Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 603
Filtrar
1.
Commun Biol ; 7(1): 826, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972875

RESUMO

Classically, G protein-coupled receptors (GPCRs) promote signaling at the plasma membrane through activation of heterotrimeric Gαßγ proteins, followed by the recruitment of GPCR kinases and ßarrestin (ßarr) to initiate receptor desensitization and internalization. However, studies demonstrated that some GPCRs continue to signal from internalized compartments, with distinct cellular responses. Both ßarr and Gßγ contribute to such non-canonical endosomal G protein signaling, but their specific roles and contributions remain poorly understood. Here, we demonstrate that the vasopressin V2 receptor (V2R)-ßarr complex scaffolds Gßγ at the plasma membrane through a direct interaction with ßarr, enabling its transport to endosomes. Gßγ subsequently potentiates Gαs endosomal translocation, presumably to regenerate an endosomal pool of heterotrimeric Gs. This work shines light on the mechanism underlying G protein subunits translocation from the plasma membrane to the endosomes and provides a basis for understanding the role of ßarr in mediating sustained G protein signaling.


Assuntos
Endossomos , Subunidades beta da Proteína de Ligação ao GTP , Subunidades gama da Proteína de Ligação ao GTP , Transporte Proteico , Receptores de Vasopressinas , beta-Arrestinas , Humanos , beta-Arrestinas/metabolismo , Membrana Celular/metabolismo , Endossomos/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/genética , Células HEK293 , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Transdução de Sinais
2.
Medicine (Baltimore) ; 103(28): e38943, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38996114

RESUMO

Over time, several studies have been conducted to demonstrate the functions of the neurotransmitter 5-hydroxytryptamine (5-HT), better known as serotonin. This neurotransmitter is associated with the modulation of various social and physiological behaviors, and its dysregulation has consequences at the behavioral level, leading to various neurophysiological disorders. Disorders such as anxiety, depression, schizophrenia, epilepsy, sexual disorders, and eating disorders, have been closely linked to variations in 5-HT concentrations and modifications in brain structures, including the raphe nuclei (RN), prefrontal cortex, basal ganglia, hippocampus, and hypothalamus, among others. The involvement of ß-arrestin proteins has been implicated in the modulation of the serotonergic receptor response, as well as the activation of different signaling pathways related to the serotonergic system, this is particularly relevant in depressive disorders. This review will cover the implications of alterations in 5-HT receptor expression in depressive disorders in one hand and how ß-arrestin proteins modulate the response mediated by these receptors in the other hand.


Assuntos
Receptores de Serotonina , beta-Arrestinas , Humanos , beta-Arrestinas/metabolismo , Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Transdução de Sinais/fisiologia , Transtorno Depressivo/metabolismo , Transtorno Depressivo/fisiopatologia , Encéfalo/metabolismo , Depressão/metabolismo
3.
Sci Signal ; 17(842): eadi0934, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917219

RESUMO

The stabilization of different active conformations of G protein-coupled receptors is thought to underlie the varying efficacies of biased and balanced agonists. Here, profiling the activation of signal transducers by angiotensin II type 1 receptor (AT1R) agonists revealed that the extent and kinetics of ß-arrestin binding exhibited substantial ligand-dependent differences, which were lost when receptor internalization was inhibited. When AT1R endocytosis was prevented, even weak partial agonists of the ß-arrestin pathway acted as full or near-full agonists, suggesting that receptor conformation did not exclusively determine ß-arrestin recruitment. The ligand-dependent variance in ß-arrestin translocation was much larger at endosomes than at the plasma membrane, showing that ligand efficacy in the ß-arrestin pathway was spatiotemporally determined. Experimental investigations and mathematical modeling demonstrated how multiple factors concurrently shaped the effects of agonists on endosomal receptor-ß-arrestin binding and thus determined the extent of functional selectivity. Ligand dissociation rate and G protein activity had particularly strong, internalization-dependent effects on the receptor-ß-arrestin interaction. We also showed that endocytosis regulated the agonist efficacies of two other receptors with sustained ß-arrestin binding: the V2 vasopressin receptor and a mutant ß2-adrenergic receptor. In the absence of endocytosis, the agonist-dependent variance in ß-arrestin2 binding was markedly diminished. Our results suggest that endocytosis determines the spatiotemporal bias in GPCR signaling and can aid in the development of more efficacious, functionally selective compounds.


