Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
4.
Viruses ; 16(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066204

RESUMO

In recent years, the transmission of viruses from wildlife to humans has raised significant public health concerns, exemplified by the COVID-19 pandemic caused by the betacoronavirus SARS-CoV-2. Human activities play a substantial role in increasing the risk of zoonotic virus transmission from wildlife to humans. Rats and mice are prevalent in urban environments and may act as reservoirs for various pathogens. This study aimed to evaluate the presence of zoonotic viruses in wild rats and mice in both urban and rural areas, focusing on well-known zoonotic viruses such as betacoronavirus, hantavirus, arenavirus, kobuvirus, and monkeypox virus, along with other viruses occasionally detected in rats and mice, including rotavirus, norovirus, and astrovirus, which are known to infect humans at a high rate. A total of 128 animals were captured, including 70 brown rats (Rattus norvegicus), 45 black rats (Rattus rattus), and 13 house mice (Mus musculus), and feces, lung, and liver were collected. Among brown rats, one fecal sample tested positive for astrovirus RNA. Nucleotide sequencing revealed high sequence similarity to both human and rat astrovirus, suggesting co-presence of these viruses in the feces. Murine kobuvirus (MuKV) was detected in fecal samples from both black (n = 7) and brown (n = 6) rats, primarily from urban areas, as confirmed by sequence analysis. These findings highlight the importance of surveillance and research to understand and mitigate the risks associated with the potential transmission of pathogens by rodents.


Assuntos
Fezes , Zoonoses , Animais , Humanos , Camundongos , Ratos/virologia , Fezes/virologia , Zoonoses/virologia , Zoonoses/transmissão , Filogenia , COVID-19/virologia , COVID-19/transmissão , COVID-19/epidemiologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Animais Selvagens/virologia , Reservatórios de Doenças/virologia , Muridae/virologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Vírus/classificação , Vírus/isolamento & purificação , Vírus/genética
5.
Curr Opin Infect Dis ; 37(5): 431-435, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38975631

RESUMO

PURPOSE OF REVIEW: This review aims to discuss the current state of human infections with Avian Influenza A (H5) and (H9) viruses, to support awareness of the global epidemiology among clinicians and public health professionals interested in emerging respiratory infections. RECENT FINDINGS: Among increasing numbers of detections in avian species of Avian Influenza A(H5N1) clade 2.3.4.4b globally, reported human cases of severe infection have been rare.Enhanced surveillance of persons exposed to avian species infected with Influenza A (H5N1) clade 2.3.4.4b in different countries has identified small numbers of asymptomatic individuals with Avian Influenza A (H5N1) detected by PCR from the upper respiratory tract; some of these instances have been considered to represent contamination rather than infection.There have also been recent sporadic human cases of Avian Influenza A(H9N2) internationally, including in China and Cambodia. SUMMARY: Human infections with Avian Influenza A(H5) and (H9) viruses remain of interest as an emerging infection both to clinicians and public health professionals. While maintaining effective surveillance is essential, one health strategies to control infection in avian species will be key to mitigating these risks.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Influenza Humana , Zoonoses , Humanos , Animais , Influenza Humana/epidemiologia , Influenza Humana/transmissão , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Influenza Aviária/virologia , Zoonoses/epidemiologia , Zoonoses/virologia , Zoonoses/transmissão , Aves/virologia , Vírus da Influenza A Subtipo H9N2 , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Doenças Transmissíveis Emergentes/transmissão , Zoonoses Virais/transmissão , Zoonoses Virais/epidemiologia , Zoonoses Virais/virologia , Saúde Global
6.
Viruses ; 16(7)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39066291

