Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.102
Filtrar
1.
Huan Jing Ke Xue ; 45(7): 3983-3994, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022946

RESUMO

In order to understand the stability of the zooplankton and phytoplankton communities in the Guizhou plateau reservoir environment, the process of reservoir water quality change affecting the stability of plankton was studied. The changes in the plankton community and water quality in three different nutrient reservoirs (Huaxi Reservoir, Goupitan Reservoir, and Hailong Reservoir) were studied from October 2020 to August 2021. The stability of the zooplankton and phytoplankton communities was studied using time-lag analysis (TLA). Variance decomposition analysis (VPA) was used to explore the response of the two communities to environmental changes. The driving factors of plankton community changes in reservoirs were also revealed. The results showed that Huaxi Reservoir and Goupitan Reservoir were mesotrophic reservoirs, and Hailong Reservoir was a eutrophic reservoir. The average comprehensive nutrition indices of the three reservoirs were 44.07, 44.68, and 50.25. A total of 51 species of zooplankton rotifers, 39 species of rotifers, three species of copepods, and nine species of cladocera were identified. Among them, the abundance of rotifers was the highest, accounting for 85.96%. A total of seven phyla and 73 species of phytoplankton were identified, including 16 species in the phylum Cyanophyta, 32 species in the phylum Chlorophyta, 16 species in the phylum Diatoma, three species in the phylum Chlorophyta, four species in the phylum Euglenophyta, and one species each in the phyla Cryptophyta and Chrysophyta. Among them, the abundance of cyanobacteria and diatoms was the highest, accounting for 66.2% and 27.35%, respectively. The median absolute deviation (MAD) of the Bray-Curtis distance of zooplankton and phytoplankton community in the three reservoirs were 0.67 and 0.65 in Huaxi Reservoir, 0.80 and 0.69 in Goupitan Reservoir, and 0.85 and 0.47 in Hailong Reservoir, respectively. The larger the value, the greater the variation in the community. The absolute value of the slope of zooplankton was greater than that of phytoplankton in the TLA results, and the absolute values of the slopes were 0.018 and 0.004, respectively. The larger the absolute value of the slope, the faster the community variability. The zooplankton community in the three reservoirs was less stable than the phytoplankton community and more sensitive to environmental changes, and the degree of variation was greater. The higher the degree of eutrophication of the reservoir, the more obvious this phenomenon. VPA showed that the changes in plankton communities in Huaxi Reservoir and Hailong Reservoir were mainly influenced by water temperature and eutrophication factors. The changes in planktonic community in Goupitan Reservoir were mainly influenced by water temperature and chemical factors. The driving factors of Huaxi Reservoir were water temperature, TP, permanganate index, and SD. The driving factors of Goupitan Reservoir were water temperature, NO3-- N, and pH. The driving factors of Hailong Reservoir were water temperature and TP. Nutrients and water temperature were the main factors affecting the stability of plankton communities in reservoirs.


Assuntos
Monitoramento Ambiental , Fitoplâncton , Zooplâncton , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/classificação , Zooplâncton/classificação , China , Animais , Rotíferos/crescimento & desenvolvimento , Qualidade da Água , Eutrofização , Copépodes/crescimento & desenvolvimento , Cladocera/crescimento & desenvolvimento , Plâncton/classificação , Cianobactérias/crescimento & desenvolvimento , Dinâmica Populacional
2.
PLoS One ; 19(7): e0306440, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38991030

RESUMO

Basin-scale patterns of biodiversity for zooplankton in the ocean may provide valuable insights for understanding the impact of climate change and global warming on the marine ecosystem. However, studies on this topic remain scarce or unavailable in vast regions of the world ocean, particularly in large regions where the amount and quality of available data are limited. In this study, we used a 27-year (1993-2019) database on species occurrence of planktonic copepods in the South Pacific, along with associated oceanographic variables, to examine their spatial patterns of biodiversity in the upper 200 m of the ocean. The aim of this study was to identify ecological regions and the environmental predictors explaining such patterns. It was found that hot and cold spots of diversity, and distinctive species assemblages were linked to major ocean currents and large regions over the basin, with increasing species richness over the subtropical areas on the East and West sides of the South Pacific. While applying the spatial models, we showed that the best environmental predictors for diversity and species composition were temperature, salinity, chlorophyll-a concentration, oxygen concentration, and the residual autocorrelation. Nonetheless, the observed spatial patterns and derived environmental effects were found to be strongly influenced by sampling coverage over space and time, revealing a highly under-sampled basin. Our findings provide an assessment of copepods diversity patterns and their potential drivers for the South Pacific Ocean, but they also stress the need for strengthening the data bases of planktonic organisms, as they can act as suitable indicators of ecosystem response to climate change at basin scale.


