Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros












Intervalo de ano de publicação
1.
Food Res Int ; 192: 114745, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147551

RESUMO

Chinese sour jujube is an important fruit for both medicine and food and effects various biological activities. Although the Chinese sour jujube seed (Ziziphi spinosae semen) is rich in oil, its lipid profiles is significantly affected by the extraction process. However, no studies to date have comprehensively analysed the lipid composition and bioactivity of Ziziphi spinosae semen oil processed using different methods. In this study, we compared the effects of commonly-used pressed, ultrasonic-assisted, and Soxhlet extraction methods on the lipid composition, characteristics, and antioxidant properties of Ziziphi spinosae semen oil. Nineteen subclasses and 390 lipid molecular species were identified, of which 24 lipid molecular species could potentially be used as biomarkers for different processing methods. Correlation analysis revealed that 57 lipids were significantly correlated with the antioxidant capacity (r > 0.9 and P < 0.05). These results indicate that Ziziphi spinosae semen oil is rich in bioactive lipids. These data greatly expand our understanding of the bioactive lipids of Ziziphi spinosae semen oil. Additionally, it could provide useful information for Ziziphi spinosae semen oil applications in functional products or the food industry and new insights into the effects of active vegetable oil processing.


Assuntos
Antioxidantes , Lipídeos , Óleos de Plantas , Sementes , Ziziphus , Antioxidantes/análise , Antioxidantes/química , Ziziphus/química , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Sementes/química
2.
Sci Rep ; 14(1): 18943, 2024 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147808

RESUMO

In the Loess Plateau, the impact of abandoned farmland on soil properties and enzyme activity, along with its temporal variations and potential driving factors, remains a mystery. This study was designed to systematically and comprehensively examine the variations in soil enzyme activities, particle size distribution, and stability of soil aggregates at different stages of ecological recovery in the Loess Plateau. Our findings reveal a nuanced temporal pattern: with the progression of cropland abandonment, there is a notable decrease in soil bulk density. Concurrently, a dynamic trend in enzyme activities is observed-initially exhibiting a decline, followed by an increase over extended periods of recovery. Notably, prolonged abandonment leads to marked enhancements in soil structure. Parameters such as the mean weight diameter (MWD) and geometric mean diameter (GMD) of soil aggregates show an overall increasing trend. In terms of the Relative Dissipation Index (RSI), our data indicate a sequence of control > 2 years of abandonment > 4 years > 6 years > 14 years. From this, it can be seen that fallowing may be an effective natural restoration strategy for improving the physical structure of soils in the Loess Plateau and restoring soil nutrients. However, positive changes may take a long time to become evident.


Assuntos
Solo , Ziziphus , Solo/química , Ziziphus/química , Agricultura/métodos , Tamanho da Partícula , China
3.
J Diabetes Complications ; 38(9): 108804, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096769

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a common metabolic disease characterized by insulin resistance and insufficient relative insulin secretion, leading to elevated blood sugar and the development of diabetic complications. T2DM not only seriously affects people's health and quality of life, but also brings a heavy burden to society and economy. At present, the treatment of T2DM mainly relies on drug therapy, but these drugs often have problems such as side effects, resistance and high cost, and can not fully meet the needs and expectations of patients. Therefore, it is of great significance and value to find safe and effective natural medicines or functional foods to assist the treatment and prevention of T2DM. OBJECTIVE: Chinese jujube are a common fruit that contain abundant polyphenolic compounds, which exhibit multiple physiological activities, such as antioxidation, anti-inflammation, and blood glucose lowering. The objective of this study was to explore the impact of red date polyphenols on glycemic control and oxidative stress status in patients with type 2 diabetes mellitus (T2DM).


Assuntos
Glicemia , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Estresse Oxidativo , Polifenóis , Ziziphus , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/sangue , Animais , Ziziphus/química , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Glicemia/análise , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/metabolismo , Ratos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Frutas/química , Fitoterapia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/farmacologia , Ratos Sprague-Dawley , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Humanos , População do Leste Asiático
4.
Sensors (Basel) ; 24(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39123902