RESUMO

The influenza A virus (IAV) has been a major cause of several pandemics, underscoring the importance of elucidating its transmission dynamics. This review investigates potential intermediate hosts in the cross-species transmission of IAV to humans, focusing on the factors that facilitate zoonotic events. We evaluate the roles of various animal hosts, including pigs, galliformes, companion animals, minks, marine mammals, and other animals, in the spread of IAV to humans.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Humanos , Vírus da Influenza A/fisiologia , Vírus da Influenza A/genética , Influenza Humana/transmissão , Influenza Humana/virologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Infecções por Orthomyxoviridae/veterinária , Zoonoses/transmissão , Zoonoses/virologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Suínos
7.
Lancet Infect Dis ; 24(8): e522-e531, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38878787

RESUMO

Avian influenza virus continues to pose zoonotic, epizootic, and pandemic threats worldwide, as exemplified by the 2020-23 epizootics of re-emerging H5 genotype avian influenza viruses among birds and mammals and the fatal jump to humans of emerging A(H3N8) in early 2023. Future influenza pandemic threats are driven by extensive mutations and reassortments of avian influenza viruses rooted in frequent interspecies transmission and genetic mixing and underscore the urgent need for more effective actions. We examine the changing global epidemiology of human infections caused by avian influenza viruses over the past decade, including dramatic increases in both the number of reported infections in humans and the spectrum of avian influenza virus subtypes that have jumped to humans. We also discuss the use of advanced surveillance, diagnostic technologies, and state-of-the-art analysis methods for tracking emerging avian influenza viruses. We outline an avian influenza virus-specific application of the One Health approach, integrating enhanced surveillance, tightened biosecurity, targeted vaccination, timely precautions, and timely clinical management, and fostering global collaboration to control the threats of avian influenza viruses.


Assuntos
Aves , Saúde Global , Vírus da Influenza A , Influenza Aviária , Influenza Humana , Zoonoses , Animais , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Aves/virologia , Zoonoses/epidemiologia , Zoonoses/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/classificação , Zoonoses Virais/epidemiologia , Zoonoses Virais/transmissão
8.
Viruses ; 16(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38932248

RESUMO

The emergence of the novel coronavirus SARS-CoV-2 has led to significant interest in its potential transmission between animals and humans, especially pets. This review article summarises the literature on coronavirus infections in domestic animals, emphasising epidemiology, transmission dynamics, clinical manifestations, and public health implications. This article highlights current understandings of the relationship between infections in companion animals and humans, identifies research gaps, and suggests directions for future research. Cases of disease in cats, dogs, and other domestic animals, often occurring through close contact with infected owners, are reviewed, raising concerns about possible zoonotic and reverse zoonotic transmission. Precautions and recommendations for pet owners and healthcare workers are also discussed. The scientific evidence presented in the article highlights the need for a One Health approach that considers the health of people, animals, and the environment to combat future pandemics.


Assuntos
Animais Selvagens , COVID-19 , Animais de Estimação , Saúde Pública , SARS-CoV-2 , Zoonoses , Animais , COVID-19/transmissão , COVID-19/epidemiologia , COVID-19/veterinária , COVID-19/virologia , Animais de Estimação/virologia , Humanos , Zoonoses/transmissão , Zoonoses/epidemiologia , Zoonoses/virologia , Gatos , Animais Selvagens/virologia , Cães , Animais Domésticos/virologia , Saúde Única , Zoonoses Virais/transmissão , Zoonoses Virais/epidemiologia
9.
Viruses ; 16(5)2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38793568

RESUMO

The hepatitis E virus is a serious health concern worldwide, with 20 million cases each year. Growing numbers of autochthonous HEV infections in industrialized nations are brought on via the zoonotic transmission of HEV genotypes 3 and 4. Pigs and wild boars are the main animal reservoirs of HEV and play the primary role in HEV transmission. Consumption of raw or undercooked pork meat and close contact with infected animals are the most common causes of hepatitis E infection in industrialized countries. However, during the past few years, mounting data describing HEV distribution has led experts to believe that additional animals, particularly domestic ruminant species (cow, goat, sheep, deer, buffalo, and yak), may also play a role in the spreading of HEV. Up to now, there have not been enough studies focused on HEV infections associated with animal milk and the impact that they could have on the epidemiology of HEV. This critical analysis discusses the role of domestic ruminants in zoonotic HEV transmissions. More specifically, we focus on concerns related to milk safety, the role of mixed farming in cross-species HEV infections, and what potential consequences these may have on public health.


