Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.637
Filtrar
1.
Food Chem ; 462: 140989, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39226641

RESUMO

This study comprehensively investigated the effects of high-temperature cooking (HT), complex enzyme hydrolysis (CE), and high-temperature cooking combined enzymatic hydrolysis (HE) on the chemical composition, microstructure, and functional attributes of soluble dietary fiber (SDF) extracted from corn bran. The results demonstrated that HE-SDF yielded the highest output at 13.80 ± 0.20 g/100 g, with enhancements in thermal stability, viscosity, hydration properties, adsorption capacity, and antioxidant activity. Cluster analysis revealed three distinct categories of SDF's physicochemical properties. Principal component analysis (PCA) confirmed the superior functional properties of HE-SDF. Correlation analysis showed positive relationships between the monosaccharide composition, purity, and viscosity of SDF and most of its functional attributes, whereas particle size and zeta potential were inversely correlated. Furthermore, a highly significant positive correlation was observed between crystallinity and thermal properties. These findings suggest that the HE method constitutes a viable strategy for enhancing the quality of SDF sourced from corn bran.


Assuntos
Fibras na Dieta , Zea mays , Zea mays/química , Fibras na Dieta/análise , Hidrólise , Viscosidade , Análise Multivariada , Temperatura Alta , Tamanho da Partícula , Antioxidantes/química , Culinária , Solubilidade
2.
Food Chem ; 462: 140953, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39216374

RESUMO

The study examined the antihypertensive effect of peptides derived from pepsin-hydrolyzed corn gluten meal, namely KQLLGY and PPYPW, and their in silico gastrointestinal tract digested fragments, KQL and PPY, respectively. KQLLGY and PPYPW showed higher angiotensin I-converting enzyme (ACE)-inhibitory activity and lower ACE inhibition constant (Ki) values when compared to KQL and PPY. Only KQL showed a mild antihypertensive effect in spontaneously hypertensive rats with -7.83 and - 5.71 mmHg systolic and diastolic blood pressure values, respectively, after 8 h oral administration. During passage through Caco-2 cells, KQL was further degraded to QL, which had reduced ACE inhibitory activity. In addition, molecular dynamics revealed that the QL-ACE complex was less stable compared to the KQL-ACE. This study reveals that structural transformation during peptide permeation plays a vital role in attenuating antihypertensive effect of the ACE inhibitor peptide.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Anti-Hipertensivos , Peptidil Dipeptidase A , Zea mays , Animais , Humanos , Masculino , Ratos , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Células CACO-2 , Digestão/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Glutens/química , Glutens/metabolismo , Hidrólise , Hipertensão/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Peptídeos/química , Peptídeos/farmacologia , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacologia , Ratos Endogâmicos SHR , Zea mays/química , Zea mays/metabolismo
3.
Mikrochim Acta ; 191(10): 588, 2024 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256210

RESUMO

Different morphological Cu2O nanoparticles including cube, truncated cube, and octahedron were successfully prepared by a selective surface stabilization strategy. The prepared cube Cu2O exhibited superior peroxidase-like activity over the other two morphological Cu2O nanoparticles, which can readily oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to form visually recognizable color signals. Consequently, a sensitive and simple colorimetric biosensor was proposed for deoxynivalenol (DON) detection. In this biosensor, the uniform cube Cu2O was employed as the vehicle to label the antibody for the recognition of immunoreaction. The sensing strategy showed a detection limit as low as 0.01 ng/mL, and a wide linear range from 2 to 100 ng/mL. Concurrently, the approximate DON concentration can be immediately and conveniently observed by the vivid color changes. Benefiting from the high sensitivity and selectivity of the designed biosensor, the detection of DON in wheat, corn, and tap water samples was achieved, suggesting the bright prospect of the biosensor for the convenient and intuitive detection of DON in actual samples.