RESUMO

The intelligent harvesting technology for jujube leaf branches presents a novel avenue for enhancing both the quantity and quality of jujube leaf tea, whereas the precise detection technology for jujube leaf branches emerges as a pivotal factor constraining its development. The precise identification and localization of jujube leaf branches using real-time object detection technology are crucial steps toward achieving intelligent harvesting. When integrated into real-world scenarios, issues such as the background noise introduced by tags, occlusions, and variations in jujube leaf morphology constrain the accuracy of detection and the precision of localization. To address these issues, we describe a jujube leaf branch object detection network based on YOLOv7. First, the Polarized Self-Attention module is embedded into the convolutional layer, and the Gather-Excite module is embedded into the concat layer to incorporate spatial information, thus achieving the suppression of irrelevant information such as background noise. Second, we incorporate implicit knowledge into the Efficient Decoupled Head and replace the original detection head, enhancing the network's capability to extract deep features. Third, to address the issue of imbalanced jujube leaf samples, we employ Focal-EIoU as the bounding box loss function to expedite the regression prediction and enhance the localization accuracy of the model's bounding boxes. Experiments show that the precision of our model is 85%, which is increased by 3.5% compared to that of YOLOv7-tiny. The mAP@0.5 value is 83.7%. Our model's recognition rate, recall and mean average precision are superior to those of other models. Our method could provide technical support for yield estimation in the intelligent management of jujube orchards.


Assuntos
Agricultura , Folhas de Planta , Robótica , Ziziphus , Ziziphus/fisiologia , Agricultura/métodos , Algoritmos , Redes Neurais de Computação
5.
PeerJ ; 12: e17458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948231

RESUMO

In a jujube orchard, cropping withgrass may influence bacterial diversity and ecological networks due to changes of physicochemical properties in soil, which has a serious effect on the stability of soil ecosystems. The aim of this study was to analyze the effects of different cultivation methods (CK: cleaning tillage; NG: cropping with native grass; VV: cropping with Vicia villosa) on the soil's bacterial structure and its co-occurrence network in a jujube orchard. The results showed that the highest moisture content, total nitrogen, and organic matter in the rhizosphere soil of a jujube orchard was found in the VV group. The soil's moisture content, total nitrogen, and organic matter in the VV group were 2.66%, 0.87 g kg-1, and 5.55 mg kg-1 higher than that found in the CK group. Compared to the CK group, the number of unique species in the rhizosphere soil in the NG and the VV groups increased by 7.33% and 21.44%. The PICRUSt and FAPROTAX analysis showed that sown grass had a greater influence on the ecological function of the soil's bacteria. Cropping with Vicia villosa and native grass significantly increased aerobic chemoheterotrophy, nitrogen respiration, nitrate reduction related to biochemical cycles, and the relative abundance of genes related to carbohydrate metabolism and the biodegradation of xenobiotics. The bacterial network complexity in the NG group was higher than that in the CK and VV groups and was greatest in the hub nodes (OTU42, Bacteroidota; OTU541, Nitrospiraceae). In this study, the ecological benefit seen in the soil's microbial function provides support to the theory that cropping with grass (Vicia villosa) increases the sustainable development of a jujube orchard.


Assuntos
Rizosfera , Microbiologia do Solo , Vicia , Ziziphus , Vicia/microbiologia , Solo/química , Poaceae/microbiologia , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação
6.
Sci Rep ; 14(1): 15263, 2024 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961089

RESUMO

Ziziphi Spinosae Semen (ZSS) is the first choice for the treatment of insomnia. This research aimed to reveal the spatial distribution of identifying quality markers of ZSS and to illustrate the metabolite quality characteristics of this herbal medicine. Here, we performed a matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) in situ to detect and image 33 metabolites in ZSS, including three saponins, six flavonoids, four alkaloids, eight fatty acids, and 12 amino acids. The MALDI images of the metabolites clearly showed the heterogeneous spatial distribution in different regions of ZSS tissues, such as the cotyledon, endosperm, and radicle. The distribution area of two saponins, six flavonoids, and three alkaloids increased significantly after the fried processing of ZSS. Based on the ion images, samples with different processing technologies were distinguished unambiguously by the pattern recognition method of orthogonal partial least squares discrimination analysis (OPLS-DA). Simultaneously, 23 major influencing components exerting higher ion intensities were identified as the potential quality markers of ZSS. Results obtained in the current research demonstrate that the processing of ZSS changes its content and distribution of the medicinal components. The analysis of MALDI-MSI provides a novel MS-based molecular imaging approach to investigate and monitor traditional medicinal plants.