Assuntos
Endocitose , Receptor Tipo 1 de Angiotensina , Transdução de Sinais , beta-Arrestinas , Endocitose/fisiologia , Humanos , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 1 de Angiotensina/genética , beta-Arrestinas/metabolismo , beta-Arrestinas/genética , Células HEK293 , Receptores de Vasopressinas/metabolismo , Receptores de Vasopressinas/genética , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/genética , Endossomos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Animais , Ligantes , Ligação Proteica , Transporte Proteico
4.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928196

RESUMO

LPA3 receptors were expressed in TREx HEK 293 cells, and their signaling and phosphorylation were studied. The agonist, lysophosphatidic acid (LPA), increased intracellular calcium and ERK phosphorylation through pertussis toxin-insensitive processes. Phorbol myristate acetate, but not LPA, desensitizes LPA3-mediated calcium signaling, the agonists, and the phorbol ester-induced LPA3 internalization. Pitstop 2 (clathrin heavy chain inhibitor) markedly reduced LPA-induced receptor internalization; in contrast, phorbol ester-induced internalization was only delayed. LPA induced rapid ß-arrestin-LPA3 receptor association. The agonist and the phorbol ester-induced marked LPA3 receptor phosphorylation, and phosphorylation sites were detected using mass spectrometry. Phosphorylated residues were detected in the intracellular loop 3 (S221, T224, S225, and S229) and in the carboxyl terminus (S321, S325, S331, T333, S335, Y337, and S343). Interestingly, phosphorylation sites are within sequences predicted to constitute ß-arrestin binding sites. These data provide insight into LPA3 receptor signaling and regulation.


Assuntos
Lisofosfolipídeos , Receptores de Ácidos Lisofosfatídicos , Transdução de Sinais , Humanos , beta-Arrestinas/metabolismo , Sítios de Ligação , Sinalização do Cálcio , Células HEK293 , Lisofosfolipídeos/metabolismo , Fosforilação , Receptores de Ácidos Lisofosfatídicos/metabolismo
5.
J Phys Chem Lett ; 15(23): 6137-6145, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38832827

RESUMO

Desensitization of G-protein-coupled receptors (GPCR) is a general regulatory mechanism adopted by biological organisms against overstimulation of G protein signaling. Although the details of the mechanism are extensively studied, it is not easy to gain an overarching understanding of the process constituted by a multitude of molecular events with vastly differing time scales. To offer a semiquantitative yet predictive understanding of the mechanism, we formulate a kinetic model for the G protein signaling and desensitization by considering essential biochemical steps from ligand binding to receptor internalization. The internalization, followed by receptor depletion from the plasma membrane, attenuates the downstream signal. Together with the kinetic model and its full numerics of the expression derived for the dose-response relation, an approximated form of the expression clarifies the role played by the individual biochemical processes and allows us to identify four distinct regimes for the downregulation that emerge from the balance between phosphorylation, dephosphorylation, and the cellular level of ß-arrestin.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Cinética , Fosforilação , beta-Arrestinas/metabolismo , Membrana Celular/metabolismo , Modelos Biológicos , Ligantes
6.
Pharmacol Rev ; 76(4): 599-619, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38719480

RESUMO

G-protein-coupled receptors (GPCRs) compose the largest family of transmembrane receptors and are targets of approximately one-third of Food and Drug Administration-approved drugs owing to their involvement in almost all physiologic processes. GPCR signaling occurs through the activation of heterotrimeric G-protein complexes and ß-arrestins, both of which serve as transducers, resulting in distinct cellular responses. Despite seeming simple at first glance, accumulating evidence indicates that activation of either transducer is not a straightforward process as a stimulation of a single molecule has the potential to activate multiple signaling branches. The complexity of GPCR signaling arises from the aspects of G-protein-coupling selectivity, biased signaling, interpathway crosstalk, and variable molecular modifications generating these diverse signaling patterns. Numerous questions relative to these aspects of signaling remained unanswered until the recent development of CRISPR genome-editing technology. Such genome editing technology presents opportunities to chronically eliminate the expression of G-protein subunits, ß-arrestins, G-protein-coupled receptor kinases (GRKs), and many other signaling nodes in the GPCR pathways at one's convenience. Here, we review the practicality of using CRISPR-derived knockout (KO) cells in the experimental contexts of unraveling the molecular details of GPCR signaling mechanisms. To mention a few, KO cells have revealed the contribution of ß-arrestins in ERK activation, Gα protein selectivity, GRK-based regulation of GPCRs, and many more, hence validating its broad applicability in GPCR studies. SIGNIFICANCE STATEMENT: This review emphasizes the practical application of G-protein-coupled receptor (GPCR) transducer knockout (KO) cells in dissecting the intricate regulatory mechanisms of the GPCR signaling network. Currently available cell lines, along with accumulating KO cell lines in diverse cell types, offer valuable resources for systematically elucidating GPCR signaling regulation. Given the association of GPCR signaling with numerous diseases, uncovering the system-based signaling map is crucial for advancing the development of novel drugs targeting specific diseases.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Humanos , Animais , Linhagem Celular , beta-Arrestinas/metabolismo
7.
Pharmacol Rev ; 76(3): 358-387, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697858

RESUMO

G-protein coupled receptors (GPCRs) transduce a wide range of extracellular signals. They are key players in the majority of biologic functions including vision, olfaction, chemotaxis, and immunity. However, as essential as most of them are to body function and homeostasis, overactivation of GPCRs has been implicated in many pathologic diseases such as cancer, asthma, and heart failure (HF). Therefore, an important feature of G protein signaling systems is the ability to control GPCR responsiveness, and one key process to control overstimulation involves initiating receptor desensitization. A number of steps are appreciated in the desensitization process, including cell surface receptor phosphorylation, internalization, and downregulation. Rapid or short-term desensitization occurs within minutes and involves receptor phosphorylation via the action of intracellular protein kinases, the binding of ß-arrestins, and the consequent uncoupling of GPCRs from their cognate heterotrimeric G proteins. On the other hand, long-term desensitization occurs over hours to days and involves receptor downregulation or a decrease in cell surface receptor protein level. Of the proteins involved in this biologic phenomenon, ß-arrestins play a particularly significant role in both short- and long-term desensitization mechanisms. In addition, ß-arrestins are involved in the phenomenon of biased agonism, where the biased ligand preferentially activates one of several downstream signaling pathways, leading to altered cellular responses. In this context, this review discusses the different patterns of desensitization of the α 1-, α 2- and the ß adrenoceptors and highlights the role of ß-arrestins in regulating physiologic responsiveness through desensitization and biased agonism. SIGNIFICANCE STATEMENT: A sophisticated network of proteins orchestrates the molecular regulation of GPCR activity. Adrenoceptors are GPCRs that play vast roles in many physiological processes. Without tightly controlled desensitization of these receptors, homeostatic imbalance may ensue, thus precipitating various diseases. Here, we critically appraise the mechanisms implicated in adrenoceptor desensitization. A better understanding of these mechanisms helps identify new druggable targets within the GPCR desensitization machinery and opens exciting therapeutic fronts in the treatment of several pathologies.


Assuntos
Transdução de Sinais , Humanos , Animais , Receptores Adrenérgicos/metabolismo , Receptores Adrenérgicos/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , beta-Arrestinas/metabolismo
8.
Cell Rep ; 43(5): 114241, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38758647

RESUMO

The binding and function of ß-arrestins are regulated by specific phosphorylation motifs present in G protein-coupled receptors (GPCRs). However, the exact arrangement of phosphorylated amino acids responsible for establishing a stable interaction remains unclear. We employ a 1D sequence convolution model trained on GPCRs with established ß-arrestin-binding properties. With this approach, amino acid motifs characteristic of GPCRs that form stable interactions with ß-arrestins can be identified, a pattern that we name "arreSTick." Intriguingly, the arreSTick pattern is also present in numerous non-receptor proteins. Using proximity biotinylation assay and mass spectrometry analysis, we demonstrate that the arreSTick motif controls the interaction between many non-receptor proteins and ß-arrestin2. The HIV-1 Tat-specific factor 1 (HTSF1 or HTATSF1), a nuclear transcription factor, contains the arreSTick pattern, and its subcellular localization is influenced by ß-arrestin2. Our findings unveil a broader role for ß-arrestins in phosphorylation-dependent interactions, extending beyond GPCRs to encompass non-receptor proteins as well.


Assuntos
Motivos de Aminoácidos , Ligação Proteica , beta-Arrestinas , Fosforilação , Humanos , beta-Arrestinas/metabolismo , Células HEK293 , beta-Arrestina 2/metabolismo , Sequência de Aminoácidos , Estabilidade Proteica
9.
PLoS One ; 19(5): e0303507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38748623

RESUMO

Loss-of-function mutations in the type 2 vasopressin receptor (V2R) are a major cause of congenital nephrogenic diabetes insipidus (cNDI). In the context of partial cNDI, the response to desmopressin (dDAVP) is partially, but not entirely, diminished. For those with the partial cNDI, restoration of V2R function would offer a prospective therapeutic approach. In this study, we revealed that OPC-51803 (OPC5) and its structurally related V2R agonists could functionally restore V2R mutants causing partial cNDI by inducing prolonged signal activation. The OPC5-related agonists exhibited functional selectivity by inducing signaling through the Gs-cAMP pathway while not recruiting ß-arrestin1/2. We found that six cNDI-related V2R partial mutants (V882.53M, Y1283.41S, L1614.47P, T2736.37M, S3298.47R and S3338.51del) displayed varying degrees of plasma membrane expression levels and exhibited moderately impaired signaling function. Several OPC5-related agonists induced higher cAMP responses than AVP at V2R mutants after prolonged agonist stimulation, suggesting their potential effectiveness in compensating impaired V2R-mediated function. Furthermore, docking analysis revealed that the differential interaction of agonists with L3127.40 caused altered coordination of TM7, potentially contributing to the functional selectivity of signaling. These findings suggest that nonpeptide V2R agonists could hold promise as potential drug candidates for addressing partial cNDI.


Assuntos
Diabetes Insípido Nefrogênico , Receptores de Vasopressinas , Receptores de Vasopressinas/genética , Receptores de Vasopressinas/agonistas , Receptores de Vasopressinas/metabolismo , Humanos , Células HEK293 , Diabetes Insípido Nefrogênico/tratamento farmacológico , Diabetes Insípido Nefrogênico/genética , Diabetes Insípido Nefrogênico/metabolismo , Mutação , Transdução de Sinais/efeitos dos fármacos , AMP Cíclico/metabolismo , Desamino Arginina Vasopressina/farmacologia , beta-Arrestinas/metabolismo , Animais
10.
J Oral Biosci ; 66(2): 465-472, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614428

RESUMO

OBJECTIVES: Local anesthetics act on G protein-coupled receptors (GPCRs); thus, their potential as allosteric modulators of GPCRs has attracted attention. Intracellular signaling via GPCRs involves both G-protein- and ß-arrestin-mediated pathways. To determine the effects of local anesthetics on muscarinic acetylcholine receptors (mAChR), a family of GPCRs, we analyzed the effects of local anesthetics on mAChR-mediated Ca2+ responses and formation of receptor-ß-arrestin complexes in the HSY human parotid cell line. METHODS: Ca2+ responses were monitored by fura-2 spectrofluorimetry. Ligand-induced interactions between mAChR and ß-arrestin were examined using a ß-arrestin GPCR assay kit. RESULTS: Lidocaine reduced mAChR-mediated Ca2+ responses but did not change the intracellular Ca2+ concentration in non-stimulated cells. The membrane-impermeant lidocaine analog QX314 and procaine inhibited mAChR-mediated Ca2+ responses, with EC50 values of 48.0 and 20.4 µM, respectively, for 50 µM carbachol-stimulated Ca2+ responses. In the absence of extracellular Ca2+, the pretreatment of cells with QX314 reduced carbachol-induced Ca2+ release, indicating that QX314 reduced Ca2+ release from intracellular stores. Lidocaine and QX314 did not affect store-operated Ca2+ entry as they did not alter the thapsigargin-induced Ca2+ response. QX314 and procaine reduced the carbachol-mediated recruitment of ß-arrestin, and administration of procaine suppressed pilocarpine-induced salivary secretion in mice. CONCLUSION: Local anesthetics, including QX314, act on mAChR to reduce carbachol-induced Ca2+ release from intracellular stores and the recruitment of ß-arrestin. These findings support the notion that local anesthetics and their derivatives are starting points for the development of functional allosteric modulators of mAChR.


Assuntos
Anestésicos Locais , Cálcio , Lidocaína , Glândula Parótida , Receptores Muscarínicos , beta-Arrestinas , Humanos , Anestésicos Locais/farmacologia , beta-Arrestinas/metabolismo , Cálcio/metabolismo , Receptores Muscarínicos/metabolismo , Receptores Muscarínicos/efeitos dos fármacos , Animais , Camundongos , Glândula Parótida/efeitos dos fármacos , Glândula Parótida/metabolismo , Lidocaína/farmacologia , Lidocaína/análogos & derivados , Linhagem Celular , Carbacol/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Procaína/farmacologia
11.
J Pharmacol Exp Ther ; 389(3): 301-309, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38621994

RESUMO

δ opioid receptors (DORs) hold potential as a target for neurologic and psychiatric disorders, yet no DOR agonist has proven efficacious in critical phase II clinical trials. The exact reasons for the failure to produce quality drug candidates for the DOR are unclear. However, it is known that certain DOR agonists can induce seizures and exhibit tachyphylaxis. Several studies have suggested that those adverse effects are more prevalent in delta agonists that share the (+)-4-[(αR)-α-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80)/4-[(αR*)-α-((2S*,5R*)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-hydroxybenzyl]-N,N-diethylbenzamide chemotype. There is a need to find novel lead candidates for drug development that have improved pharmacological properties to differentiate them from the current failed delta agonists. Our objective in this study was to identify novel DOR agonists. We used a ß-arrestin assay to screen a small G-protein coupled receptors (GPCR)-focused chemical library. We identified a novel chemotype of DOR agonists that appears to bind to the orthosteric site based of docking and molecular dynamic simulation. The most potent agonist hit compound is selective for the DOR over a panel of 167 other GPCRs, is slightly biased toward G-protein signaling and has anti-allodynic efficacy in a complete Freund's adjuvant model of inflammatory pain in C57BL/6 male and female mice. The newly discovered chemotype contrasts with molecules like SNC80 that are highly efficacious ß-arrestin recruiters and may suggest this novel class of DOR agonists could be expanded on to develop a clinical candidate drug. SIGNIFICANCE STATEMENT: δ opioid receptors are a clinical target for various neurological disorders, including migraine and chronic pain. Many of the clinically tested delta opioid agonists share a single chemotype, which carries risks during drug development. Through a small-scale high-throughput screening assay, this study identified a novel δ opioid receptor agonist chemotype, which may serve as alternative for the current analgesic clinical candidates.


Assuntos
Receptores Opioides delta , Receptores Opioides delta/agonistas , Receptores Opioides delta/metabolismo , Animais , Camundongos , Masculino , Humanos , Compostos de Espiro/farmacologia , Compostos de Espiro/química , Piperazinas/farmacologia , Piperazinas/química , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Benzamidas/farmacologia , Benzamidas/química , Cricetulus , beta-Arrestinas/metabolismo , Células HEK293 , Células CHO
12.
Trends Biochem Sci ; 49(6): 520-531, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643023

RESUMO

G protein-coupled receptors (GPCRs) located at the cell surface bind extracellular ligands and convey intracellular signals via activation of heterotrimeric G proteins. Traditionally, G protein signaling was viewed to occur exclusively at this subcellular region followed by rapid desensitization facilitated by ß-arrestin (ßarr)-mediated G protein uncoupling and receptor internalization. However, emerging evidence over the past 15 years suggests that these ßarr-mediated events do not necessarily terminate receptor signaling and that some GPCRs continue to activate G proteins after having been internalized into endosomes. Here, we review the recently elucidated mechanistic basis underlying endosomal GPCR signaling and discuss physiological implications and pharmacological targeting of this newly appreciated signaling mode.


Assuntos
Endossomos , Receptores Acoplados a Proteínas G , Transdução de Sinais , Endossomos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Animais , beta-Arrestinas/metabolismo
13.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542369

RESUMO

Arrestins are known to be involved not only in the desensitization and internalization of G protein-coupled receptors but also in the G protein-independent activation of mitogen-activated protein (MAP) kinases, such as extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), to regulate cell proliferation and inflammation. Our previous study revealed that the histamine H1 receptor-mediated activation of ERK is dually regulated by Gq proteins and arrestins. In this study, we investigated the roles of Gq proteins and arrestins in the H1 receptor-mediated activation of JNK in Chinese hamster ovary (CHO) cells expressing wild-type (WT) human H1 receptors, the Gq protein-biased mutant S487TR, and the arrestin-biased mutant S487A. In these mutants, the Ser487 residue in the C-terminus region of the WT was truncated (S487TR) or mutated to alanine (S487A). Histamine significantly stimulated JNK phosphorylation in CHO cells expressing WT and S487TR but not S487A. Histamine-induced JNK phosphorylation in CHO cells expressing WT and S487TR was suppressed by inhibitors against H1 receptors (ketotifen and diphenhydramine), Gq proteins (YM-254890), and protein kinase C (PKC) (GF109203X) as well as an intracellular Ca2+ chelator (BAPTA-AM) but not by inhibitors against G protein-coupled receptor kinases (GRK2/3) (cmpd101), ß-arrestin2 (ß-arrestin2 siRNA), and clathrin (hypertonic sucrose). These results suggest that the H1 receptor-mediated phosphorylation of JNK is regulated by Gq-protein/Ca2+/PKC-dependent but GRK/arrestin/clathrin-independent pathways.


Assuntos
Arrestina , Histamina , Animais , Cricetinae , Humanos , Arrestina/metabolismo , Arrestinas/metabolismo , beta-Arrestinas/metabolismo , Células CHO , Clatrina/metabolismo , Cricetulus , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Histamina/farmacologia , Histamina/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/metabolismo , Transdução de Sinais
14.
Biochem Pharmacol ; 222: 116119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461904

RESUMO

The glucagon-like peptide 1 receptor (GLP-1R) is a validated clinical target for the treatment of type 2 diabetes and obesity. Unlike most G protein-coupled receptors (GPCRs), the GLP-1R undergoes an atypical mode of internalisation that does not require ß-arrestins. While differences in GLP-1R trafficking and ß-arrestin recruitment have been observed between clinically used GLP-1R agonists, the role of G protein-coupled receptor kinases (GRKs) in affecting these pathways has not been comprehensively assessed. In this study, we quantified the contribution of GRKs to agonist-mediated GLP-1R internalisation and ß-arrestin recruitment profiles using cells where endogenous ß-arrestins, or non-visual GRKs were knocked out using CRISPR/Cas9 genome editing. Our results confirm the previously established atypical ß-arrestin-independent mode of GLP-1R internalisation and revealed that GLP-1R internalisation is dependent on the expression of GRKs. Interestingly, agonist-mediated GLP-1R ß-arrestin 1 and ß-arrestin 2 recruitment were differentially affected by endogenous GRK knockout with ß-arrestin 1 recruitment more sensitive to GRK knockout than ß-arrestin 2 recruitment. Moreover, individual overexpression of GRK2, GRK3, GRK5 or GRK6 in a newly generated GRK2/3/4/5/6 HEK293 cells, rescued agonist-mediated ß-arrestin 1 recruitment and internalisation profiles to similar levels, suggesting that there is no specific GRK isoform that drives these pathways. This study advances mechanistic understanding of agonist-mediated GLP-1R internalisation and provides novel insights into how GRKs may fine-tune GLP-1R signalling.


Assuntos
Diabetes Mellitus Tipo 2 , Quinases de Receptores Acoplados a Proteína G , Humanos , Arrestinas/genética , Arrestinas/metabolismo , beta-Arrestina 1/metabolismo , beta-Arrestina 2/genética , beta-Arrestina 2/metabolismo , beta-Arrestinas/metabolismo , Quinases de Receptores Acoplados a Proteína G/genética , Quinases de Receptores Acoplados a Proteína G/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Células HEK293 , Fosforilação , Receptores Acoplados a Proteínas G/metabolismo
15.
Phys Chem Chem Phys ; 26(14): 10698-10710, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38512140

RESUMO

Biased ligands selectively activating specific downstream signaling pathways (termed as biased activation) exhibit significant therapeutic potential. However, the conformational characteristics revealed are very limited for the biased activation, which is not conducive to biased drug development. Motivated by the issue, we combine extensive accelerated molecular dynamics simulations and an interpretable deep learning model to probe the biased activation features for two complex systems constructed by the inactive µOR and two different biased agonists (G-protein-biased agonist TRV130 and ß-arrestin-biased agonist endomorphin2). The results indicate that TRV130 binds deeper into the receptor core compared to endomorphin2, located between W2936.48 and D1142.50, and forms hydrogen bonding with D1142.50, while endomorphin2 binds above W2936.48. The G protein-biased agonist induces greater outward movements of the TM6 intracellular end, forming a typical active conformation, while the ß-arrestin-biased agonist leads to a smaller extent of outward movements of TM6. Compared with TRV130, endomorphin2 causes more pronounced inward movements of the TM7 intracellular end and more complex conformational changes of H8 and ICL1. In addition, important residues determining the two different biased activation states were further identified by using an interpretable deep learning classification model, including some common biased activation residues across Class A GPCRs like some key residues on the TM2 extracellular end, ECL2, TM5 intracellular end, TM6 intracellular end, and TM7 intracellular end, and some specific important residues of ICL3 for µOR. The observations will provide valuable information for understanding the biased activation mechanism for GPCRs.


Assuntos
Simulação de Dinâmica Molecular , Compostos de Espiro , Tiofenos , Proteínas de Ligação ao GTP/metabolismo , beta-Arrestinas/metabolismo , Aprendizado de Máquina , Ligantes
16.
J Oral Biosci ; 66(2): 447-455, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38336259

RESUMO

OBJECTIVES: Typical agonists of G protein-coupled receptors (GPCRs), including muscarinic acetylcholine receptors (mAChRs), activate both G-protein and ß-arrestin signaling systems, and are termed balanced agonists. In contrast, biased agonists selectively activate a single pathway, thereby offering therapeutic potential for the specific activation of that pathway. The mAChR agonists carbachol and pilocarpine are known to induce phosphorylation of extracellular signal-regulated kinase-1/2 (ERK1/2) via G-protein-dependent and -independent pathways, respectively. We investigated the involvement of ß-arrestin and its downstream mechanisms in the ERK1/2 phosphorylation induced by carbachol and pilocarpine in the human salivary ductal cell line, HSY cells. METHODS: HSY cells were stimulated with pilocarpine or carbachol, with or without various inhibitors. The cell lysates were analyzed by western blotting using the antibodies p44/p42MAPK and phosphor-p44/p42MAPK. RESULTS: Western blot analysis revealed that carbachol elicited greater stimulation of ERK1/2 phosphorylation compared to pilocarpine. ERK1/2 phosphorylation was inhibited by atropine and gefitinib, suggesting that mAChR activation induces transactivation of epidermal growth factor receptors (EGFR). Moreover, inhibition of carbachol-mediated ERK1/2 phosphorylation was achieved by GF-109203X (a PKC inhibitor), a ßARK1/GRK2 inhibitor, barbadin (a ß-arrestin inhibitor), pitstop 2 (a clathrin inhibitor), and dynole 34-2 (a dynamin inhibitor). In contrast, pilocarpine-mediated ERK1/2 phosphorylation was only inhibited by barbadin (a ß-arrestin inhibitor) and PP2 (a Src inhibitor). CONCLUSION: Carbachol activates both G-protein and ß-arrestin pathways, whereas pilocarpine exclusively activates the ß-arrestin pathway. Additionally, downstream of ß-arrestin, carbachol activates clathrin-dependent internalization, while pilocarpine activates Src.


Assuntos
Carbacol , Agonistas Muscarínicos , Pilocarpina , Receptores Muscarínicos , Transdução de Sinais , Humanos , Fosforilação/efeitos dos fármacos , Receptores Muscarínicos/metabolismo , Pilocarpina/farmacologia , Carbacol/farmacologia , Agonistas Muscarínicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ductos Salivares/metabolismo , beta-Arrestinas/metabolismo , Linhagem Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Western Blotting , Arrestinas/metabolismo
17.
Arterioscler Thromb Vasc Biol ; 44(4): 843-865, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38385286

RESUMO

BACKGROUND: Accumulating evidence implicates the activation of G-protein-coupled PARs (protease-activated receptors) by coagulation proteases in the regulation of innate immune responses. METHODS: Using mouse models with genetic alterations of the PAR2 signaling platform, we have explored contributions of PAR2 signaling to infection with coxsackievirus B3, a single-stranded RNA virus provoking multiorgan tissue damage, including the heart. RESULTS: We show that PAR2 activation sustains correlates of severe morbidity-hemodynamic compromise, aggravated hypothermia, and hypoglycemia-despite intact control of the virus. Following acute viral liver injury, canonical PAR2 signaling impairs the restoration process associated with exaggerated type I IFN (interferon) signatures in response to viral RNA recognition. Metabolic profiling in combination with proteomics of liver tissue shows PAR2-dependent reprogramming of liver metabolism, increased lipid droplet storage, and gluconeogenesis. PAR2-sustained hypodynamic compromise, reprograming of liver metabolism, as well as imbalanced IFN responses are prevented in ß-arrestin coupling-deficient PAR2 C-terminal phosphorylation mutant mice. Thus, wiring between upstream proteases and immune-metabolic responses results from biased PAR2 signaling mediated by intracellular recruitment of ß-arrestin. Importantly, blockade of the TF (tissue factor)-FVIIa (coagulation factor VIIa) complex capable of PAR2 proteolysis with the NAPc2 (nematode anticoagulant protein c2) mitigated virus-triggered pathology, recapitulating effects seen in protease cleavage-resistant PAR2 mice. CONCLUSIONS: These data provide insights into a TF-FVIIa signaling axis through PAR2-ß-arrestin coupling that is a regulator of inflammation-triggered tissue repair and hemodynamic compromise in coxsackievirus B3 infection and can potentially be targeted with selective coagulation inhibitors.


Assuntos
Insuficiência de Múltiplos Órgãos , Tromboplastina , Animais , Camundongos , Tromboplastina/metabolismo , beta-Arrestinas/metabolismo , Receptor PAR-2/genética , Fator VIIa/metabolismo , Endopeptidases/metabolismo
18.
Biochem Pharmacol ; 222: 116052, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354957

RESUMO

The cannabinoid CB1 receptor (CB1) is a G protein-coupled receptor (GPCR) with widespread expression in the central nervous system. This canonically G⍺i/o-coupled receptor mediates the effects of Δ9-tetrahydrocannabinol (THC) and synthetic cannabinoid receptor agonists (SCRAs). Recreational use of SCRAs is associated with serious adverse health effects, making pharmacological research into these compounds a priority. Several studies have hypothesised that signalling bias may explain the different toxicological profiles between SCRAs and THC. Previous studies have focused on bias between G protein activation measured by cyclic adenosine monophosphate (cAMP) inhibition and ß-arrestin translocation. In contrast, the current study characterises bias between G⍺ subtypes of the G⍺i/o family and ß-arrestins; this method facilitates a more accurate assessment of ligand bias by assessing signals that have not undergone major amplification. We have characterised G protein dissociation and translocation of ß-arrestin 1 and 2 using real-time BRET reporters. The responses produced by each SCRA across the G protein subtypes tested were consistent with the responses produced by the reference ligand AMB-FUBINACA. Ligand bias was probed by applying the operational analysis to determine biases within the G⍺i/o family, and between G protein subtypes and ß-arrestins. Overall, these results confirm SCRAs to be balanced, high-efficacy ligands compared to the low efficacy ligand THC, with only one SCRA, 4CN-MPP-BUT7IACA, demonstrating statistically significant bias in one pathway comparison (towards ß-arrestin 1 when compared with G⍺oA/oB). This suggests that the adverse effects caused by SCRAs are due to high potency and efficacy at CB1, rather than biased agonism.


Assuntos
Agonistas de Receptores de Canabinoides , Canabinoides , Agonistas de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/metabolismo , beta-Arrestinas/metabolismo , Receptores de Canabinoides/metabolismo , beta-Arrestina 1/metabolismo , Ligantes , Proteínas de Ligação ao GTP/metabolismo , Canabinoides/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo
19.
Sci Signal ; 17(823): eadd9139, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349966

RESUMO

Some G protein-coupled receptors (GPCRs) demonstrate biased signaling such that ligands of the same receptor exclusively or preferentially activate certain downstream signaling pathways over others. This phenomenon may result from ligand-specific receptor phosphorylation by GPCR kinases (GRKs). GPCR signaling can also exhibit location bias because GPCRs traffic to and signal from subcellular compartments in addition to the plasma membrane. Here, we investigated whether GRKs contributed to location bias in GPCR signaling. GRKs translocated to endosomes after stimulation of the chemokine receptor CXCR3 or other GPCRs in cultured cells. GRK2, GRK3, GRK5, and GRK6 showed distinct patterns of recruitment to the plasma membrane and to endosomes depending on the identity of the biased ligand used to activate CXCR3. Analysis of engineered forms of GRKs that localized to either the plasma membrane or endosomes demonstrated that biased CXCR3 ligands elicited different signaling profiles that depended on the subcellular location of the GRK. Each GRK exerted a distinct effect on the regulation of CXCR3 engagement of ß-arrestin, internalization, and activation of the downstream effector kinase ERK. Our work highlights a role for GRKs in location-biased GPCR signaling and demonstrates the complex interactions between ligands, GRKs, and cellular location that contribute to biased signaling.


Assuntos
Quinases de Receptores Acoplados a Proteína G , Transdução de Sinais , Ligantes , Transdução de Sinais/fisiologia , Quinases de Receptores Acoplados a Proteína G/genética , Quinases de Receptores Acoplados a Proteína G/metabolismo , Fosforilação , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo
20.
Molecules ; 29(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338317

RESUMO

µ-opioid receptor ligands such as morphine and fentanyl are the most known and potent painkillers. However, the severe side effects seen with their use significantly limit their widespread use. The continuous broadening of knowledge about the properties of the interactions of the MOP receptor (human mu opioid receptor, OP3) with ligands and specific intracellular signaling pathways allows for the designation of new directions of research with respect to compounds with analgesic effects in a mechanism different from classical ligands. Allosteric modulation is an extremely promising line of research. Compounds with modulator properties may provide a safer alternative to the currently used opioids. The aim of our research was to obtain a series of urea derivatives of 1-aryl-2-aminoimidazoline and to determine their activity, mechanism of biological action and selectivity toward the MOP receptor. The obtained compounds were subjected to functional tests (cAMP accumulation and ß-arrestin recruitment) in vitro. One of the obtained compounds, when administered alone, did not show any biological activity, while when co-administered with DAMGO, it inhibited ß-arrestin recruitment. These results indicate that this compound is a negative allosteric modulator (NAM) of the human MOP receptor.


Assuntos
Receptores Opioides mu , Receptores Opioides , Humanos , Receptores Opioides/metabolismo , Receptores Opioides mu/metabolismo , Analgésicos Opioides/efeitos adversos , Analgésicos/farmacologia , beta-Arrestinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...