Assuntos
Biodiversidade , Mudança Climática , Copépodes , Animais , Copépodes/fisiologia , Oceano Pacífico , Zooplâncton/fisiologia , Ecossistema , Temperatura , Clorofila A/análise , Salinidade
3.
PeerJ ; 12: e17516, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881863

RESUMO

Bioluminescence is light chemically produced by an organism. It is widespread across all major marine phyla and has evolved multiple times, resulting in a high diversity of spectral properties and first flash kinetic parameters (FFKP). The bioluminescence of a system is often a good proxy for planktonic biomass. The species-specific parameters of bioluminescent displays can be measured to identify species in situ and describe planktonic biodiversity. Most bioluminescent organisms will flash when mechanically stimulated i.e., when subjected to supra-threshold levels of shear stress. Here we compare first flash kinetic parameters such as flash duration, peak intensity, rise time, decay time, first-flash mechanically stimulated light and e-folding time obtained with the commercially available Underwater Bioluminescence Assessment Tool (UBAT). We provide descriptions of the first flash kinetic parameters of several species of dinoflagellates Pyrocystis fusiformis, Pyrocystis noctiluca, Pyrodinium bahamense, Lingulodinium polyedra, Alexandrium monilatum and two zooplankton (the ctenophore Mnemiopsis leidyi and the larvacean Oikopleura sp.). FFKPs are then compared and discussed using non-parametric analyses of variance (ANOVAs), hierarchical clustering and a linear discriminant analysis to assess the ability to use bioluminescence signatures for identification. Once the first flash kinetic parameters of a bioluminescent species have been described, it is possible to detect its presence using emissions collected by in situ bathyphotometers. Assessing abundance and diversity of bioluminescent species may therefore be possible.


Assuntos
Biodiversidade , Dinoflagellida , Medições Luminescentes , Zooplâncton , Zooplâncton/fisiologia , Animais , Dinoflagellida/classificação , Dinoflagellida/fisiologia , Medições Luminescentes/métodos , Especificidade da Espécie
4.
Harmful Algae ; 136: 102657, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38876528

RESUMO

The bloom-forming species Microcystis wesenbergii and M. aeruginosa occur in many lakes globally, and may exhibit alternating blooms both spatially and temporally. As environmental changes increase, cyanobacteria bloom in more and more lakes and are often dominated by M. wesenbergii. The adverse impact of M. aeruginosa on co-existing organisms including zooplanktonic species has been well-studied, whereas studies of M. wesenbergii are limited. To compare effects of these two species on zooplankton, we explored effects of exudates from different strains of microcystin-producing M. aeruginosa (Ma905 and Ma526) and non-microcystin-producing M. wesenbergii (Mw908 and Mw929), on reproduction by the model zooplankter Daphnia magna in both chronic and acute exposure experiments. Specifically, we tested physiological, biochemical, molecular and transcriptomic characteristics of D. magna exposed to Microcystis exudates. We observed that body length and egg and offspring number of the daphnid increased in all treatments. Among the four strains tested, Ma526 enhanced the size of the first brood, as well as total egg and offspring number. Microcystis exudates stimulated expression of specific genes that induced ecdysone, juvenile hormone, triacylglycerol and vitellogenin biosynthesis, which, in turn, enhanced egg and offspring production of D. magna. Even though all strains of Microcystis affected growth and reproduction, large numbers of downregulated genes involving many essential pathways indicated that the Ma905 strain might contemporaneously induce damage in D. magna. Our study highlights the necessity of including M. wesenbergii into the ecological risk evaluation of cyanobacteria blooms, and emphasizes that consequences to zooplankton may not be clear-cut when assessments are based upon production of microcystins alone.