Assuntos
Flavonoides , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ziziphus , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Ziziphus/química , Ziziphus/metabolismo , Flavonoides/análise , Flavonoides/metabolismo , Saponinas/análise , Saponinas/metabolismo , Alcaloides/análise , Alcaloides/metabolismo , Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/metabolismo
7.
Molecules ; 29(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39065014

RESUMO

Jujube (Ziziphus jujuba Mill.) is the first tree species in China, with a long history and abundant yield. However, fresh jujubes have a short shelf-life and are not resistant to storage. Therefore, more and more processed jujube products are being studied. These processed products can extend the shelf-life of jujubes and attract widespread attention for their rich functional nutrients. This review summarized changes in nutrients of fresh jujube and processed products and the research progress of different preparation methods of jujubes. Meanwhile, the pharmacological effects of bioactive components in jujube-based products were concluded. Jujube and its processed products contain rich polysaccharides, vitamin C, and other functional nutrients, which are beneficial to humans. As the initial processing method for jujubes, vacuum freezing or microwave drying have become the most commonly used and efficient drying methods. Additionally, processed jujube products cannot be separated from the maximum retention of nutrients and innovation of flavor. Fermentation is the main deep-processing method with broad development potential. In the future, chemical components and toxicological evaluation need to be combined with research to bring consumers higher quality functional jujube products and ensure the sustainable development of the jujube industry.


Assuntos
Ziziphus , Ziziphus/química , Manipulação de Alimentos/métodos , Nutrientes/análise , Extratos Vegetais/química , Ácido Ascórbico/análise , Ácido Ascórbico/química , Humanos , Polissacarídeos/química , Fermentação
8.
Food Res Int ; 191: 114742, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059929

RESUMO

The molecular mechanism underlying the preserving superior quality attributes of postharvest Huping jujube fruit by combining acidic electrolyzed water and high-voltage electrostatic field (AH) treatment remained unclear. The high-throughput sequencing analysis revealed a total of 3590 common differentially expressed genes (DEGs) in the T-W-CK0 vs T-W-CK75 and T-W-CK75 vs T-W-AH75 groups. AH treatment down-regulated most genes associated with respiratory metabolism, as well as lignin and anthocyanin biosynthesis, thereby maintaining lower physiological activities, improving taste and color quality of mature-white jujube. Additionally, AH treatment downregulated the genes involved in reactive oxygen species (ROS) generation and disease resistance, while simultaneously upregulating the genes associated with ROS elimination. This suggested that AH treatment could inhibit pathogen infection to prevent the activation of plants' active defense and reduce the ROS-induced damage. In sum, the present study provided a comprehension explanation that AH treatment improved the storage quality attributes of jujube fruit at the genetic level.


Assuntos
Frutas , Regulação da Expressão Gênica de Plantas , Espécies Reativas de Oxigênio , Transcriptoma , Água , Ziziphus , Ziziphus/genética , Frutas/genética , Espécies Reativas de Oxigênio/metabolismo , Eletricidade Estática , Conservação de Alimentos/métodos
9.
Food Res Int ; 191: 114688, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059944

RESUMO

Ultra-high-pressure (UHP1) technology for cold pasteurization is a viable alternative to traditional heat sterilization for preserving food nutrients and flavor compounds during fruit juice processing. In this study, cutting-edge techniques, including high-throughput sequencing technology, intelligent bionic sensory systems, and metabolomics, were used to examine the impact of UHP treatment on microbial community composition, odor, and taste quality of jujube juice. The UHP treatment demonstrated its effect by inducing a reddish-yellow color in the jujube juice, thereby enhancing its brightness, overall color, and stability. The most significant enhancement was observed at 330 MPa. The microorganisms responsible for spoilage and deterioration of jujube juice during storage were categorized into three clusters: bacterial clusters at 0-330 MPa, 360-450 MPa, and 480-630 Mpa. The results showed no distinct distribution patterns for fungi based on the pressure strength. The dominant bacterial genera were Lactobacillus, Nocardia, Achromobacter, Enterobacter, Pseudomonas, Mesorhizobium, and Rhodococcus, whereas the dominant fungal genera were yeast and mold. Notably, Lactobacillus, Achromobacter, Enterobacter, and Pseudomonas were responsible for the significant differences between the 360 MPa to 450 MPa and 480 MPa to 630 MPa clusters in terms of bacterial spoilage, whereas Torulaspora, Lodderomyces, Wickerhamomyces, and Fusarium were the primary fungal spoilage genera. UHP treatment exerted no significant impact on the taste of jujube juice but influenced its sourness. Treatment at 330 MPa had the most pronounced effect on the presence of aromatic compounds and other odorants, which were substantially increased. Further analysis revealed the prevalence of organic acids, such as malic acid, succinic acid, and tartaric acid, in jujube juice and demonstrated a consistent relationship between changes in organic acids and sourness. In addition, nine distinct odorants with VIP values greater than 1 were identified in the jujube juice. Among these, methyl acetate and methyl caproate exhibited substantial increases following the UHP treatment at 330 MPa.


