly enriched in ABA signal transduction, antioxidant defense, and photosynthetic pathway. Taken together, the findings suggest that ZmASR1 negatively regulates drought tolerance and represents a candidate gene for genetic manipulation of drought resistance in maize.


Assuntos
Ácido Abscísico , Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Estresse Fisiológico/genética , Espécies Reativas de Oxigênio/metabolismo
10.
Theor Appl Genet ; 137(6): 132, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750241

RESUMO

KEY MESSAGE: The Dof22 gene encoding a deoxyribonucleic acid binding with one finger in maize, which is associated with its drought tolerance. The identification of drought stress regulatory genes is essential for the genetic improvement of maize yield. Deoxyribonucleic acid binding with one finger (Dof), a plant-specific transcription factor family, is involved in signal transduction, morphogenesis, and environmental stress responses. In present study, by weighted correlation network analysis (WGCNA) and gene co-expression network analysis, 15 putative Dof genes were identified from maize that respond to drought and rewatering. A real-time fluorescence quantitative PCR showed that these 15 genes were strongly induced by drought and ABA treatment, and among them ZmDof22 was highly induced by drought and ABA treatment. Its expression level increased by nearly 200 times after drought stress and more than 50 times after ABA treatment. After the normal conditions were restored, the expression levels were nearly 100 times and 40 times of those before treatment, respectively. The Gal4-LexA/UAS system and transcriptional activation analysis indicate that ZmDof22 is a transcriptional activator regulating drought tolerance and recovery ability in maize. Further, overexpressed transgenic and mutant plants of ZmDof22 by CRISPR/Cas9, indicates that the ZmDof22, improves maize drought tolerance by promoting stomatal closure, reduces water loss, and enhances antioxidant enzyme activity by participating in the ABA pathways. Taken together, our findings laid a foundation for further functional studies of the ZmDof gene family and provided insights into the role of the ZmDof22 regulatory network in controlling drought tolerance and recovery ability of maize.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Estômatos de Plantas , Fatores de Transcrição , Zea mays , Zea mays/genética , Zea mays/fisiologia , Zea mays/enzimologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Fisiológico/genética , Antioxidantes/metabolismo , Plantas Geneticamente Modificadas/genética , Ácido Abscísico/metabolismo , Resistência à Seca
11.
PLoS One ; 19(5): e0304328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38787825

RESUMO

Nutritive value of five Cenchrus ciliaris (buffel grass) genotypes (IG96-50, IG96-96, IG96-358, IG96-401 and IG96-403) weredetermined. Their sugar contents (>70 mg/g of dry matter) and ensiling potential were evaluated using in vitro batch culture and in vivo studies. Research indicated significant differences (P < 0.05) in the dry matter, organic matter, ether extract, neutral detergent fiber, acid detergent fiber, cellulose and lignin contents of the C. ciliaris genotypes tested. Genotypes also differed (P < 0.05) in total carbohydrates, structural carbohydrates, non-structural carbohydrates and protein fractions. Genotype IG96-96 had the lowest total digestible nutrients, digestible energy and metabolizable energy contents (377.2 g/kg, 6.95 and 5.71 MJ/kg of dry matter, respectively), and net energy values for lactation, maintenance and growth. After 45 days of ensiling, C. ciliaris silages differed (P < 0.05) in dry matter, pH, and lactic acid contents, and their values ranged between 255-339, 4.06-5.17 g/kg of dry matter and 10.8-28.0 g/kg of dry matter, respectively. Maize silage had higher (P < 0.05) Organic Matter (919.5g/kg of dry matter), ether extract (20.4g/kg of dry matter) and hemi-cellulose (272.3 g/kg of dry matter) than IG96-401 and IG96-96 silages. The total carbohydrates and non-structural carbohydrates of maize silage were higher (P < 0.05), while structural carbohydrates were comparable (P < 0.05) with C. ciliaris silages. Sheep on maize silage had (P < 0.05) higher metabolizable energy, lower crude protein, and digestible crude protein intake (g/kg of dry matter) than those on C. ciliaris silage diets. Nitrogen intake and urinary-N excretion were higher (P < 0.05) on genotype IG96-96 silage diet. Overall, this study suggested that certain C. ciliaris genotypes, notably IG96-401 and IG96-96, exhibited nutritive values comparable to maize silage in sheep studies, offering a promising avenue for future exploration as potential alternatives in diversified and sustainable livestock nutrition programs.