Assuntos
Daphnia , Microcystis , Reprodução , Microcystis/fisiologia , Microcystis/crescimento & desenvolvimento , Animais , Daphnia/fisiologia , Daphnia/crescimento & desenvolvimento , Microcistinas/metabolismo , Zooplâncton/fisiologia , Proliferação Nociva de Algas , Lagos/microbiologia
5.
Sci Rep ; 14(1): 14211, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902303

RESUMO

Southern right whales (SRWs, Eubalaena australis) have been observed feeding both at and below the surface (< 10 m) in Golfo Nuevo (42°42' S, 64°30' W), Península Valdés, Argentina, an area traditionally recognized as calving ground. In addition, we documented diving feeding behavior in SRWs during their stay in this gulf, which has not been previously described. We assessed this behavior using suction-cup-attached video-imaging tags (CRITTERCAMs) on individual whales. A total of eight CRITTERCAM deployments were successful, and feeding events were documented in all SRWs successfully equipped with CRITTERCAMs. The highest speeds occurred during the ascent phase, and the average diving time was 6 min 45 s ± 3 min 41 s for SRWs. Concurrently, zooplankton samples were collected from the subsurface and bottom of the water in areas where tagged whales dived to assess differences in composition, abundance, and biomass. Copepods dominated the upper layer, while euphausiids were more abundant in the deeper sample. Furthermore, zooplankton total biomass was five times higher at depth (2515.93 mg/m3) compared to the subsurface (500.35 mg/m3). Differences in zooplankton characteristics between depths, combined with CRITTERCAM videos, indicated that SRWs exploit high concentrations of organisms near the seafloor during daytime feeding dives. This study provides baseline insights into how SRWs utilize Península Valdés during their stay in the area.


Assuntos
Comportamento Alimentar , Baleias , Zooplâncton , Animais , Argentina , Zooplâncton/fisiologia , Baleias/fisiologia , Comportamento Alimentar/fisiologia , Mergulho , Comportamento Predatório/fisiologia
6.
Mar Pollut Bull ; 204: 116524, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38843705

RESUMO

We investigated the recent spatial variation in the mesozooplankton community on the broad shelf of the RSR MPA during the bloom season. The mesozooplankton community was geographically divided into three regions: the Terra Nova Bay polynya, the Ross Sea polynya, and the marginal polynya. Larval euphausiids were dominant in the two polynya regions, whereas copepods were predominant in the marginal polynya region. Salinity, sea ice, and dissolved oxygen related to the different water mass compositions were the most significant factors distinguishing the mesozooplankton community. The key environmental variable separating the three groups was salinity. In accordance with the relatively high mesozooplankton abundance in the polynya regions, the occurrence and size of the polynyas in the December Ross Sea are thought to affect the spatial distribution of mesozooplankton. Consequently, this study indicates that two polynyas in the Ross Sea are vital habitats for krill during summer. Our observation results provide fundamental information for evaluating marine ecosystems and establishing a management plan for the RSR MPA.


Assuntos
Copépodes , Ecossistema , Estações do Ano , Zooplâncton , Animais , Salinidade , Monitoramento Ambiental , Euphausiacea , Conservação dos Recursos Naturais
7.
Mol Ecol ; 33(13): e17425, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38847383

RESUMO

Annual rhythms are observed in living organisms with numerous ecological implications. In the zooplanktonic copepod Calanus finmarchicus, such rhythms are crucial regarding its phenology, body lipid accumulation, and global carbon storage. Climate change drives annual biological rhythms out of phase with the prevailing environmental conditions with yet unknown but potentially catastrophic consequences. However, the molecular dynamics underlying phenology are still poorly described. In a rhythmic analysis of C. finmarchicus annual gene expression, results reveal that more than 90% of the transcriptome shows significant annual rhythms, with abrupt and dramatic upheaval between the active and diapause life cycle states. This work explores the implication of the circadian clock in the annual timing, which may control epigenetic mechanisms to profoundly modulate gene expression in response to calendar time. Results also suggest an increased light sensitivity during diapause that would ensure the photoperiodic entrainment of the endogenous annual clock.


Assuntos
Relógios Circadianos , Copépodes , Diapausa , Transcriptoma , Animais , Copépodes/genética , Copépodes/fisiologia , Diapausa/genética , Relógios Circadianos/genética , Fotoperíodo , Estações do Ano , Mudança Climática , Zooplâncton/genética , Ritmo Circadiano/genética
8.
J Hazard Mater ; 475: 134890, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38876023