Assuntos
Benzidinas , Técnicas Biossensoriais , Colorimetria , Cobre , Limite de Detecção , Nanopartículas Metálicas , Tricotecenos , Zea mays , Tricotecenos/análise , Tricotecenos/imunologia , Colorimetria/métodos , Cobre/química , Técnicas Biossensoriais/métodos , Benzidinas/química , Zea mays/química , Nanopartículas Metálicas/química , Triticum/química , Peroxidase/química , Anticorpos Imobilizados/imunologia , Contaminação de Alimentos/análise
4.
PLoS One ; 19(9): e0308627, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39292664

RESUMO

Maize silage serves as a significant source of energy and fibre for the diets of dairy and beef cattle. However, the quality of maize silage is contingent upon several crucial considerations, including dry matter loss, fermentative profile, pH level, ammonia content, and aerobic stability. These aspects are influenced by a multitude of factors and their interactions, with seasonality playing a crucial role in shaping silage quality. In this study an open-source database was utilised to assess the impact of various pre-ensiling circumstances, including the diversity of the chemical composition of the freshly harvested maize, on the silage quality. The findings revealed that seasonality exerts a profound influence on maize silage quality. Predictive models derived from the composition of freshly harvested maize demonstrated that metrics were only appropriate for screening purposes when utilizing in-field sensor technology. Moreover, this study suggests that a more comprehensive approach, incorporating additional factors and variability, is necessary to better elucidate the determinants of maize silage quality. To address this, combining data from diverse databases is highly recommended to enable the application of more robust algorithms, such as those from machine learning or deep learning, which benefit from large data sets.


Assuntos
Silagem , Zea mays , Zea mays/química , Silagem/análise , Bovinos , Estações do Ano , Animais , Concentração de Íons de Hidrogênio
5.
An Acad Bras Cienc ; 96(suppl 1): e20231255, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39319941

RESUMO

This study examined the effects of wheat and corn gluten added to lamb diets as a unilateral protein source on some microbial and chemical properties of Musculus Longismus dorsi (LD), determination of intramuscular and tail fat profile. It was found that TBARS levels in LD muscle on the days of storage were highest in the wheat gluten-treated groups (p<0.01). It was found that the changes in pH values in LD muscle were different on days (p<0.05). It was found that the change of L*, a ve b values on days differed between groups during the storage period (p<0.05). It was found that the numbers of TMAB, Enterobacteriaceae, Lactobacillus spp., Pseudomonas spp. and TPAB changed significantly (p<0.05) during the storage process. While a significant difference was found between the MUFA levels of dorsal muscle intramuscular adipose tissue of the groups (p<0.05). As a result, it was determined that the metabolic differences of the one-way protein sources fed to the lambs in the digestive system and other organs had an effect on the meat quality, intramuscular fat and fatty acid profile of the tail.


Assuntos
Ração Animal , Ácidos Graxos , Glutens , Músculo Esquelético , Triticum , Zea mays , Animais , Zea mays/química , Triticum/química , Ácidos Graxos/análise , Músculo Esquelético/química , Ovinos , Glutens/análise , Ração Animal/análise , Cauda , Carne/análise , Concentração de Íons de Hidrogênio
6.
Mikrochim Acta ; 191(10): 594, 2024 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264373

RESUMO

A sandwich electrochemical sensor was fabricated based on multi-walled carbon nanotubes/ordered mesoporous carbon/AuNP (MWCNTs/CMK-3/AuNP) nanocomposites and porous core-shell nanoparticles Au@PdNPs to achieve rapid and sensitive detection of AFB1 in complex matrices. MWCNTs/CMK-3/AuNP nanocomposite, which was prepared by self-assembly method, served as a substrate material to increase the aptamer loading and improve the conductivity and electrocatalytic activity of the electrode for the first signal amplification. Then, Au@PdNPs, which were synthesized by one-pot aqueous phase method, were applied as nanocarriers loaded with plenty of capture probe antibody (Ab) and signal molecule toluidine blue (Tb) to form the Au@PdNPs-Ab-Tb bioconjugates for secondary signal amplification. The sensing system could still significantly improve the signal output intensity even in the presence of ultra-low concentration target compound due to the dual signal amplification of MWCNTs/CMK-3/AuNP nanocomposites and Au@PdNPs-Ab-Tb. The method exhibited high selectivity, low detection limit (9.13 fg/mL), and strong stability to differentiate AFB1 from other mycotoxins. Furthermore, the sensor has been successfully applied to the quantitative determination of AFB1 in corn, malt, and six herbs, which has potential applications in food safety, quality control, and environmental monitoring.