Assuntos
Sucos de Frutas e Vegetais , Sequenciamento de Nucleotídeos em Larga Escala , Metabolômica , Microbiota , Paladar , Ziziphus , Ziziphus/microbiologia , Sucos de Frutas e Vegetais/microbiologia , Metabolômica/métodos , Odorantes/análise , Bactérias/classificação , Bactérias/genética , Pressão , Microbiologia de Alimentos/métodos , Manipulação de Alimentos/métodos , Pasteurização/métodos , Fungos , Humanos
10.
Plant Physiol Biochem ; 214: 108885, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38971088

RESUMO

Copper (Cu) is an essential micronutrient in plant physiology and biochemistry. This article synthesized copper nano complexes (Cu-NCs) based on aqueous extracts of jujube and neem leaves. The effects of foliar application of Cu-jujube and Cu-neem Cu-NCs at concentrations of 0, 10, 25, and 50 mg L-1 on the bioactive compounds, antioxidant capacity, and essential oil of the Iranian native medicinal herb Lavandula sublepidota Rech. f. was investigated. The highest levels of flavonoids and polyphenols were observed in the plants treated with Cu-NCs at 25 mg L-1. However, no superiority was observed between the two types of Cu-NCs. Furthermore, 25 mg L-1 nCu-Z and nCu-N foliar application boosted essential oil yield (48 and 52%, respectively) over control. This suggests an ideal threshold beyond which toxicity was found. Similarly, the amount of commercially significant secondary metabolites increased at 25 mg L-1 CuNCs compared to 10 and 50 mg L-1 concentrations. The maximum antioxidant activity was found in extracts of lavender that had been treated with 25 mg L-1 CuNCs. When CuNCs were applied exogenously, the extracts' antibacterial activity (MIC µg mL-1) was substantially increased against the three pathogen strains. The results suggest that CuNCs demonstrate notably greater effectiveness, particularly at an ideal concentration of 25 mg L-1, in enhancing the production of essential oil and bioactive compounds in Lavandula sublepidota Rech. f. Therefore, these findings indicate the importance of the biosynthesis of NCs using plants and measuring the phytochemical changes of lavender plants.


Assuntos
Antioxidantes , Cobre , Lavandula , Óleos Voláteis , Extratos Vegetais , Folhas de Planta , Ziziphus , Lavandula/metabolismo , Lavandula/química , Cobre/química , Cobre/metabolismo , Ziziphus/química , Ziziphus/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/metabolismo , Óleos Voláteis/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Folhas de Planta/metabolismo , Folhas de Planta/química , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Química Verde , Flavonoides/metabolismo , Testes de Sensibilidade Microbiana
11.
Plant Physiol Biochem ; 214: 108951, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39047581

RESUMO

Black rots lead to great economic losses in winter jujube industry. The objective of this research was to delve into the underlying mechanisms of enhanced resistance of winter jujube fruit to black rot by L-Methionine (Met) treatment. The findings revealed that the application of Met significantly curtailed lesion diameter and decay incidence in winter jujube fruit. The peroxidase (POD) activity in the Met-treated jujubes was 3.06-fold that in the control jujubes after 4 d of treatment. By day 8, the activities of phenylalanine ammonia-lyase (PAL), chitinase (CHI) and ß-1,3-glucanase (GLU) in the Met-treated jujubes had surged to their zenith, being 1.39, 1.22, and 1.52 times in the control group, respectively. At the end of storage, the flavonoid and total phenol content remained 1.58 and 1.06 times than that of the control group. Based on metabolomics and transcriptomics analysis, Met treatment upregulated 6 key differentially expressed metabolites (DEMs) (succinic acid, trans-ferulic acid, salicylic acid, delphinium pigments, (S)-abscisic acid, and hesperidin-7-neohesperidin), 12 key differentially expressed genes (DEGs) (PAL, CYP73A, COMT, 4CL, CAD, POD, UGT72E, ANS, CHS, IAA, TCH4 and PR1), which were involved in phenylpropanoid biosynthesis pathway, flavonoid biosynthesis pathway and plant hormone signal transduction pathway. Further analysis revealed that the most of the enzymes, DEMs and DEGs in this study were associated with both antioxidant and disease resistance. Consequently, Met treatment enhanced disease resistance of winter jujube fruit by elevating antioxidant capacity and triggering defense response. This study might provide theoretical support for utilizing Met in the management and prevention of post-harvest black rot in winter jujube.


Assuntos
Metabolômica , Metionina , Ziziphus , Ziziphus/genética , Ziziphus/metabolismo , Metionina/metabolismo , Doenças das Plantas/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma , Fenilalanina Amônia-Liase/metabolismo , Fenilalanina Amônia-Liase/genética , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/metabolismo , Frutas/genética , Perfilação da Expressão Gênica , Quitinases/metabolismo , Quitinases/genética
12.
Physiol Plant ; 176(4): e14426, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39049207

RESUMO

The Ziziphus genus, belonging to the Rhamnaceae family, holds significant economic, nutritional, and medicinal value. However, much remains to be discovered about its diversity and physical characteristics. Factors such as growth, resilience to changes, disease resistance, and unique features contribute to the quality of Ziziphus species. This study aims to investigate the genomes of 200 genotypes from five Ziziphus species: Ziziphus jujuba (Zj), Ziziphus nummularia (Zm), Ziziphus oxyphylla (Zx), Ziziphus mauritiana (Zm), and the cultivated variety Ziziphus jujube var. jujube, collected from Pakistan and China. Our goal is to identify single nucleotide polymorphisms (SNPs) associated with eight different traits and understand the genetic diversity within the selected Ziziphus species and their genotypes. Using high-quality SNPs obtained through genotype-by-sequencing (GBS), we conducted population structure, phylogenetic, and principal coordinates analyses, identifying a total of 10,945 clean SNPs. These genotypes were categorized into two groups, A and B. Natural Ziziphus variants in Pakistan, specifically Z. jujuba and Z. nummularia, exhibited high levels of genetic diversity and polymorphic information content (PIC) of 0.46 and 0.41, respectively, compared to other species. Furthermore, we identified 15 influential candidate genes that play crucial roles in regulating agronomic traits, such as fruit width and diameter, leaf width, plant height, and stem diameter within this group. This study provides valuable insights that can be utilized in Ziziphus breeding efforts.


Assuntos
Genótipo , Polimorfismo de Nucleotídeo Único , Ziziphus , Ziziphus/genética , Ziziphus/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Filogenia , Paquistão , Fenótipo , Genoma de Planta/genética , China
13.
BMC Plant Biol ; 24(1): 612, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937704

RESUMO

With global warming, high temperature (HT) has become one of the most common abiotic stresses resulting in significant crop yield losses, especially for jujube (Ziziphus jujuba Mill.), an important temperate economic crop cultivated worldwide. This study aims to explore the coping mechanism of jujube to HT stress at the transcriptional and post-transcriptional levels, including identifying differentially expressed miRNAs and mRNAs as well as elucidating the critical pathways involved. High-throughput sequencing analyses of miRNA and mRNA were performed on jujube leaves, which were collected from "Fucumi" (heat-tolerant) and "Junzao" (heat-sensitive) cultivars subjected to HT stress (42 °C) for 0, 1, 3, 5, and 7 days, respectively. The results showed that 45 known miRNAs, 482 novel miRNAs, and 13,884 differentially expressed mRNAs (DEMs) were identified. Among them, integrated analysis of miRNA target genes prediction and mRNA-seq obtained 1306 differentially expressed miRNAs-mRNAs pairs, including 484, 769, and 865 DEMIs-DEMs pairs discovered in "Fucuimi", "Junzao" and two genotypes comparative groups, respectively. Furthermore, functional enrichment analysis of 1306 DEMs revealed that plant-pathogen interaction, starch and sucrose metabolism, spliceosome, and plant hormone signal transduction were crucial pathways in jujube leaves response to HT stress. The constructed miRNA-mRNA network, composed of 20 DEMIs and 33 DEMs, displayed significant differently expressions between these two genotypes. This study further proved the regulatory role of miRNAs in the response to HT stress in plants and will provide a theoretical foundation for the innovation and cultivation of heat-tolerant varieties.


Assuntos
Genótipo , MicroRNAs , RNA Mensageiro , RNA de Plantas , Ziziphus , Ziziphus/genética , Ziziphus/fisiologia , MicroRNAs/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Folhas de Planta/genética , Estresse Fisiológico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Resposta ao Choque Térmico/genética
14.
Sci Rep ; 14(1): 13713, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877105

RESUMO

Jujubae Fructus, the fruit of Ziziphus jujuba Mill has been used as one of the medicine food homology species for thousands of years in China. Studies have shown that the active ingredients of Jujubae Fructus have a variety of biological effects, but its role in the aging process still lacks knowledge. Here, we investigated the effect of Jujubae Fructus extract (JE) on Caenorhabditis elegans lifespan and its potential mechanism. The lifespan of C. elegans treated with JE was signifificantly increased in a dose-dependent manner. In addition, JE treatment prolonged the reproductive period and increased normal activity during aging in C. elegans. Similarly, JE supplementation also enhanced the resistance to heat and oxidative stress in C. elegans. Furthermore, the mutant worms' lifespan assays demonstrated that JE requires daf-16 to prolong lifespan. DAF-16::GFP analysis of TJ356 showed that JE treatment translocates DAF-16::GFP to nucleus in transgenic worms. By analyzing the downstream of daf-16, we identify that JE may regulate sod3 downstream of daf-16. Mutant worms' lifespan and transgenic reporter gene expression assays revealed that increasing SOD-3 expression was critical for extending longevity in C. elegans with JE therapy. Collectively, these data indicate that JE may have an important role in C. elegans longevity that is dependent on DAF-16 and SOD-3.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Fatores de Transcrição Forkhead , Longevidade , Estresse Oxidativo , Extratos Vegetais , Superóxido Dismutase , Ziziphus , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Longevidade/efeitos dos fármacos , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Extratos Vegetais/farmacologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Ziziphus/química , Estresse Oxidativo/efeitos dos fármacos , Frutas/química
15.
Biomed Pharmacother ; 176: 116823, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38834008

RESUMO

Ancient Egyptians (including Bedouins and Nubians) have long utilized Ziziphus spina-christi (L.), a traditional Arabian medicinal herb, to alleviate swellings and inflammatory disorders. It is also mentioned in Christian and Muslim traditions. Ziziphus spina-christi L. (Family: Rhamnaceae) is a plentiful source of polyphenols, revealing free radical scavenging, antioxidant, metal chelating, cytotoxic, and anti-inflammatory activities. Herein, different classes of the existing bioactive metabolites in Z. spina-christi L. were detected using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the first time. The study also aimed to assess the anti-inflammatory and antifibrotic properties of Z. spina-christi L. extract against bleomycin-induced lung fibrosis in an experimental mouse model. 32 male Swiss Albino mice were assigned into 4 groups; the first and second were the normal control group and the bleomycin positive control (single 2.5 U/kg bleomycin intratracheal dose). The third and fourth groups received 100 and 200 mg/kg/day Z. spina-christi L. extract orally for 3 weeks, 2 weeks before bleomycin, and 1 week after. The bioactive metabolites in Z. spina-christi L. extract were identified as phenolic acids, catechins, flavonoids, chalcones, stilbenes, triterpenoid acids, saponins, and sterols. The contents of total phenolic compounds and flavonoids were found to be 196.62 mg GAE/gm and 33.29 mg QE/gm, respectively. In the experimental study, histopathological examination revealed that lung fibrosis was attenuated in both Z. spina-christi L.- treated groups. Z. spina-christi L. extract downregulated the expression of nuclear factor kappa B (NF-κB) p65 and decreased levels of the inflammatory markers tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), and c-Jun N-terminal kinase (JNK) in lung tissue. Z. spina-christi L. also downregulated the expression of the fibrotic parameters collagen-1, alpha-smooth muscle actin (α-SMA), transforming growth factor-beta 1 (TGF-ß1), matrix metalloproteinase-9 (MMP-9) and SMAD3, with upregulation of the antifibrotic SMAD7 in lung tissue. Overall, the present study suggests a potential protective effect of Z. spina-christi L. extract against bleomycin-induced lung fibrosis through regulation of the TGF-ß1/SMAD pathway.


Assuntos
Bleomicina , Extratos Vegetais , Fibrose Pulmonar , Transdução de Sinais , Proteínas Smad , Espectrometria de Massas em Tandem , Fator de Crescimento Transformador beta1 , Ziziphus , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Masculino , Ziziphus/química , Camundongos , Extratos Vegetais/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Smad/metabolismo , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Transdução de Sinais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Metabolômica/métodos , Anti-Inflamatórios/farmacologia , Espectrometria de Massa com Cromatografia Líquida
16.
Malar J ; 23(1): 141, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734650

RESUMO

BACKGROUND: The development of resistance by Plasmodium falciparum is a burdening hazard that continues to undermine the strides made to alleviate malaria. As such, there is an increasing need to find new alternative strategies. This study evaluated and validated 2 medicinal plants used in traditional medicine to treat malaria. METHODS: Inspired by their ethnobotanical reputation of being effective against malaria, Ziziphus mucronata and Xysmalobium undulutum were collected and sequentially extracted using hexane (HEX), ethyl acetate (ETA), Dichloromethane (DCM) and methanol (MTL). The resulting crude extracts were screened for their anti-malarial and cytotoxic potential using the parasite lactate dehydrogenase (pLDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, respectively. This was followed by isolating the active compounds from the DCM extract of Z. mucronata using silica gel chromatography and structural elucidation using spectroscopic techniques (NMR: 1H, 12C, and DEPT). The active compounds were then targeted against P. falciparum heat shock protein 70-1 (PfHsp70-1) using Autodock Vina, followed by in vitro validation assays using ultraviolet-visible (UV-VIS) spectroscopy and the malate dehydrogenase (MDH) chaperone activity assay. RESULTS: The extracts except those of methanol displayed anti-malarial potential with varying IC50 values, Z. mucronata HEX (11.69 ± 3.84 µg/mL), ETA (7.25 ± 1.41 µg/mL), DCM (5.49 ± 0.03 µg/mL), and X. undulutum HEX (4.9 ± 0.037 µg/mL), ETA (17.46 ± 0.024 µg/mL) and DCM (19.27 ± 0.492 µg/mL). The extracts exhibited minimal cytotoxicity except for the ETA and DCM of Z. mucronata with CC50 values of 10.96 and 10.01 µg/mL, respectively. Isolation and structural characterization of the active compounds from the DCM extracts revealed that betulinic acid (19.95 ± 1.53 µg/mL) and lupeol (7.56 ± 2.03 µg/mL) were responsible for the anti-malarial activity and had no considerable cytotoxicity (CC50 > µg/mL). Molecular docking suggested strong binding between PfHsp70-1, betulinic acid (- 6.8 kcal/mol), and lupeol (- 6.9 kcal/mol). Meanwhile, the in vitro validation assays revealed the disruption of the protein structural elements and chaperone function. CONCLUSION: This study proves that X undulutum and Z. mucronata have anti-malarial potential and that betulinic acid and lupeol are responsible for the activity seen on Z. mucronata. They also make a case for guided purification of new phytochemicals in the other extracts and support the notion of considering medicinal plants to discover new anti-malarials.


Assuntos
Antimaláricos , Compostos Fitoquímicos , Extratos Vegetais , Plasmodium falciparum , Ziziphus , Antimaláricos/farmacologia , Antimaláricos/química , Ziziphus/química , Plasmodium falciparum/efeitos dos fármacos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Descoberta de Drogas
17.
Sci Total Environ ; 935: 173195, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38750752

RESUMO

The distribution fate of chlorothalonil (CHT) in the environment (soil and water) and fruits is controlled by the capacity of cuticles to adsorb and desorb CHT, which directly affects the safety of both the environment and fruits. Batch experiments were conducted to reveal the adsorption-desorption behaviors of CHT in the cuticles of apple and red jujube. The adsorption kinetics showed that both physisorption and chemisorption occurred during the adsorption process. Furthermore, the isothermal adsorption of CHT in the fruit cuticles followed the Freundlich model. The thermodynamic parameters (ΔG ≤ -26.16 kJ/mol, ΔH ≥ 31.05 kJ/mol, ΔS ≥ 0.20 kJ/(mol K) showed that the whole CHT adsorption process was spontaneous, and the hydrophobic interaction was predominant. The CHT adsorption capacity of the apple cuticle was higher than that of the red jujube cuticle, potentially due to the significantly higher alkanes content of apples than that of red jujubes. An appropriate ionic strength (0.01 moL/L) could induce a higher adsorption capacity. In addition, the desorption kinetics were shown to conform to a Quasi-first-order model, meaning that not all the adsorbed CHT could be easily desorbed. The desorption ratios in apple and red jujube cuticles were 41.38% and 35.64%, respectively. The results of Fourier-transformed infrared spectroscopy and X-ray photoelectron spectroscopy further confirmed that CHT could be adsorbed and retained in the fruit cuticles. Investigating the adsorption-desorption behavior of CHT in the apple and red jujube cuticles allowed to determine the ratio of its final distribution in the fruits and environment, providing a theoretical basis to evaluate the risk of residue pesticide.


Assuntos
Frutas , Malus , Nitrilas , Ziziphus , Adsorção , Ziziphus/química , Malus/química , Nitrilas/química , Frutas/química , Cinética , Fungicidas Industriais/química
18.
Plant Physiol Biochem ; 211: 108665, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735155

RESUMO

Budding mutations are known to cause metabolic changes in new jujube varieties; however, the mechanisms underlying these changes are still unclear. Here, we performed muti-omics analysis to decipher the detailed metabolic landscape of "Saimisu 1" (S1) and its budding mutation line "Saimisu 2" (S2) at all fruit stages. We found that the genes involved in the biosyntheses of flavonoids, phenylpropanoids, and amino acids were upregulated in S2 fruits at all stages, especially PAL and DFR, resulting in increased accumulation of related compounds in S2 mature fruits. Further co-expression regulatory network analysis showed that the transcription factors MYB41 and bHLH93 potentially regulated the expression of PAL and DFR, respectively, by directly binding to their promoters. Moreover, the overexpression of MYB41 or bHLH93 induced their expression levels to redirect the flux of the flavonoid biosynthetic pathway, eventually leading to high levels of related compounds in S2 fruits. Overall, this study revealed the metabolic variations between S1 and S2 and contributed to the understanding of the mechanisms underlying budding mutation-mediated metabolic variations in plants, eventually providing the basis for breeding excellent jujube varieties using budding mutation lines.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Flavonoides , Regulação da Expressão Gênica de Plantas , Mutação , Proteínas de Plantas , Ziziphus , Flavonoides/metabolismo , Flavonoides/biossíntese , Flavonoides/genética , Ziziphus/genética , Ziziphus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Frutas/genética , Frutas/metabolismo
19.
BMC Biol ; 22(1): 113, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750524

RESUMO

BACKGROUND: Protein posttranslational modifications (PTMs) are fast and early responses to environmental changes, including pathogen infection. Jujube witches' broom (JWB) is a phytoplasma disease causing great economic loss in jujube production. After phytoplasma infection, the transcriptional, translational, and metabolic levels in jujube were activated, enabling it to survive during phytoplasma invasion. However, no study has yet reported on PTMs in jujube. Lysine crotonylation (Kcr) and lysine succinylation (Ksu) have been popular studies in recent years and their function in plant phytoplasma-stress responses remains unclear. RESULTS: Here, 1656 crotonylated and 282 succinylated jujube proteins were first identified under phytoplasma-stress, of which 198 were simultaneously crotonylated and succinylated. Comparative analysis revealed that 656 proteins, 137 crotonylated and 43 succinylated proteins in jujube were regulated by phytoplasma infection, suggesting that Kcr was more universal than Ksu. Kcr differentially expressed proteins (DEPs) were related to ribosomes, photosynthetic and carbon metabolism, while Ksu DEPs were mainly involved in carbon metabolism, the TCA cycle and secondary metabolite biosynthesis. The crosstalk network among proteome, crotonylome and succinylome showed that DEPs related to ribosomal, peroxidases and glutathione redox were enriched. Among them, ZjPOD51 and ZjPHGPX2 significantly increased at the protein and Kcr level under phytoplasma-stress. Notably, 7 Kcr sites were identified in ZjPHGPX2, a unique antioxidant enzyme. After inhibitor nicotinamide (NAM) treatment, GPX enzyme activity in jujube seedlings was reduced. Further, site-directed mutagenesis of key Kcr modification sites K130 and/or K135 in ZjPHGPX2 significantly reduced its activity. CONCLUSIONS: This study firstly provided large-scale datasets of Kcr and Ksu in phytoplasma-infected jujube and revealed that Kcr modification in ZjPHGPX2 positively regulates its activity.


Assuntos
Phytoplasma , Doenças das Plantas , Proteínas de Plantas , Ziziphus , Ziziphus/microbiologia , Ziziphus/metabolismo , Phytoplasma/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Doenças das Plantas/microbiologia , Processamento de Proteína Pós-Traducional , Estresse Fisiológico , Lisina/metabolismo
20.
Plant Signal Behav ; 19(1): 2357367, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38775124

RESUMO

Elevated temperatures critically impact crop growth, development, and yield, with photosynthesis being the most temperature-sensitive physiological process in plants. This study focused on assessing the photosynthetic response and genetic adaptation of two different heat-resistant jujube varieties 'Junzao' (J) and 'Fucuimi' (F), to high-temperature stress (42°C Day/30°C Night). Comparative analyses of leaf photosynthetic indices, microstructural changes, and transcriptome sequencing were conducted. Results indicated superior high-temperature adaptability in F, evidenced by alterations in leaf stomatal behavior - particularly in J, where defense cells exhibited significant water loss, shrinkage, and reduced stomatal opening, alongside a marked increase in stomatal density. Through transcriptome sequencing 13,884 differentially expressed genes (DEGs) were identified, significantly enriched in pathways related to plant-pathogen interactions, amino acid biosynthesis, starch and sucrose metabolism, and carbohydrate metabolism. Key findings include the identification of photosynthetic pathway related DEGs and HSFA1s as central regulators of thermal morphogenesis and heat stress response. Revealing their upregulation in F and downregulation in J. The results indicate that these genes play a crucial role in improving heat tolerance in F. This study unveils critical photosynthetic genes involved in heat stress, providing a theoretical foundation for comprehending the molecular mechanisms underlying jujube heat tolerance.


Assuntos
Regulação da Expressão Gênica de Plantas , Fotossíntese , Ziziphus , Ziziphus/genética , Ziziphus/fisiologia , Fotossíntese/genética , Resposta ao Choque Térmico/genética , Temperatura Alta , Folhas de Planta/genética , Folhas de Planta/metabolismo , Transcriptoma/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Estômatos de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...