RESUMO

There is considerable inconsistency in results pertaining to the biomagnification of PAHs in aquatic systems. Zooplankton specifically play an important role controlling the fate and distribution of organic contaminants up the food chain, particularly in large plateau reservoirs. However, it remains largely unknown how secondary factors affect the magnification of organic compounds in zooplankton. The present study assessed plankton species and nutrients affecting the trophic transfer of PAHs through the micro-food chain in plateau reservoirs, Guizhou Province China. Results show soluble ∑PAHs range from 99.9 - 147.3 ng L-1, and concentrations of ∑PAHs in zooplankton range from 1003.2 - 22441.3, with a mean of 4460.7 ng g-1 dw. Trophic magnification factors (TMFs) > 1 show biomagnifications of PAHs from phytoplankton to zooplankton. The main mechanisms for trophic magnification > 1 are 1) small Copepoda, Cladocera and Rotifera are prey for larger N. schmackeri and P. tunguidus, and 2) the δ15N and TLs of zooplankton are increasing with the increasing nutrients TN, NO3- and CODMn. As a result, log PAHs concentrations in zooplankton are positively correlated with the trophic levels (TLs) of zooplankton, and log BAFs of the PAHs in zooplankton are increasing with increasing TLs and log Kow. Temperature further enhances TMFs and biomagnifications of PAHs as noted by temperature related reductions in δ15N. There are also available soluble PAHs in the water column which are assimilated with increasing phytoplankton biomass within the taxa groups, diatoms, dinoflagellates and chlorophytes. Notable TMFs of PAHs in zooplankton in Guizhou plateau reservoirs are not significantly affected by phytoplankton and zooplankton biomass dilutions. The present study demonstrates the important roles of species selection, nutrients and temperature in the environmental fate of PAHs in freshwaters.


Assuntos
Cadeia Alimentar , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Zooplâncton , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , China , Animais , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Zooplâncton/metabolismo , Monitoramento Ambiental , Fitoplâncton/metabolismo , Nutrientes/análise , Nutrientes/metabolismo , Plâncton/metabolismo
9.
J Environ Manage ; 365: 121497, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897077

RESUMO

Water diversion can effectively alleviate water resource shortages and improve water environmental conditions, while also causing unknown ecological consequences, in particular, the assembly mechanism of zooplankton communities in the affected areas will become more complex after long-term water transfer. Taking Nansi Lake, the second largest impounded lake along the eastern route of China's South to North Water Diversion Project (SNWDP), as an example, the composition and diversity of zooplankton communities in the lake area and estuaries during the water diversion period (WDP) and non-water diversion period (NWDP) were studied. The potential assembly process of zooplankton communities was further explored, and the stability of communities in different regions during different periods was compared. The related results indicated that the changes in water quality conditions induced by water diversion had a relatively weak impact on the zooplankton communities. In the assembly mechanism of zooplankton communities, stochastic process played a more important role during both WDP or NWDP, and the proportion of deterministic process was relatively higher during NWDP, which may be related to the greater role of total nitrogen (TN) in the assembly of the zooplankton communities. The network analysis and cohesion calculation results showed that the stability of the zooplankton communities in the lake area sites was higher than that in the estuary sites, and the stability during NWDP was higher than that during WDP. In sum, the stability of zooplankton communities displayed a degree of change affected by water diversion activities, but the community assembly was not significantly influenced by the water quality fluctuations after about relatively long-term water diversion. This study provides an in-depth understanding of the ecological effects of water diversion on the biological communities in the affected lake, which is beneficial to the management and regulation of long-term water diversion projects.


Assuntos
Lagos , Zooplâncton , Animais , China , Qualidade da Água , Nitrogênio/análise
10.
J Math Biol ; 89(2): 15, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884837

RESUMO

Mycoloop is an important aquatic food web composed of phytoplankton, chytrids (one dominant group of parasites in aquatic ecosystems), and zooplankton. Chytrids infect phytoplankton and fragment them for easy consumption by zooplankton. The free-living chytrid zoospores are also a food resource for zooplankton. A dynamic reaction-diffusion-advection mycoloop model is proposed to describe the Phytoplankton-chytrid-zooplankton interactions in a poorly mixed aquatic environment. We analyze the dynamics of the mycoloop model to obtain dissipativity, steady state solutions, and persistence. We rigorously derive several critical thresholds for phytoplankton or zooplankton invasion and chytrid transmission among phytoplankton. Numerical diagrams show that varying ecological factors affect the formation and breakup of the mycoloop, and zooplankton can inhibit chytrid transmission among phytoplankton. Furthermore, this study suggests that mycoloop may either control or cause phytoplankton blooms.