Assuntos
Aflatoxina B1 , Técnicas Eletroquímicas , Ouro , Limite de Detecção , Nanopartículas Metálicas , Nanotubos de Carbono , Paládio , Ouro/química , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Paládio/química , Aflatoxina B1/análise , Aflatoxina B1/imunologia , Nanotubos de Carbono/química , Técnicas Biossensoriais/métodos , Anticorpos Imobilizados/imunologia , Nanocompostos/química , Aptâmeros de Nucleotídeos/química , Contaminação de Alimentos/análise , Zea mays/química , Eletrodos
7.
Molecules ; 29(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39274945

RESUMO

Considering that maize (Zea mays L.) is a staple food for a large segment of the population worldwide, many attempts have been made to improve the nutritional value of its grain and at the same time to achieve sustainable cropping systems. The present study aimed to characterize the composition and nutritional value of maize grain as influenced by cropping system, genetic background (variety), and growing year using untargeted NMR metabolomics. The composition of both water- (sugars and polyols, organic acids, and amino acids) and liposoluble metabolites (free and esterified fatty acids, sterols, and lipids) extracted from the maize grain was determined. Multivariate statistical analyses (PCA and ANOVA) pointed to the growing year and the variety as the most important random and fixed factors, respectively, influencing the metabolite profile. The samples were separated along PC1 and PC3 according to the growing year and the variety, respectively. A higher content of citric acid and diunsaturated fatty acids and a lower content of tyrosine, trigonelline, and monounsaturated fatty acids was observed in the organic with respect to the conventional variety. The effect of the cropping system was overwhelmed by the random effect of the growing year. The results provide novel knowledge on the influence of agronomic practices on maize micronutrient contents.


Assuntos
Espectroscopia de Ressonância Magnética , Metabolômica , Zea mays , Zea mays/metabolismo , Zea mays/crescimento & desenvolvimento , Zea mays/química , Espectroscopia de Ressonância Magnética/métodos , Metabolômica/métodos , Grão Comestível/metabolismo , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/química , Ácidos Graxos/metabolismo , Ácidos Graxos/análise , Metaboloma , Aminoácidos/metabolismo , Aminoácidos/análise , Valor Nutritivo
8.
Food Res Int ; 195: 114977, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39277242

RESUMO

Maize zein based nanoparticles (ZNPs) can have applications as food dispersion stabilizers. It has not been documented to what extent the used zein isolation method and conditions thereof impact the structure and functionality of nanoparticles (NPs) based thereupon. Here, zein extracted from maize flour on lab scale (LS-zein) was compared with a commercial zein powder (CS-zein). On a dry matter basis, CS-zein contained 96.5% protein, while LS-zein contained 74.5% protein, 12.7% lipid, 2.9% ash, and a residual fraction, likely starch remnants. SE-HPLC analysis showed that 27.8% of CS-zein protein occurred in an aggregated and insoluble form, while LS-zein mainly contained mono-/dimeric proteins but also approximately 30% hydrophilic peptides. These differences resulted in notably different behavior in the functionality of ZNPs based on CS- and LS-zein (CS-ZNPs and LS-ZNPs, respectively) produced via liquid antisolvent precipitation. CS-ZNPs had poor foaming properties regardless of the pH, in line with their low interfacial dilatational moduli (12.9-15.0 mN/m). The foaming properties of LS-ZNPs were notably better. The high LS-ZNP foam stability (FS) at pH 8.0 and 10.0 was attributed to electrostatic repulsive effects between interfaces of adjacent air bubbles due to the adsorption of peptides and to synergistic protein-lipid interaction effects at the air-water interface. The LS-ZNP FS at pH 4.0 was low despite a high interfacial dilatational modulus (52.6 mN/m). It is hypothesized that intact LS-ZNPs in the liquid thin films between gas bubbles negatively affect FS by a bridging de-wetting effect. Overall, it can be concluded that the (partial) co-isolation of lipids with zein may positively influence foaming properties of NPs based thereupon, while extensive zein purification as applied in industrial zein isolation leads to (partial) zein aggregation and overall low foaming capacity of the obtained CS-ZNPs.