Assuntos
Cenchrus , Genótipo , Valor Nutritivo , Silagem , Zea mays , Animais , Silagem/análise , Zea mays/genética , Zea mays/química , Ovinos , Cenchrus/genética , Cenchrus/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Feminino , Ração Animal/análise , Digestão
12.
BMC Genomics ; 25(1): 515, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796435

RESUMO

BACKGROUND: The short-read whole-genome sequencing (WGS) approach has been widely applied to investigate the genomic variation in the natural populations of many plant species. With the rapid advancements in long-read sequencing and genome assembly technologies, high-quality genome sequences are available for a group of varieties for many plant species. These genome sequences are expected to help researchers comprehensively investigate any type of genomic variants that are missed by the WGS technology. However, multiple genome alignment (MGA) tools designed by the human genome research community might be unsuitable for plant genomes. RESULTS: To fill this gap, we developed the AnchorWave-Cactus Multiple Genome Alignment (ACMGA) pipeline, which improved the alignment of repeat elements and could identify long (> 50 bp) deletions or insertions (INDELs). We conducted MGA using ACMGA and Cactus for 8 Arabidopsis (Arabidopsis thaliana) and 26 Maize (Zea mays) de novo assembled genome sequences and compared them with the previously published short-read variant calling results. MGA identified more single nucleotide variants (SNVs) and long INDELs than did previously published WGS variant callings. Additionally, ACMGA detected significantly more SNVs and long INDELs in repetitive regions and the whole genome than did Cactus. Compared with the results of Cactus, the results of ACMGA were more similar to the previously published variants called using short-read. These two MGA pipelines identified numerous multi-allelic variants that were missed by the WGS variant calling pipeline. CONCLUSIONS: Aligning de novo assembled genome sequences could identify more SNVs and INDELs than mapping short-read. ACMGA combines the advantages of AnchorWave and Cactus and offers a practical solution for plant MGA by integrating global alignment, a 2-piece-affine-gap cost strategy, and the progressive MGA algorithm.


Assuntos
Arabidopsis , Genoma de Planta , Zea mays , Arabidopsis/genética , Zea mays/genética , Alinhamento de Sequência , Mutação INDEL , Genômica/métodos , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma/métodos , Software
13.
Transgenic Res ; 33(3): 119-130, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38713283

RESUMO

This paper reports the first coexistence field trials between transgenic and conventional maize carried out under Mediterranean island conditions. Their purpose was to assess the local validity of pollen barriers and sowing delays as coexistence strategies as a basis for a regional regulation on the subject. Two field trials were performed in two agricultural states of Alcudia and Palma, in Mallorca (Spain). In the first one, two adjacent plots were synchronously sown with conventional and transgenic maize, respectively. In the second trial, the previous design was replicated, and two additional plots sown with GM maize were added, paired with their respective conventional recipient plots sown 2 and 4 weeks later. All conventional plots were located downwind from their respective GM plots. Of the two conventional plots in sowing synchrony, only one of them required a 2.25 m pollen barrier to meet the 0.9% labeling threshold. A 4-week sowing delay between GM and non-GM plots proved to be enough to keep the GM content of the recipient plots below the legal threshold. However, with a 2-week sowing delay additional coexistence measures such as pollen barriers might be needed, as suggested in the literature. Results are consistent with previous research conducted in the northeast of Spain, thus validating in the island's agroclimatic conditions a model successfully tested in that peninsular region which allows to accurately estimate the need and width of pollen barriers. The results presented here could perhaps be extrapolated to other islands, coastal areas, and regions with stable prevailing winds during the maize flowering season.