Assuntos
Cadeia Alimentar , Conceitos Matemáticos , Modelos Biológicos , Fitoplâncton , Zooplâncton , Fitoplâncton/fisiologia , Fitoplâncton/microbiologia , Fitoplâncton/crescimento & desenvolvimento , Zooplâncton/fisiologia , Zooplâncton/microbiologia , Animais , Quitridiomicetos/fisiologia , Quitridiomicetos/patogenicidade , Ecossistema , Dinâmica Populacional/estatística & dados numéricos , Simulação por Computador
11.
Chaos ; 34(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38829789

RESUMO

This paper reports an important conclusion that self-diffusion is not a necessary condition for inducing Turing patterns, while taxis could establish complex pattern phenomena. We investigate pattern formation in a zooplankton-phytoplankton model incorporating phytoplankton-taxis, where phytoplankton-taxis describes the zooplankton that tends to move toward the high-densities region of the phytoplankton population. By using the phytoplankton-taxis sensitivity coefficient as the Turing instability threshold, one shows that the model exhibits Turing instability only when repulsive phytoplankton-taxis is added into the system, while the attractive-type phytoplankton-taxis cannot induce Turing instability of the system. In addition, the system does not exhibit Turing instability when the phytoplankton-taxis disappears. Numerically, we display the complex patterns in 1D, 2D domains and on spherical and zebra surfaces, respectively. In summary, our results indicate that the phytoplankton-taxis plays a pivotal role in giving rise to the Turing pattern formation of the model. Additionally, these theoretical and numerical results contribute to our understanding of the complex interaction dynamics between zooplankton and phytoplankton populations.


Assuntos
Modelos Biológicos , Fitoplâncton , Zooplâncton , Animais , Zooplâncton/fisiologia , Fitoplâncton/fisiologia , Simulação por Computador , Dinâmica não Linear , Ecossistema , Plâncton/fisiologia , Dinâmica Populacional
12.
Glob Chang Biol ; 30(6): e17358, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38822590

RESUMO

Human activities and climate change cause abiotic factors to fluctuate through time, sometimes passing thresholds for organismal reproduction and survival. Multiple stressors can independently or interactively impact organisms; however, few studies have examined how they interact when they overlap spatially but occur asynchronously. Fluctuations in salinity have been found in freshwater habitats worldwide. Meanwhile, heatwaves have become more frequent and extreme. High salinity pulses and heatwaves are often decoupled in time but can still collectively impact freshwater zooplankton. The time intervals between them, during which population growth and community recovery could happen, can influence combined effects, but no one has examined these effects. We conducted a mesocosm experiment to examine how different recovery times (0-, 3-, 6-week) between salt treatment and heatwave exposure influence their combined effects. We hypothesized that antagonistic effects would appear when having short recovery time, because previous study found that similar species were affected by the two stressors, but effects would become additive with longer recovery time since fully recovered communities would respond to heatwave similar to undisturbed communities. Our findings showed that, when combined, the two-stressor joint impacts changed from antagonistic to additive with increased recovery time between stressors. Surprisingly, full compositional recovery was not achieved despite a recovery period that was long enough for population growth, suggesting legacy effects from earlier treatment. The recovery was mainly driven by small organisms, such as rotifers and small cladocerans. As a result, communities recovering from previous salt exposure responded differently to heatwaves than undisturbed communities, leading to similar zooplankton communities regardless of the recovery time between stressors. Our research bolsters the understanding and management of multiple-stressor issues by revealing that prior exposure to one stressor has long-lasting impacts on community recovery that can lead to unexpected joint effects of multiple stressors.


Assuntos
Mudança Climática , Salinidade , Estresse Fisiológico , Zooplâncton , Animais , Zooplâncton/fisiologia , Fatores de Tempo , Água Doce , Temperatura Alta/efeitos adversos , Ecossistema
13.
Sci Adv ; 10(26): eadk6833, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38924405

RESUMO

Seamounts are ecological oases nurturing abundant fisheries resources and epibenthic megafauna in the vast oligotrophic ocean. Despite their significance, the formation mechanisms underlying these seamount ecological oases remain uncertain. To shed light on this phenomenon, this study conducted interdisciplinary in situ observations focusing on a shallow seamount in the oligotrophic ocean. The findings show that the seamount's topography interferes with the oceanic current to generate lee waves, effectively enhancing the nutrient supply to the euphotic layer downstream of the seamount. This continuous supply enhances phytoplankton biomass and subsequently the grazing and diurnal vertical migration of zooplankton, rapidly transporting the augmented phytoplankton biomass to the aphotic layer. Unlike the cyclonic eddies that move in the upper ocean, seamounts stand at fixed locations creating a more efficient and steady active transport loop. This active transport loop connects the euphotic and twilight zones, potentially conveying nourishment to benthic ecosystems to create stereoscopic oases in the oligotrophic ocean.