Assuntos
Animais Domésticos , Vírus da Hepatite E , Hepatite E , Leite , Ruminantes , Zoonoses , Animais , Hepatite E/transmissão , Hepatite E/veterinária , Hepatite E/virologia , Vírus da Hepatite E/genética , Vírus da Hepatite E/isolamento & purificação , Leite/virologia , Ruminantes/virologia , Zoonoses/virologia , Zoonoses/transmissão , Humanos , Animais Domésticos/virologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Cabras/virologia , Ovinos/virologia , Genótipo
10.
Science ; 384(6696): 615-617, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38723093

RESUMO

An ambitious U.S. project aims to sample more than 50 animal species to clarify how the COVID-19 virus moves between people and wildlife.


Assuntos
Animais Selvagens , COVID-19 , SARS-CoV-2 , Zoonoses Virais , Animais , Humanos , Animais Selvagens/virologia , COVID-19/transmissão , COVID-19/virologia , SARS-CoV-2/isolamento & purificação , Estados Unidos , Zoonoses Virais/transmissão , Zoonoses Virais/virologia
11.
Nat Commun ; 15(1): 4171, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755147

RESUMO

Human Ebola virus (EBOV) outbreaks caused by persistent EBOV infection raises questions on the role of zoonotic spillover in filovirus epidemiology. To characterise filovirus zoonotic exposure, we collected cross-sectional serum samples from bushmeat hunters (n = 498) in Macenta Prefecture Guinea, adjacent to the index site of the 2013 EBOV-Makona spillover event. We identified distinct immune signatures (20/498, 4.0%) to multiple EBOV antigens (GP, NP, VP40) using stepwise ELISA and Western blot analysis and, live EBOV neutralisation (5/20; 25%). Using comparative serological data from PCR-confirmed survivors of the 2013-2016 EBOV outbreak, we demonstrated that most signatures (15/20) were not plausibly explained by prior EBOV-Makona exposure. Subsequent data-driven modelling of EBOV immunological outcomes to remote-sensing environmental data also revealed consistent associations with intact closed canopy forest. Together our findings suggest exposure to other closely related filoviruses prior to the 2013-2016 West Africa epidemic and highlight future surveillance priorities.


Assuntos
Anticorpos Antivirais , Ebolavirus , Doença pelo Vírus Ebola , Humanos , Animais , Guiné/epidemiologia , Ebolavirus/imunologia , Ebolavirus/isolamento & purificação , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/transmissão , Adulto , Masculino , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Pessoa de Meia-Idade , Zoonoses/virologia , Zoonoses/epidemiologia , Zoonoses/transmissão , Feminino , Estudos Transversais , Surtos de Doenças , Adulto Jovem , Idoso , Ensaio de Imunoadsorção Enzimática , Zoonoses Virais/epidemiologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Antígenos Virais/imunologia
12.
Adv Exp Med Biol ; 1451: 21-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38801569

RESUMO

In the last 4 years, the world has experienced two pandemics of bat-borne viruses. Firstly, in 2019 the SARS-CoV-2 pandemic started and has been causing millions of deaths around the world. In 2022, a Monkeypox pandemic rose in various countries of the world. Those pandemics have witnessed movements and initiatives from healthcare and research institutions to establish a worldwide understanding to battle any future pandemics and biological threats. One Health concept is a modern, comprehensive, unifying ways to improve humans, animals, and ecosystems' health. This concept shows how much they are intertwined and related to one another, whether it is an environmental, or a pathological relation. This review aims to describe Poxviridae and its impact on the One Health concept, by studying the underlying causes of how poxviruses can affect the health of animals, humans, and environments. Reviewing the effect of disease transmission between animal to human, human to human, and animal to animal with pox viruses as a third party to achieve a total understanding of infection and viral transmission. Thus, contributing to enhance detection, diagnosis, research, and treatments regarding the application of One Health.