Assuntos
Edição de Genes , Plantas Geneticamente Modificadas , Pólen , Zea mays , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Espanha , Pólen/genética , Agricultura/métodos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento
14.
BMC Plant Biol ; 24(1): 458, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38797860

RESUMO

BACKGROUND: The endosperm serves as the primary source of nutrients for maize (Zea mays L.) kernel embryo development and germination. Positioned at the base of the endosperm, the transfer cells (TCs) of the basal endosperm transfer layer (BETL) generate cell wall ingrowths, which enhance the connectivity between the maternal plant and the developing kernels. These TCs play a crucial role in nutrient transport and defense against pathogens. The molecular mechanism underlying BETL development in maize remains unraveled. RESULTS: This study demonstrated that the MYB-related transcription factor ZmMYBR29, exhibited specific expression in the basal cellularized endosperm, as evidenced by in situ hybridization analysis. Utilizing the CRISPR/Cas9 system, we successfully generated a loss-of-function homozygous zmmybr29 mutant, which presented with smaller kernel size. Observation of histological sections revealed abnormal development and disrupted morphology of the cell wall ingrowths in the BETL. The average grain filling rate decreased significantly by 26.7% in zmmybr29 mutant in comparison to the wild type, which impacted the dry matter accumulation within the kernels and ultimately led to a decrease in grain weight. Analysis of RNA-seq data revealed downregulated expression of genes associated with starch synthesis and carbohydrate metabolism in the mutant. Furthermore, transcriptomic profiling identified 23 genes that expressed specifically in BETL, and the majority of these genes exhibited altered expression patterns in zmmybr29 mutant. CONCLUSIONS: In summary, ZmMYBR29 encodes a MYB-related transcription factor that is expressed specifically in BETL, resulting in the downregulation of genes associated with kernel development. Furthermore, ZmMYBR29 influences kernels weight by affecting the grain filling rate, providing a new perspective for the complementation of the molecular regulatory network in maize endosperm development.


Assuntos
Grão Comestível , Endosperma , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Zea mays , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Parede Celular/metabolismo , Parede Celular/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sistemas CRISPR-Cas
15.
Food Chem ; 453: 139668, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38805943

RESUMO

The Asia Pacific Metrology Program and the Accreditation Cooperation joint Proficiency Testing (PT) program for the quantification of genetically modified maize MON87427 was organized by the National Institute of Metrology, China, to enhance the measurement accuracy and metrological traceability in the region. Certified reference materials were employed as test samples; metrologically traceable certified reference values served as PT reference values (PTRVs) for evaluating the participants results. The consensus values obtained from the participants were higher than the assigned values, potentially due to the systematic effects of DNA extraction process. The participants' relatively poor overall performance by the ζ-score compared with z-score demonstrates their need to thoroughly investigate quantification bias to elevate the measurement capability of genetically modified (GM) content and deepen their understanding of uncertainty estimation. This program confirmed the importance of using metrologically traceable reference values instead of consensus values as PTRV for reliable performance assessment.


Assuntos
Plantas Geneticamente Modificadas , Zea mays , Zea mays/genética , Zea mays/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/química , Valores de Referência , China , Ensaio de Proficiência Laboratorial , Padrões de Referência , Alimentos Geneticamente Modificados
16.
BMC Genomics ; 25(1): 533, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816789

RESUMO

BACKGROUND: Environmental stress factors, such as biotic and abiotic stress, are becoming more common due to climate variability, significantly affecting global maize yield. Transcriptome profiling studies provide insights into the molecular mechanisms underlying stress response in maize, though the functions of many genes are still unknown. To enhance the functional annotation of maize-specific genes, MaizeGDB has outlined a data-driven approach with an emphasis on identifying genes and traits related to biotic and abiotic stress. RESULTS: We mapped high-quality RNA-Seq expression reads from 24 different publicly available datasets (17 abiotic and seven biotic studies) generated from the B73 cultivar to the recent version of the reference genome B73 (B73v5) and deduced stress-related functional annotation of maize gene models. We conducted a robust meta-analysis of the transcriptome profiles from the datasets to identify maize loci responsive to stress, identifying 3,230 differentially expressed genes (DEGs): 2,555 DEGs regulated in response to abiotic stress, 408 DEGs regulated during biotic stress, and 267 common DEGs (co-DEGs) that overlap between abiotic and biotic stress. We discovered hub genes from network analyses, and among the hub genes of the co-DEGs we identified a putative NAC domain transcription factor superfamily protein (Zm00001eb369060) IDP275, which previously responded to herbivory and drought stress. IDP275 was up-regulated in our analysis in response to eight different abiotic and four different biotic stresses. A gene set enrichment and pathway analysis of hub genes of the co-DEGs revealed hormone-mediated signaling processes and phenylpropanoid biosynthesis pathways, respectively. Using phylostratigraphic analysis, we also demonstrated how abiotic and biotic stress genes differentially evolve to adapt to changing environments. CONCLUSIONS: These results will help facilitate the functional annotation of multiple stress response gene models and annotation in maize. Data can be accessed and downloaded at the Maize Genetics and Genomics Database (MaizeGDB).