Assuntos
Nanopartículas , Água , Zea mays , Zeína , Zeína/química , Zea mays/química , Nanopartículas/química , Água/química , Ar , Farinha/análise , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula
9.
PeerJ ; 12: e17984, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39247545

RESUMO

Background: Sequestering carbon dioxide (CO2) in agricultural soils promises climate change mitigation as well as sustainable ecosystem services. In order to stabilize crop residues as soil carbon (C), addition of mineral nutrients in excess to crop needs is suggested as an inevitable practice. However, the effect of two macronutrients i.e., nitrogen (N) & phosphorus (P), on C cycling has been found contradictory. Mineral N usually decreases whereas mineral P increases the soil organic C (SOC) mineralization and microbial biomass. How the addition of these macronutrients in inorganic form to an organic-matter poor soil affect C cycling remains to be investigated. Methods: To reconcile this contradiction, we tested the effect of mineral N (120 kg N ha-1) and/or P (60 kg N ha-1) in presence or absence of maize litter (1 g C kg-1 soil) on C cycling in an organic-matter poor soil (0.87% SOC) in a laboratory incubation. Soil respiration was measured periodically during the incubation whereas various soil variables were measured at the end of the incubation. Results: Contrary to literature, P addition stimulated soil C mineralization very briefly at start of incubation period and released similar total cumulative CO2-C as in control soil. We attributed this to low organic C content of the soil as P addition could desorb very low amounts of labile C for microbial use. Adding N with litter built up the largest microbial biomass (144% higher) without inducing any further increase in CO2-C release compared to litter only addition. However, adding P with litter did not induce any increase in microbial biomass. Co-application of inorganic N and P significantly increased C mineralization in presence (19% with respect to only litter amended) as well as absence (41% with respect to control soil) of litter. Overall, our study indicates that the combined application of inorganic N and P stabilizes added organic matter while depletes the already unamended soil.


Assuntos
Nitrogênio , Fósforo , Microbiologia do Solo , Solo , Solo/química , Fósforo/química , Nitrogênio/metabolismo , Dióxido de Carbono/farmacologia , Biomassa , Ciclo do Carbono , Carbono/metabolismo , Agricultura/métodos , Zea mays/química , Fertilizantes/análise
10.
Carbohydr Polym ; 346: 122628, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245529

RESUMO

The traditional lignocellulose pretreatment by deep eutectic solvent (DES) was usually conducted under higher acidic, alkaline and high temperature conditions, which leads to the severe degradation of xylan, decreasing the subsequent reducing sugar concentration by enzymatic hydrolysis and further ethanol fermentation. It is essential to develop an effective DES that selectively removes lignin while preventing excessive xylan degradation during lignocellulose pretreatment. An effective ethylene glycol-assisted ternary DES was designed to treat corn straw (CS) at 100 °C for 6 h. 65.51 % lignin removal was achieved, over 93.46 % cellulose and 50.22 % xylan were retained in pretreated CS with excellent enzymatic digestibility (glucan conversion of 77.05 % and xylan conversion of 71.72 %), total sugar conversion could reach 75.93 %, implying the unique capacity to selectively remove lignin while preserving carbohydrate components. Furthermore, the universality of the selective removal of lignin and effective retention of xylan by ternary DES has been successfully proven by other polyols. The enzymatic hydrolysate of ternary DES-pretreated CS fermented over our genetically engineered yeast strain SFA1OE gave a high ethanol yield of 0.488 g/g total reducing sugar, demonstrating the effectiveness of the polyol-assisted ternary DES pretreatment in achieving high-efficiency cellulosic ethanol production.


Assuntos
Solventes Eutéticos Profundos , Etanol , Fermentação , Lignina , Xilanos , Zea mays , Lignina/química , Etanol/química , Etanol/metabolismo , Xilanos/química , Hidrólise , Zea mays/química , Solventes Eutéticos Profundos/química , Polímeros/química , Saccharomyces cerevisiae/metabolismo , Celulose/química , Solventes/química
11.
J Hazard Mater ; 478: 135613, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39180994

RESUMO

This investigation explored the potential of utilizing alkali-treated corn cob (CC) as a solid carbon source to improve NOX and SO2 removal from flue gas. Leaching experiments unveiled a hierarchy of chemical oxygen demand release capacity: 0.03 mol/L alkali-treated CC > 0.02 mol/L > 0.01 mol/L > 0.005 mol/L > control. In NOX and SO2 removal experiments, as the inlet NOX concentration rose from 300 to 1000 mg/m3, the average NOX removal efficiency increased from 58.56 % to 80.00 %. Conversely, SO2 removal efficiency decreased from 99.96 % to 91.05 %, but swiftly rebounded to 98.56 % by day 18. The accumulation of N intermediates (NH4+, NO3-, NO2-) increased with escalating inlet NOX concentration, while the accumulation of S intermediates (SO42-, SO32-, S0) varied based on shifts in the population of functional bacteria. The elevation in inlet NOX concentration stimulated the growth of denitrifying bacteria, enhancing NOX removal efficiency. Concurrently, the population of nitrate-reducing sulfur-oxidizing bacteria and sulfate-reducing bacteria expanded, aiding in the accumulation of S0 and the removal of SO2. The comparison experiments on carbon sources confirmed the comparable NOX and SO2 removal efficiencies of alkali-treated CC and glucose, yet underscored differences in intermediates accumulation due to distinct genus structures.


Assuntos
Poluentes Atmosféricos , Álcalis , Carbono , Dióxido de Enxofre , Zea mays , Zea mays/química , Dióxido de Enxofre/química , Carbono/química , Poluentes Atmosféricos/química , Álcalis/química , Óxidos de Nitrogênio/química , Análise da Demanda Biológica de Oxigênio
12.
Biomacromolecules ; 25(9): 5938-5948, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39148453

RESUMO

Eco-friendly materials like carbohydrate-based polymers are important for a sustainable future. Starch is particularly promising because of its biodegradability and abundance but its processing to thermoplastic starch requires optimization. Here we developed thermoplastic maize starch materials based on three manufacturing protocols, namely: (1) starch/glycerol manual mixing and extrusion, (2) starch/glycerol manual mixing, extrusion, and kneading, (3) starch/glycerol/water manual mixing and kneading. The physical properties were investigated by differential scanning calorimetry, thermogravimetric analysis, and broadband dielectric spectroscopy. As expected from a partially miscible blend, the dielectric spectra revealed two distinct α-relaxations for the glycerol-rich and the starch-rich phases, respectively. By employing kneading after extrusion, the miscibility between the two phases was found to improve based on thermal and dielectric methods. Moreover, the addition of water during the premixing stage was observed to facilitate phase separation between starch and glycerol, with the α-relaxation dynamics of the latter being comparable to pure glycerol.


Assuntos
Glicerol , Amido , Zea mays , Amido/química , Glicerol/química , Zea mays/química , Água/química , Varredura Diferencial de Calorimetria , Termogravimetria , Temperatura
13.
Biomacromolecules ; 25(9): 6007-6016, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39207087

RESUMO

Two multimodular endoglucanases in glycoside hydrolase family 5, ReCel5 and ElCel5, share 73% identity and exhibit similar modular structures: family 1 carbohydrate-binding module (CBM1); catalytic domain; CBMX2; module of unknown function. However, they differed in their biochemical properties and catalytic performance. ReCel5 showed optimal activity at pH 4.0 and 70 °C, maintaining stability at 70 °C (>80% activity). Conversely, ElCel5 is optimal at pH 3.0 and 50 °C (>50% activity at 50 °C). ElCel5 excels in degrading CMC-Na (256 U/mg vs 53 U/mg of ReCel5). Five domain-truncated (TM1-TM5) and four domain-replaced (RM1-RM4) mutants of ReCel5 with the counterparts of ElCel5 were constructed, and their enzymatic properties were compared with those of the wild type. Only RM1, with ElCel5-CBM1, displayed enhanced thermostability and activity. The hydrolysis of pretreated corn stover was reduced in most TM and RM mutants. Molecular dynamics simulations revealed interdomain interactions within the multimodular endoglucanase, potentially affecting its structural stability and complex biological catalytic processes.


Assuntos
Celulase , Hidrólise , Celulase/química , Celulase/metabolismo , Celulase/genética , Celulose/metabolismo , Celulose/química , Domínios Proteicos , Domínio Catalítico , Especificidade por Substrato , Zea mays/química , Simulação de Dinâmica Molecular , Estabilidade Enzimática
14.
Food Chem ; 460(Pt 3): 140593, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39111046

RESUMO

Zearalenone contaminates food and poses a threat to human health. It is vital to develop cost-effective and environmentally-friendly adsorbents for its removal. By screening Sporobolomyces pararoseus (SZ4) and modified yam starch (adsorption capacity (qe) of 1.33 and 0.94 mg/g, respectively), this study prepared a novel composite aerogel adsorbent (P-YSA@SZ410). The compressive strength of P-YSA@SZ410 was 1.35-fold higher than unloaded yeast. It contained several functional groups and three-dimensional interconnected channels, achieving a 0° contact angle within 0.18 s, thereby demonstrating excellent water-absorbent properties. With a qe of 2.96 mg/g at 308 K, the adsorption process of P-YSA@SZ410 was spontaneous, endothermic, and matched pseudo-second-order and Langmuir models. The composite adsorbed zearalenone via electrostatic attraction and hydrogen bonding, maintaining a qe of 2.24 mg/g after five cycles. P-YSA@SZ410 was found to remove zearalenone effectively under various conditions and could be applied to corn silk tea, indicating its great potential as an adsorbent material.


Assuntos
Amido , Zea mays , Zearalenona , Zearalenona/química , Amido/química , Zea mays/química , Adsorção , Dioscorea/química , Contaminação de Alimentos/análise , Porosidade , Basidiomycota/química , Géis/química , Cinética
15.
Int J Biol Macromol ; 277(Pt 4): 134552, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39116966

RESUMO

In this study, maize starch (A-type) and potato starch (B-type) were treated with ultrahigh magnetic fields (UMF) of different intensities (5 T and 15 T) to investigate their sensitivity to UMF by measuring changes in their structure and rheological properties. The results indicate that the crystallinity of A-type starch significantly decreases, reaching a minimum of 20.01 % at 5 T. In contrast, the crystallinity of B-type starch significantly increases, peaking at 21.17 % at 15 T, accompanied by a brighter polarized cross and a more perfect crystal structure. Additionally, B-type starch exhibited a significant increase in double helix content (from 32.67 % to 42.07 %), branching degree (from 1.96 % to 3.84 %), and R1022/995 (from 0.803 to 0.519), compared to A-type starch. B-type starch also showed a greater propensity for cross-linking reactions forming OCOR groups (from 0 % to 6.81 %), and its enthalpy change (∆H) increased substantially (from 19.28 J/g to 31.70 J/g), indicating a marked enhancement in thermal stability. Furthermore, the average hydrodynamic radius (Rh) decreased more for B-type starch, reflecting an increase in gel strength. These findings demonstrate that B-type starch is more sensitive to UMF than A-type starch. This study provides foundational data on the effects of UMF treatment on different crystalline starches, aiming to explore its potential applications in food and industrial fields.


Assuntos
Campos Magnéticos , Solanum tuberosum , Amido , Zea mays , Amido/química , Solanum tuberosum/química , Zea mays/química , Cristalização , Reologia
16.
Bioresour Technol ; 412: 131387, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39214180

RESUMO

Due to the serious threat posed by tebuconazole to the aquatic ecosystem, it is imperative to develop a highly efficient adsorbent material for the sustainable remediation of tebuconazole-contaminated water. Herein, a phosphorus (P)-doped biochar from corn straw and H3PO4 was fabricated by one-step pyrolysis for tebuconazole adsorption. Results showed that the P-doped biochar produced at 500℃ (PBC500) possesses a large specific surface area (SSA=869.6 m2/g), abundant surface functional groups, and the highest tebuconazole adsorption capacity (429.6 mg/g). The adsorption of tebuconazole on PBC500 followed pseudo-second-order kinetics and Langmuir adsorption isotherm models. Thermodynamic calculations indicated that the adsorption of tebuconazole by PBC500 was a spontaneous, endothermic process with a random increase. Adsorption mechanism mainly involves pore filling, π-π interactions, hydrogen bonding, and hydrophobic interaction. Moreover, PBC500 demonstrated robust anti-interference capabilities in adsorbing tebuconazole from diverse water sources and exhibited excellent reusability, underscoring its potential for a broad array of practical applications.


Assuntos
Carvão Vegetal , Triazóis , Poluentes Químicos da Água , Zea mays , Zea mays/química , Carvão Vegetal/química , Triazóis/química , Adsorção , Poluentes Químicos da Água/isolamento & purificação , Cinética , Purificação da Água/métodos , Termodinâmica , Fósforo , Soluções , Concentração de Íons de Hidrogênio
17.
Bioresour Technol ; 412: 131395, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39216699

RESUMO

The increasing production of industrial solid waste requires better disposal solutions. Porous hollow microspheres (PHM) are small inorganic materials with high surface area and adsorption capacity, but their potential for use in anaerobic digestion (AD) has not been explored. With PHM as additive, the effects of different industrial solid wastes (waste glass, steel slag, and fly ash) with different loadings (2 %-8 %), respectively, on the AD of corn straw were investigated in this study. The results showed that PHM could supplement trace elements and promote biofilm formation, which effectively shortened the lag period (25.00-60.87 %) and increased the methane yield (4.75 %-16.28 %). The 2 % PHM loading based on steel slag gave the highest methane yield (300.16 NmL/g VSadd). Microbial and PICRUSt2 analyses indicated that PHM enriched hydrolytic and acidogenic bacteria, increased the abundance of methanogenesis-related enzyme genes. This study provides a theoretical basis for the comprehensive utilization of coupled industrial and agricultural wastes.


Assuntos
Resíduos Industriais , Metano , Microesferas , Zea mays , Zea mays/química , Metano/metabolismo , Porosidade , Anaerobiose , Biocombustíveis , Biofilmes
18.
Int J Biol Macromol ; 278(Pt 1): 134403, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39094882

RESUMO

This study evaluated the influence of the amylose and amylopectin on the physicochemical properties and printing performance of corn starch gels. Amylose in starch-based gels enhances their storage modulus and the support performance of printed products by promoting the formation of cross-linked gel structures and crystalline structures. However, the higher amylose content in starch gels makes extrusion difficult, resulting in intermittent extrusion in 3D printing. Despite the increased shear-thinning ability of high-amylose starch, its low water retention capacity leads to water loss and rough printed morphology. Additionally, starch with 72 % amylose content exhibits insufficient adhesive properties for effective layer bonding, negatively impacting structural integrity. While gels with 72 % and 56 % amylose content demonstrate higher viscosity and enhanced mechanical properties, their poor adhesion limits the quality of printed layers. Conversely, waxy starch gel demonstrates continuous extrusion and adhesion but lacks adequate support. The 27 % corn starch gel achieves the highest 3D printing accuracy at 88.12 %, suggesting an optimal amylose-amylopectin ratio for desired ink material performance. These findings enhance our understanding of the relationship between amylose content in starch and 3D printing performance, providing a theoretical basis for the development of starch-based printing products.


Assuntos
Amilopectina , Amilose , Impressão Tridimensional , Reologia , Amido , Zea mays , Amilose/química , Amilopectina/química , Amido/química , Zea mays/química , Viscosidade , Géis/química
19.
Food Chem ; 461: 140817, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39146682

RESUMO

This study examined multi-scale structural alterations of maize starches varying in amylose content during pasting and gelation, using Rapid Visco Analyser (RVA). At 50 °C, starch granules maintained their morphology with low viscosity. As the temperature increased to 95 °C, helical and crystal structures were destroyed, leading to granule swelling, distortion and porosity, as identified by Wide Angle X-ray Scattering and Fourier Transforms Infrared measurements at 90% moisture. This resulted in increased viscosity and the formation of a loose gel network structure. Subsequently, maintaining the temperature at 95 °C caused a decrease in viscosity as most granules disappeared, forming a reorganized flaky gel structure with larger pores. As the temperature decreased, gel porosity reduced. In high amylose content starch, the viscosity remained low and granules were partially gelatinized since the heating temperature was below the gelatinization temperature. This study is the first to detail starch multilevel structural dynamics during RVA gelatinization.


Assuntos
Amilose , Géis , Amido , Zea mays , Zea mays/química , Amilose/química , Amido/química , Viscosidade , Géis/química , Temperatura Alta
20.
Food Chem ; 461: 140828, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39151347

RESUMO

A refined electrochemical aptamer sensing technique using PEI@Ti-MOF@Ti3C2Tx-MXene was developed for the sensitive detection of ZEN in food samples. A titanium-based metal-organic skeleton (NH2-MIL-125) was synthesized in situ using 2-aminoterephthalic acid as the organic ligand and tetrabutyl titanate as the metal center, followed by the simultaneous hybridization of Ti3C2Tx-MXene to synthesize a Ti-MOF@Ti3C2Tx-MXene composite material. These composites were subsequently functionalized with PEI and covalently linked to form a sensing platform on gold electrodes. Integrating a metal-organic framework (MOF) with MXene materials not only improved the electrochemical properties compared to those of individual elements but also decreased the stacking effect and increased the number of binding sites for the aptamer. The limit of detection (LOD) of this sensor was 1.64 fg mL-1. Additionally, the sensor could efficaciously detect ZEN in cornmeal and beer samples, exhibiting outstanding stability, reproducibility, and selectivity. This highlighted its effectiveness in applications in quality supervision and food safety.


Assuntos
Aptâmeros de Nucleotídeos , Cerveja , Técnicas Eletroquímicas , Contaminação de Alimentos , Limite de Detecção , Estruturas Metalorgânicas , Titânio , Zearalenona , Titânio/química , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Aptâmeros de Nucleotídeos/química , Zearalenona/análise , Estruturas Metalorgânicas/química , Contaminação de Alimentos/análise , Cerveja/análise , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Zea mays/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...