Assuntos
Saúde Única , Infecções por Poxviridae , Poxviridae , Humanos , Animais , Infecções por Poxviridae/virologia , Infecções por Poxviridae/transmissão , Infecções por Poxviridae/epidemiologia , Poxviridae/fisiologia , Poxviridae/patogenicidade , Poxviridae/genética , COVID-19/virologia , COVID-19/transmissão , COVID-19/epidemiologia , Zoonoses/virologia , Zoonoses/transmissão , Zoonoses/epidemiologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Pandemias , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Zoonoses Virais/epidemiologia
13.
Rev Med Suisse ; 20(872): 881-885, 2024 May 01.
Artigo em Francês | MEDLINE | ID: mdl-38693801

RESUMO

Marburg virus disease (MVD) is a dreadful but exceptional disease. Formerly mainly identified in Uganda, Angola and the Democratic Republic of Congo, it has recently appeared in the Republic of Guinea, Ghana, Equatorial Guinea and Tanzania, adding West Africa to the affected regions. Humans become infected through exposure to bats Roussettus aegyptiacus or during unprotected care of infected people. Five cases are linked to travellers, the last one dates to 2008 and involved a visit to caves colonized by bats. At present, there is no specific treatment or vaccine. Despite its rarity, adventurous travelers should be aware of the risks of exposure and avoid entering places inhabited by bats.


La maladie à virus Marburg est une maladie redoutable mais exceptionnelle. Autrefois identifiée en Ouganda, Angola et République démocratique du Congo, elle a récemment fait son apparition en République de Guinée, au Ghana, en Guinée équatoriale et en Tanzanie, ajoutant l'Afrique de l'Ouest aux régions touchées. Les humains s'infectent lors d'une exposition avec les chauves-souris roussettes d'Égypte ou lors de la prise en charge sans protection de personnes infectées. Cinq cas sont liés à des voyageurs, le dernier remonte à 2008 et était associé à la visite de grottes colonisées par des roussettes d'Égypte. Actuellement, il n'existe aucun traitement spécifique ni vaccin. Malgré sa rareté, les voyageurs aventureux doivent être informés des risques d'exposition et éviter de pénétrer dans des lieux habités par des chauves-souris.


Assuntos
Marburgvirus , Viagem , Feminino , Humanos , Masculino , Doença do Vírus de Marburg/epidemiologia , Doença do Vírus de Marburg/transmissão , Doença do Vírus de Marburg/virologia , Marburgvirus/isolamento & purificação , Zoonoses Virais/epidemiologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Quirópteros/virologia
14.
Comp Immunol Microbiol Infect Dis ; 109: 102183, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640700

RESUMO

Henipavirus (HNV) is well known for two zoonotic viruses in the genus, Hendra virus (HeV) and Nipah virus (NiV), which pose serious threat to human and animal health. In August 2022, a third zoonotic virus in the genus Henipavirus, Langya virus (LayV), was discovered in China. The emergence of HeV, NiV, and LayV highlights the persistent threat of HNV to human and animal health. In addition to the above three HNVs, new species within this genus are still being discovered. Although they have not yet caused a pandemic in humans or livestock, they still have the risk of spillover as a potential threat to the health of humans and animals. It's important to understand the infection and transmission of different HNV in animals for the prevention and control of current or future HNV epidemics. Therefore, this review mainly summarizes the animal origin, animal infection and transmission of HNV that have been found worldwide, and further analyzes and summarizes the rules of infection and transmission, so as to provide a reference for relevant scientific researchers. Furthermore, it can provide a direction for epidemic prevention and control, and animal surveillance to reduce the risk of the global pandemic of HNV.