Assuntos
Anotação de Sequência Molecular , Estresse Fisiológico , Transcriptoma , Zea mays , Zea mays/genética , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Genes de Plantas
17.
Planta ; 259(6): 146, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713242

RESUMO

MAIN CONCLUSION: The combined transcriptome outcome provides an important clue to the regulatory cascade centering on lncRNA GARR2 and CPS2 gene in GA response. Long non-coding RNAs (lncRNAs) serve as regulatory components in transcriptional hierarchy governing multiple aspects of biological processes. Dissecting regulatory mechanisms underpinning tetracyclic diterpenoid gibberellin (GA) cascade holds both theoretical and applied significance. However, roles of lncRNAs in transcriptional modulation of GA pathway remain largely elusive. Gypsy retrotransposon-derived GIBBERELLIN RESPONSIVE lncRNA2 (GARR2) has been reported as GA-responsive maize lncRNA. Here a novel GARR2-edited line garr2-1 was identified, characteristic of GA-induced phenotype of increased seedling height and elongated leaf sheath. Transcriptome analysis indicated that transcriptional abundance of five genes [ent-copalyl diphosphate synthase2 (CPS2), ent-kaurene synthase4 (KS4), ent-kaurene synthase6 (KS6), ent-kaurene oxidase2 (KO2), and ent-kaurenoic acid oxidase1/Dwarf3 (KAO1/D3)] was elevated in garr2-1 for early steps of GA biosynthesis. Five GA biosynthetic genes as hub regulators were interlaced to shape regulatory network of GA response. Different transcriptome resources were integrated to discover common differentially expressed genes (DEGs) in the independent GARR2-edited lines GARR2KO and garr2-1. A total of 320 common DEGs were retrieved. These common DEGs were enriched in diterpenoid biosynthetic pathway. Integrative transcriptome analysis revealed the common CPS2 encoding the CPS enzyme that catalyzes the conversion of the precursor trans-geranylgeranyl diphosphate to ent-copalyl diphosphate. The up-regulated CPS2 supported the GA-induced phenotype of slender seedlings observed in the independent GARR2-edited lines GARR2KO and garr2-1. Our integrative transcriptome analysis uncovers common components of the GA pathway regulated by lncRNA GARR2. These common components, especially for the GA biosynthetic gene CPS2, provide a valuable resource for further delineating the underlying mechanisms of lncRNA GARR2 in GA response.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Giberelinas , RNA Longo não Codificante , Zea mays , Zea mays/genética , Zea mays/metabolismo , Giberelinas/metabolismo , RNA Longo não Codificante/genética , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Reguladores de Crescimento de Plantas/metabolismo
18.
Proc Natl Acad Sci U S A ; 121(21): e2402285121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739785