Assuntos
Ecossistema , Oceanos e Mares , Fitoplâncton , Zooplâncton , Animais , Biomassa , Movimentos da Água
14.
Environ Res ; 255: 119183, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38768883

RESUMO

Under pressure from climate change and fishing, the Southern Ocean ecosystems have been changing. Zooplankton plays a vital role in the food web of the Southern Ocean and is crucial for maintaining ecosystem stability. Investigating the circumpolar-scale species composition and biodiversity of zooplankton is crucial for ensuring ecosystem-based conservation and management of the Southern Ocean in a changing climate. Here, we utilized eDNA metabarcoding to assess the biodiversity of zooplankton in the surface seawater surrounding the Antarctica based on samples collected during two expeditions spanning from 2021 to 2022. The main purpose of this paper is to provide more baseline information about circumpolar zooplankton biodiversity based on the emerging eDNA metabarcoding tool. This comprehensive approach led to the identification of over 300 distinct zooplankton species, forming a diverse community dominated by Jellyfish, Mollusca and Polychaete. Surprisingly, common dominant taxonomic groups such as krill and copepods in the Southern Ocean did not show high relative abundance (reads) in surface seawater. The results of redundancy analysis (RDA) and correlation analysis highlighted that water temperature and chlorophyll a had the most significant impact on the reads and diversity of zooplankton. Notably, the influence of water temperature on zooplankton seemed to be primarily indirect, potentially mediated by its effects on primary productivity. Increasing in primary production might lead to lower zooplankton biodiversity in the Southern Ocean in future. This research underscores the effectiveness of eDNA metabarcoding as a valuable tool for monitoring zooplankton diversity in open seas. Given the ongoing changes in temperature, sea ice extent and their impact on primary production, our findings lay a crucial foundation for using eDNA techniques to establish long-term biodiversity monitoring programs across extensive marine ecosystems in the future.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Zooplâncton , Zooplâncton/genética , Zooplâncton/classificação , Animais , Código de Barras de DNA Taxonômico/métodos , Regiões Antárticas , Oceanos e Mares , Água do Mar
15.
Water Res ; 258: 121779, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772321

RESUMO

Aquatic biodiversity plays a significant role in maintaining the ecological balance and the overall health of riverine ecosystems. Elevation is an important factor influencing biodiversity patterns. However, it is still unclear through which pathway elevation influences riverine biodiversity at different trophic levels. In this study, the elevation-associated pathways affecting aquatic biodiversity at different trophic levels were explored using structural equation modeling (SEM) and taking the Bayin River, China as the case. The results showed that the elevational patterns were different among aquatic organisms at different trophic levels. For macroinvertebrates and bacteria, the pattern was hump-shaped; while for phytoplankton and zooplankton, it was U-shaped. Building upon these observed elevational patterns, our investigation delved into the direct and indirect pathways through which elevation influences aquatic biodiversity. We found that elevation exerts an impact on aquatic biodiversity via indirect pathways. For all aquatic organisms investigated, the major pathway through which elevation influences biodiversity is mediated by water temperature and water quality. For aquatic organisms at higher trophic levels, like macroinvertebrates and zooplankton, the crucial pathway is also mediated by the landscape. The results of this study contributed to understanding the effects of elevation on aquatic organisms at different trophic levels and provided an important basis for the assessment of riverine biodiversity at large scales.


Assuntos
Biodiversidade , Rios , Zooplâncton , Animais , China , Fitoplâncton , Altitude , Organismos Aquáticos , Invertebrados
16.
PLoS One ; 19(5): e0303263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748719

RESUMO

Environmental DNA (eDNA) is an increasingly useful method for detecting pelagic animals in the ocean but typically requires large water volumes to sample diverse assemblages. Ship-based pelagic sampling programs that could implement eDNA methods generally have restrictive water budgets. Studies that quantify how eDNA methods perform on low water volumes in the ocean are limited, especially in deep-sea habitats with low animal biomass and poorly described species assemblages. Using 12S rRNA and COI gene primers, we quantified assemblages comprised of micronekton, coastal forage fishes, and zooplankton from low volume eDNA seawater samples (n = 436, 380-1800 mL) collected at depths of 0-2200 m in the southern California Current. We compared diversity in eDNA samples to concurrently collected pelagic trawl samples (n = 27), detecting a higher diversity of vertebrate and invertebrate groups in the eDNA samples. Differences in assemblage composition could be explained by variability in size-selectivity among methods and DNA primer suitability across taxonomic groups. The number of reads and amplicon sequences variants (ASVs) did not vary substantially among shallow (<200 m) and deep samples (>600 m), but the proportion of invertebrate ASVs that could be assigned a species-level identification decreased with sampling depth. Using hierarchical clustering, we resolved horizontal and vertical variability in marine animal assemblages from samples characterized by a relatively low diversity of ecologically important species. Low volume eDNA samples will quantify greater taxonomic diversity as reference libraries, especially for deep-dwelling invertebrate species, continue to expand.


Assuntos
Organismos Aquáticos , Biodiversidade , DNA Ambiental , Animais , DNA Ambiental/genética , DNA Ambiental/análise , Organismos Aquáticos/genética , Organismos Aquáticos/classificação , Água do Mar , Peixes/genética , Peixes/classificação , Zooplâncton/genética , Zooplâncton/classificação , Ecossistema , Invertebrados/genética , Invertebrados/classificação
17.
Environ Res ; 252(Pt 3): 119045, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704014

RESUMO

Endocrine disrupting compounds (EDCs) pose a significant ecological risk, particularly in aquatic ecosystems. EDCs have become a focal point in ecotoxicology, and their identification and regulation have become a priority. Zooplankton have gained global recognition as bioindicators, benefiting from rigorous standardization and regulatory validation processes. This review aims to provide a comprehensive summary of zooplankton-based adverse outcome pathways (AOPs) with a focus on EDCs as toxicants and the utilisation of freshwater zooplankton as bioindicators in ecotoxicological assessments. This review presents case studies in which zooplankton have been used in the development of AOPs, emphasizing the identification of molecular initiating events (MIEs) and key events (KEs) specific to zooplankton exposed to EDCs. Zooplankton-based AOPs may become an important resource for understanding the intricate processes by which EDCs impair the endocrine system. Furthermore, the data sources, experimental approaches, advantages, and challenges associated with zooplankton-based AOPs are discussed. Zooplankton-based AOPs framework can provide vital tools for consolidating toxicological knowledge into a structured toxicity pathway of EDCs, offering a transformative platform for facilitating enhanced risk assessment and chemical regulation.


Assuntos
Rotas de Resultados Adversos , Disruptores Endócrinos , Poluentes Químicos da Água , Zooplâncton , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/análise , Zooplâncton/efeitos dos fármacos , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
18.
J Math Biol ; 89(1): 8, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801565

RESUMO

Decline of the dissolved oxygen in the ocean is a growing concern, as it may eventually lead to global anoxia, an elevated mortality of marine fauna and even a mass extinction. Deoxygenation of the ocean often results in the formation of oxygen minimum zones (OMZ): large domains where the abundance of oxygen is much lower than that in the surrounding ocean environment. Factors and processes resulting in the OMZ formation remain controversial. We consider a conceptual model of coupled plankton-oxygen dynamics that, apart from the plankton growth and the oxygen production by phytoplankton, also accounts for the difference in the timescales for phyto- and zooplankton (making it a "slow-fast system") and for the implicit effect of upper trophic levels resulting in density dependent (nonlinear) zooplankton mortality. The model is investigated using a combination of analytical techniques and numerical simulations. The slow-fast system is decomposed into its slow and fast subsystems. The critical manifold of the slow-fast system and its stability is then studied by analyzing the bifurcation structure of the fast subsystem. We obtain the canard cycles of the slow-fast system for a range of parameter values. However, the system does not allow for persistent relaxation oscillations; instead, the blowup of the canard cycle results in plankton extinction and oxygen depletion. For the spatially explicit model, the earlier works in this direction did not take into account the density dependent mortality rate of the zooplankton, and thus could exhibit Turing pattern. However, the inclusion of the density dependent mortality into the system can lead to stationary Turing patterns. The dynamics of the system is then studied near the Turing bifurcation threshold. We further consider the effect of the self-movement of the zooplankton along with the turbulent mixing. We show that an initial non-uniform perturbation can lead to the formation of an OMZ, which then grows in size and spreads over space. For a sufficiently large timescale separation, the spread of the OMZ can result in global anoxia.


Assuntos
Simulação por Computador , Modelos Biológicos , Oxigênio , Fitoplâncton , Zooplâncton , Animais , Oxigênio/metabolismo , Zooplâncton/metabolismo , Zooplâncton/crescimento & desenvolvimento , Zooplâncton/fisiologia , Fitoplâncton/metabolismo , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/fisiologia , Oceanos e Mares , Plâncton/metabolismo , Plâncton/crescimento & desenvolvimento , Conceitos Matemáticos , Ecossistema , Água do Mar/química , Cadeia Alimentar , Anaerobiose
19.
Math Biosci ; 372: 109202, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692481

RESUMO

Phytoplankton bloom received considerable attention for many decades. Different approaches have been used to explain the bloom phenomena. In this paper, we study a Nutrient-Phytoplankton-Zooplankton (NPZ) model consisting of a periodic driving force in the growth rate of phytoplankton due to solar radiation and analyse the dynamics of the corresponding autonomous and non-autonomous systems in different parametric regions. Then we introduce a novel aspect to extend the model by incorporating another periodic driving force into the growth term of the phytoplankton due to sea surface temperature (SST), a key point of innovation. Temperature dependency of the maximum growth rate (µmax) of the phytoplankton is modelled by the well-known Q10 formulation: [Formula: see text] , where µ0 is maximum growth at 0oC. Stability conditions for all three equilibrium points are expressed in terms of the new parameter ρ2, which appears due to the incorporation of periodic driving forces. System dynamics is explored through a detailed bifurcation analysis, both mathematically and numerically, with respect to the light and temperature dependent phytoplankton growth response. Bloom phenomenon is explained by the saddle point bloom mechanism even when the co-existing equilibrium point does not exist for some values of ρ2. Solar radiation and SST are modelled using sinusoidal functions constructed from satellite data. Our results of the proposed model describe the initiation of the phytoplankton bloom better than an existing model for the region 25-35° W, 40-45° N of the North Atlantic Ocean. An improvement of 14 days (approximately) is observed in the bloom initiation time. The rate of change method (ROC) is applied to predict the bloom initiation.


Assuntos
Modelos Biológicos , Fitoplâncton , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/fisiologia , Temperatura , Eutrofização , Animais , Zooplâncton/fisiologia , Zooplâncton/crescimento & desenvolvimento , Luz Solar
20.
Mar Drugs ; 22(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38786618

RESUMO

Ecophysiological stress and the grazing of diatoms are known to elicit the production of chemical defense compounds called oxylipins, which are toxic to a wide range of marine organisms. Here we show that (1) the viral infection and lysis of diatoms resulted in oxylipin production; (2) the suite of compounds produced depended on the diatom host and the infecting virus; and (3) the virus-mediated oxylipidome was distinct, in both magnitude and diversity, from oxylipins produced due to stress associated with the growth phase. We used high-resolution accurate-mass mass spectrometry to observe changes in the dissolved lipidome of diatom cells infected with viruses over 3 to 4 days, compared to diatom cells in exponential, stationary, and decline phases of growth. Three host virus pairs were used as model systems: Chaetoceros tenuissimus infected with CtenDNAV; C. tenuissimus infected with CtenRNAV; and Chaetoceros socialis infected with CsfrRNAV. Several of the compounds that were significantly overproduced during viral infection are known to decrease the reproductive success of copepods and interfere with microzooplankton grazing. Specifically, oxylipins associated with allelopathy towards zooplankton from the 6-, 9-, 11-, and 15-lipogenase (LOX) pathways were significantly more abundant during viral lysis. 9-hydroperoxy hexadecatetraenoic acid was identified as the strongest biomarker for the infection of Chaetoceros diatoms. C. tenuissimus produced longer, more oxidized oxylipins when lysed by CtenRNAV compared to CtenDNAV. However, CtenDNAV caused a more statistically significant response in the lipidome, producing more oxylipins from known diatom LOX pathways than CtenRNAV. A smaller set of compounds was significantly more abundant in stationary and declining C. tenuissimus and C. socialis controls. Two allelopathic oxylipins in the 15-LOX pathway and essential fatty acids, arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) were more abundant in the stationary phase than during the lysis of C. socialis. The host-virus pair comparisons underscore the species-level differences in oxylipin production and the value of screening more host-virus systems. We propose that the viral infection of diatoms elicits chemical defense via oxylipins which deters grazing with downstream trophic and biogeochemical effects.


Assuntos
Alelopatia , Diatomáceas , Oxilipinas , Oxilipinas/metabolismo , Animais , Organismos Aquáticos , Zooplâncton
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...