Assuntos
Infecções por Henipavirus , Henipavirus , Animais , Infecções por Henipavirus/transmissão , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/veterinária , Infecções por Henipavirus/virologia , Humanos , Zoonoses/transmissão , Zoonoses/virologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Vírus Nipah/patogenicidade , Vírus Hendra
15.
Future Microbiol ; 19(9): 841-856, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38648093

RESUMO

The emergence of highly zoonotic viral infections has propelled bat research forward. The viral outbreaks including Hendra virus, Nipah virus, Marburg virus, Ebola virus, Rabies virus, Middle East respiratory syndrome coronavirus, SARS-CoV and the latest SARS-CoV-2 have been epidemiologically linked to various bat species. Bats possess unique immunological characteristics that allow them to serve as a potential viral reservoir. Bats are also known to protect themselves against viruses and maintain their immunity. Therefore, there is a need for in-depth understanding into bat-virus biology to unravel the major factors contributing to the coexistence and spread of viruses.


Bats are the most diverse mammalian order, with over 1400 species found worldwide. Studies on bats have revealed that they frequently carry and transmit multiple viruses. They are also known to recover from viral infections. Further, human interference and climatic changes in bats' native habitat have led to virus spillover events from bats to human populations, posing a serious public health risk. A deeper understanding of the coexistence of bats and viruses, as well as the mechanisms of disease transmission to humans, is required to minimize the risk of future viral outbreaks.


Assuntos
Quirópteros , Reservatórios de Doenças , Quirópteros/virologia , Quirópteros/imunologia , Animais , Humanos , Reservatórios de Doenças/virologia , Viroses/imunologia , Viroses/virologia , Viroses/veterinária , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , SARS-CoV-2/imunologia , COVID-19/imunologia , COVID-19/virologia , Vírus/imunologia , Vírus/classificação , Vírus/genética , Zoonoses/virologia , Zoonoses/transmissão , Zoonoses/imunologia
17.
Braz J Infect Dis ; 28(2): 103742, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38670166

RESUMO

A substantial number of zoonotic diseases are caused by viral pathogens, representing a significant menace to public health, particularly to susceptible populations, such as pregnant women, the elderly, and immunocompromised individuals. Individuals who have undergone solid organ transplantation frequently experience immunosuppression, to prevent organ rejection, and, thus are more prone to opportunistic infections. Furthermore, the reactivation of dormant viruses can threaten transplant recipients and organ viability. This mini-review examines the up-to-date literature covering potential zoonotic and organ rejection-relevant viruses in solid organ transplant recipients. A comprehensive list of viruses with zoonotic potential is highlighted and the most important clinical outcomes in patients undergoing transplantation are described. Moreover, this mini-review calls attention to complex multifactorial events predisposing viral coinfections and the need for continuous health surveillance and research to understand better viral pathogens' transmission and pathophysiology dynamics in transplanted individuals.


Assuntos
Hospedeiro Imunocomprometido , Transplante de Órgãos , Transplantados , Humanos , Transplante de Órgãos/efeitos adversos , Animais , Viroses/transmissão , Viroses/virologia , Suscetibilidade a Doenças , Zoonoses/transmissão , Zoonoses/virologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Fatores de Risco
18.
J Virol ; 98(4): e0194123, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38470143

RESUMO

Influenza A viruses (IAVs) can overcome species barriers by adaptation of the receptor-binding site of the hemagglutinin (HA). To initiate infection, HAs bind to glycan receptors with terminal sialic acids, which are either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc); the latter is mainly found in horses and pigs but not in birds and humans. We investigated the influence of previously identified equine NeuGc-adapting mutations (S128T, I130V, A135E, T189A, and K193R) in avian H7 IAVs in vitro and in vivo. We observed that these mutations negatively affected viral replication in chicken cells but not in duck cells and positively affected replication in horse cells. In vivo, the mutations reduced virus virulence and mortality in chickens. Ducks excreted high viral loads longer than chickens, although they appeared clinically healthy. To elucidate why these viruses infected chickens and ducks despite the absence of NeuGc, we re-evaluated the receptor binding of H7 HAs using glycan microarray and flow cytometry studies. This re-evaluation demonstrated that mutated avian H7 HAs also bound to α2,3-linked NeuAc and sialyl-LewisX, which have an additional fucose moiety in their terminal epitope, explaining why infection of ducks and chickens was possible. Interestingly, the α2,3-linked NeuAc and sialyl-LewisX epitopes were only bound when presented on tri-antennary N-glycans, emphasizing the importance of investigating the fine receptor specificities of IAVs. In conclusion, the binding of NeuGc-adapted H7 IAV to tri-antennary N-glycans enables viral replication and shedding by chickens and ducks, potentially facilitating interspecies transmission of equine-adapted H7 IAVs.IMPORTANCEInfluenza A viruses (IAVs) cause millions of deaths and illnesses in birds and mammals each year. The viral surface protein hemagglutinin initiates infection by binding to host cell terminal sialic acids. Hemagglutinin adaptations affect the binding affinity to these sialic acids and the potential host species targeted. While avian and human IAVs tend to bind to N-acetylneuraminic acid (sialic acid), equine H7 viruses prefer binding to N-glycolylneuraminic acid (NeuGc). To better understand the function of NeuGc-specific adaptations in hemagglutinin and to elucidate interspecies transmission potential NeuGc-adapted viruses, we evaluated the effects of NeuGc-specific mutations in avian H7 viruses in chickens and ducks, important economic hosts and reservoir birds, respectively. We also examined the impact on viral replication and found a binding affinity to tri-antennary N-glycans containing different terminal epitopes. These findings are significant as they contribute to the understanding of the role of receptor binding in avian influenza infection.


Assuntos
Galinhas , Patos , Cavalos , Vírus da Influenza A , Influenza Aviária , Ácidos Neuramínicos , Animais , Humanos , Galinhas/genética , Galinhas/metabolismo , Galinhas/virologia , Patos/genética , Patos/metabolismo , Patos/virologia , Epitopos/química , Epitopos/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Cavalos/genética , Cavalos/metabolismo , Cavalos/virologia , Vírus da Influenza A/química , Vírus da Influenza A/classificação , Vírus da Influenza A/metabolismo , Influenza Aviária/genética , Influenza Aviária/transmissão , Influenza Aviária/virologia , Mutação , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/química , Ácidos Neuramínicos/metabolismo , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Suínos/virologia , Zoonoses Virais/metabolismo , Zoonoses Virais/transmissão , Zoonoses Virais/virologia
20.
Science ; 382(6670): 595-600, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37917680

RESUMO

Historically, mpox has been characterized as an endemic zoonotic disease that transmits through contact with the reservoir rodent host in West and Central Africa. However, in May 2022, human cases of mpox were detected spreading internationally beyond countries with known endemic reservoirs. When the first cases from 2022 were sequenced, they shared 42 nucleotide differences from the closest mpox virus (MPXV) previously sampled. Nearly all these mutations are characteristic of the action of APOBEC3 deaminases, host enzymes with antiviral function. Assuming APOBEC3 editing is characteristic of human MPXV infection, we developed a dual-process phylogenetic molecular clock that-inferring a rate of ~6 APOBEC3 mutations per year-estimates that MPXV has been circulating in humans since 2016. These observations of sustained MPXV transmission present a fundamental shift to the perceived paradigm of MPXV epidemiology as a zoonosis and highlight the need for revising public health messaging around MPXV as well as outbreak management and control.


Assuntos
Desaminases APOBEC , Monkeypox virus , Mpox , Edição de RNA , Zoonoses Virais , Animais , Humanos , África Central/epidemiologia , África Ocidental/epidemiologia , Desaminases APOBEC/genética , Surtos de Doenças , Mpox/epidemiologia , Mpox/genética , Mpox/transmissão , Monkeypox virus/genética , Monkeypox virus/metabolismo , Mutação , Filogenia , Zoonoses Virais/genética , Zoonoses Virais/transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...