RESUMO

Reproductive phasiRNAs (phased, small interfering RNAs) are broadly present in angiosperms and play crucial roles in sustaining male fertility. While the premeiotic 21-nt (nucleotides) phasiRNAs and meiotic 24-nt phasiRNA pathways have been extensively studied in maize (Zea mays) and rice (Oryza sativa), a third putative category of reproductive phasiRNAs-named premeiotic 24-nt phasiRNAs-have recently been reported in barley (Hordeum vulgare) and wheat (Triticum aestivum). To determine whether premeiotic 24-nt phasiRNAs are also present in maize and related species and begin to characterize their biogenesis and function, we performed a comparative transcriptome and degradome analysis of premeiotic and meiotic anthers from five maize inbred lines and three teosinte species/subspecies. Our data indicate that a substantial subset of the 24-nt phasiRNA loci in maize and teosinte are already highly expressed at the premeiotic phase. The premeiotic 24-nt phasiRNAs are similar to meiotic 24-nt phasiRNAs in genomic origin and dependence on DCL5 (Dicer-like 5) for biogenesis, however, premeiotic 24-nt phasiRNAs are unique in that they are likely i) not triggered by microRNAs, ii) not loaded by AGO18 proteins, and iii) not capable of mediating PHAS precursor cleavage. In addition, we also observed a group of premeiotic 24-nt phasiRNAs in rice using previously published data. Together, our results indicate that the premeiotic 24-nt phasiRNAs constitute a unique class of reproductive phasiRNAs and are present more broadly in the grass family (Poaceae) than previously known.


Assuntos
Meiose , RNA de Plantas , Zea mays , Zea mays/genética , Zea mays/metabolismo , Meiose/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transcriptoma , Oryza/genética , Oryza/metabolismo
19.
PLoS Genet ; 20(5): e1011296, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38814980

RESUMO

Exceptions to Mendelian inheritance often highlight novel chromosomal behaviors. The maize Pl1-Rhoades allele conferring plant pigmentation can display inheritance patterns deviating from Mendelian expectations in a behavior known as paramutation. However, the chromosome features mediating such exceptions remain unknown. Here we show that small RNA production reflecting RNA polymerase IV function within a distal downstream set of five tandem repeats is coincident with meiotically-heritable repression of the Pl1-Rhoades transcription unit. A related pl1 haplotype with three, but not one with two, repeat units also displays the trans-homolog silencing typifying paramutations. 4C interactions, CHD3a-dependent small RNA profiles, nuclease sensitivity, and polyadenylated RNA levels highlight a repeat subregion having regulatory potential. Our comparative and mutant analyses show that transcriptional repression of Pl1-Rhoades correlates with 24-nucleotide RNA production and cytosine methylation at this subregion indicating the action of a specific DNA-dependent RNA polymerase complex. These findings support a working model in which pl1 paramutation depends on trans-chromosomal RNA-directed DNA methylation operating at a discrete cis-linked and copy-number-dependent transcriptional regulatory element.


Assuntos
Alelos , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Sequências de Repetição em Tandem , Zea mays , Zea mays/genética , Metilação de DNA/genética , Sequências de Repetição em Tandem/genética , Mutação , Pigmentação/genética , Haplótipos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
20.
Biochim Biophys Acta Gen Subj ; 1868(7): 130633, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38762030

RESUMO

BACKGROUND: Drought and water stress impose major limitations to crops, including Maize, as they affect the plant biology at multiple levels. Drought activates the cellular signalling machinery to maintain the osmotic and ROS homeostasis for controlling plant response and adaptation to stress. Molecular priming of seeds plays a significant role in imparting stress tolerance by helping plants to remember the stress, which improves their response when they encounter stress again. METHODS: In this study, we examined the effect of priming maize seeds with H2O2 and proline, individually or in combination, on response to drought stress. We investigated the role of molecular priming on the physiological, biochemical and molecular response of maize seedlings during drought stress. RESULTS: We observed that seed-priming played a significant role in mediating stress tolerance of seedlings under drought stress as indicated by changes in growth, biochemical properties, pigment and osmolyte accumulation, antioxidant enzyme activities, gas exchange parameters and gene expression. Seed-priming resulted in reduced expression of specific miRNAs to increase target transcripts associated with synthesis of osmolytes and maintenance of ROS homeostasis for reducing potential damage to the cellular components. CONCLUSIONS: Seed-priming induced changes in the growth, biochemical properties, pigment and osmolyte accumulation, antioxidant enzyme activities, gas exchange parameters and gene expression, though the response was dependent on the genotype, as well as concentration and combination of the priming agents.


Assuntos
Antioxidantes , Secas , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio , Prolina , Plântula , Estresse Fisiológico , Zea mays , Zea mays/metabolismo , Zea mays/genética , Plântula/metabolismo , Peróxido de Hidrogênio/metabolismo , Prolina/metabolismo , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Sementes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA