Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.566
Filtrar
1.
PeerJ ; 12: e17715, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119104

RESUMO

Postharvest rot caused by various fungal pathogens is a damaging disease affecting kiwifruit production and quality, resulting in significant annual economic losses. This study focused on isolating the strain P3-1W, identified as Diaporthe eres, as the causal agent of 'Hongyang' postharvest rot disease in China. The investigation highlighted cell wall degrading enzymes (CWDEs) as crucial pathogenic factors. Specially, the enzymatic activities of cellulase, ß-galactosidase, polygalacturonase, and pectin methylesterases peaked significantly on the second day after infection of D. eres P3-1W. To gain a comprehensive understanding of these CWDEs, the genome of this strain was sequenced using PacBio and Illumina sequencing technologies. The analysis revealed that the genome of D. eres P3-1W spans 58,489,835 bp, with an N50 of 5,939,879 bp and a GC content of 50.7%. A total of 15,407 total protein-coding genes (PCGs) were predicted and functionally annotated. Notably, 857 carbohydrate-active enzymes (CAZymes) were identified in D. eres P3-1W, with 521 CWDEs consisting of 374 glycoside hydrolases (GHs), 108 carbohydrate esterase (CEs) and 91 polysaccharide lyases (PLs). Additionally, 221 auxiliary activities (AAs), 91 glycosyltransferases (GTs), and 108 carbohydrate binding modules (CBMs) were detected. These findings offer valuable insights into the CAZymes of D. eres P3-1W.


Assuntos
Actinidia , Ascomicetos , Genoma Fúngico , Doenças das Plantas , Actinidia/microbiologia , Doenças das Plantas/microbiologia , China , Ascomicetos/genética , Ascomicetos/patogenicidade , Ascomicetos/enzimologia , Genoma Fúngico/genética , Poligalacturonase/genética , Poligalacturonase/metabolismo , Frutas/microbiologia , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Celulase/genética , Celulase/metabolismo , Parede Celular/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
2.
Genes (Basel) ; 15(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39062639

RESUMO

In this research, qualitative characteristics were studied under different post-harvest treatments in Hass and Fuerte cultivars of avocado (Persea americana) fruits. The post-harvest treatments performed in fruits of these cultivars comprised Ethrel application and plastic film (membrane) covering. The measurements of qualitative characteristics were related to color; flesh consistency; measurements of titratable acidity, total soluble solids, percentage of total phenolic contents, and ascorbic peroxidase activity; and the real-time (quantitative) polymerase chain reaction (qPCR) of gene expression and enzyme activities of phenylalanine ammonia-lyase (PAL) and beta-galactosidase (ß-gal). The experiments found that the application of plastic film has excellent results in retaining qualitative characteristics and enzyme activities via maintaining firmness in higher levels. The plastic film covering appeared to delay ripening without the use of chemicals and, therefore, it has the potential to extend the duration of the post-harvest life of the avocado fruit. Variations between the two cultivars were found in the measurements of total soluble solids (Fuerte cultivar showed an increase of 22%, whereas Hass cultivar showed an increase of 120% in Brix values) and total phenolic contents (Fuerte cultivar showed a decrease of 16% and Hass cultivar showed an increase of 29%). It is worth noting that PAL's activity increased significantly (over 44%), as compared to other treatments, and ß-galactosidase's activity decreased, as compared to other treatments. In conclusion, plastic film covering results in a decrease in the activity of ß-galactosidase, as shown by the reaction of hydrolysis (enzyme activity) but also from the expression of the related genes.


Assuntos
Frutas , Persea , Persea/genética , Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo , Fenóis/metabolismo , Fenilalanina Amônia-Liase/genética , Fenilalanina Amônia-Liase/metabolismo
3.
Curr Genet ; 70(1): 9, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951203

RESUMO

The ability to regulate the expression of genes is a central tool for the characterization of fungal genes. This is of particular interest to study genes required for specific processes or the effect of genes expressed only under specific conditions. Saccharomycopsis species show a unique property of necrotrophic mycoparasitism that is activated upon starvation. Here we describe the use of the MET17 promoter of S. schoenii as a tool to regulate gene expression based on the availability of methionine. Conditional expression was tested using lacZ and GFP reporter genes. Gene expression could be strongly down-regulated by the addition of methionine or cysteine to the growth medium and upregulated by starvation for methionine. We used X-gal (5-bromo-4-chloro-3-indolyl-ß-d-galactopyranoside) to detect lacZ-expression in plate assays and ONPG (ortho-nitrophenyl-ß-galactopyranoside) as a substrate for ß-galactosidase in liquid-phase assays. For in vivo expression analyses we used fluorescence microscopy for the detection and localization of a MET17-driven histone H4-GFP reporter gene. With these assays we demonstrated the usefulness of the MET17 promoter to regulate expression of genes based on methionine availability. In silico analyses revealed similar promoter motifs as found in MET3 genes of Saccharomyces cerevisiae and Ashbya gossypii. This suggests a regulation of the MET17 promoter by CBF1 and MET31/MET32 in conjunction with the transcriptional activator MET4, which were also identified in the S. schoenii genome.


This article describes the characterization of the S. schoenii MET17 promoter for regulated gene expression.


Assuntos
Regulação Fúngica da Expressão Gênica , Genes Reporter , Metionina , Regiões Promotoras Genéticas , Metionina/metabolismo , Metionina/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo
4.
Cell Biochem Funct ; 42(6): e4102, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39076066

RESUMO

GM1 gangliosidosis is one type of hereditary error of metabolism that occurs due to the absence or reduction of ß-galactosidase enzyme content in the lysosome of cells, including neurons. In vitro, the use of neural cell lines could facilitate the study of this disease. By creating a cell model of GM1 gangliosidosis on the SH-SY5Y human nerve cell line, it is possible to understand the main role of this enzyme in breaking down lipid substrate and other pathophysiologic phenomena this disease. To knock-out the human GLB1 gene, guides targeting exons 14 and 16 of the GLB1 gene were designed using the CRISPOR and CHOP-CHOP websites, and high-efficiency guides were selected for cloning in the PX458 vector. After confirming the cloning, the vectors were transformed into DH5α bacteria and then the target vector was extracted and transfected into human nerve cells (SH-SY5Y cell line) by electroporation. After 48 h, GFP+ cells were sorted using the FACS technique and homozygous (compound heterozygous) single cells were isolated using the serial dilution method and sequencing was done to confirm them. Finally, gap PCR tests, X-gal and Periodic acid-Schiff (PAS) staining, and qPCR were used to confirm the knock-out of the human GLB1 gene. Additionally, RNA sequencing data analysis from existing data of the Gene Expression Omnibus (GEO) was used to find the correlation of GLB1 with other genes, and then the top correlated genes were tested for further evaluation of knock-out effects. The nonviral introduction of two guides targeting exons 14 and 16 of the GLB1 gene into SH-SY5Y cells led to the deletion of a large fragment with a size of 4.62 kb. In contrast to the non-transfected cell, X-gal staining resulted in no blue color in GLB1 gene knock-out cells indicating the absence of ß-galactosidase enzyme activity in these cells. Real-time PCR (qPCR) results confirmed the RNA-Seq analysis outcomes on the GEO data set and following the GLB1 gene knock-out, the expression of its downstream genes, NEU1 and CTSA, has been decreased. It has been also shown that the downregulation of GLB1-NEU1-CTSA complex gene was involved in suppressed proliferation and invasion ability of knock-out cells. This study proved that using dual guide RNA can be used as a simple and efficient tool for targeting the GLB1 gene in nerve cells and the knockout SH-SY5Y cells can be used as a model investigation of basic and therapeutic surveys for GM1 gangliosidosis disease.


Assuntos
Sistemas CRISPR-Cas , Gangliosidose GM1 , Humanos , Gangliosidose GM1/genética , Gangliosidose GM1/metabolismo , beta-Galactosidase/metabolismo , beta-Galactosidase/genética , Neurônios/metabolismo , Técnicas de Inativação de Genes , Modelos Biológicos
5.
Microb Cell Fact ; 23(1): 170, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867249

RESUMO

BACKGROUND: The gram-positive bacterium Bacillus subtilis is widely used for industrial enzyme production. Its ability to secrete a wide range of enzymes into the extracellular medium especially facilitates downstream processing since cell disruption is avoided. Although various heterologous enzymes have been successfully secreted with B. subtilis, the secretion of cytoplasmic enzymes with high molecular weight is challenging. Only a few studies report on the secretion of cytoplasmic enzymes with a molecular weight > 100 kDa. RESULTS: In this study, the cytoplasmic and 120 kDa ß-galactosidase of Paenibacillus wynnii (ß-gal-Pw) was expressed and secreted with B. subtilis SCK6. Different strategies were focused on to identify the best secretion conditions. Tailormade codon-optimization of the ß-gal-Pw gene led to an increase in extracellular ß-gal-Pw production. Consequently, the optimized gene was used to test four signal peptides and two promoters in different combinations. Differences in extracellular ß-gal-Pw activity between the recombinant B. subtilis strains were observed with the successful secretion being highly dependent on the specific combination of promoter and signal peptide used. Interestingly, signal peptides of both the general secretory- and the twin-arginine translocation pathway mediated secretion. The highest extracellular activity of 55.2 ± 6 µkat/Lculture was reached when secretion was mediated by the PhoD signal peptide and expression was controlled by the PAprE promoter. Production of extracellular ß-gal-Pw was further enhanced 1.4-fold in a bioreactor cultivation to 77.5 ± 10 µkat/Lculture with secretion efficiencies of more than 80%. CONCLUSION: For the first time, the ß-gal-Pw was efficiently secreted with B. subtilis SCK6, demonstrating the potential of this strain for secretory production of cytoplasmic, high molecular weight enzymes.


Assuntos
Bacillus subtilis , Peso Molecular , Paenibacillus , beta-Galactosidase , Bacillus subtilis/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , beta-Galactosidase/metabolismo , beta-Galactosidase/genética , Paenibacillus/enzimologia , Paenibacillus/genética , Citoplasma/metabolismo , Regiões Promotoras Genéticas , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Sinais Direcionadores de Proteínas
6.
FEBS J ; 291(16): 3686-3705, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38825733

RESUMO

The most extensively studied ß-d-galactosidases (EC3.2.1.23) belonging to four glycoside hydrolase (GH) families 1, 2, 35, and 42 are widely distributed among Bacteria, Archaea and Eukaryotes. Here, we report a novel GH35 family ß-galactosidase from the hyperthermophilic Thermoprotei archaeon Desulfurococcus amylolyticus (DaßGal). Unlike fungal monomeric six-domain ß-galactosidases, the DaßGal enzyme is a dimer; it has an extra jelly roll domain D7 and three composite domains (D4, D5, and D6) that are formed by the distantly located polypeptide chain regions. The enzyme possesses a high specificity for ß-d-galactopyranosides, and its distinguishing feature is the ability to cleave pNP-ß-d-fucopyranoside. DaßGal efficiently catalyzes the hydrolysis of lactose at high temperatures, remains stable and active at 65 °Ð¡, and retains activity at 95 °Ð¡ with a half-life time value equal to 73 min. These properties make archaeal DaßGal a more attractive candidate for biotechnology than the widely used fungal ß-galactosidases.


Assuntos
Estabilidade Enzimática , beta-Galactosidase , beta-Galactosidase/genética , beta-Galactosidase/metabolismo , beta-Galactosidase/química , Especificidade por Substrato , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas Arqueais/genética , Sequência de Aminoácidos , Domínios Proteicos , Modelos Moleculares , Cinética , Dobramento de Proteína , Temperatura Alta , Hidrólise , Lactose/metabolismo , Lactose/química
7.
Int J Biol Macromol ; 275(Pt 1): 133313, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936569

RESUMO

Cracking of Akebia trifoliata fruit at maturity is problematic for the cultivation of the horticultural crop, shortening shelf-life quality and compromising commercial value. However, the molecular mechanisms underlying this feature of A. trifoliata are not known. Genes involved in cell wall metabolism were identified by genome and transcriptome sequencing, which may play important roles in fruit cracking. One of the galactose metabolism related genes, ß-galactosidase (AtrBGAL2), was identified in A. trifoliata, and overexpression (OE) of AtrBGAL2 resulted in early fruit cracking, higher water-soluble pectin contents, and lower acid-soluble pectin, cellulose, and hemicellulose content compared to the wild type. Whereas silencing of AtrBGAL2 in trifoliata by virus induced gene silencing showed opposite trends. The levels of AtrBGAL2 transcripts were 24.6 and 66.0-fold higher in OE A. trifoliata and tomato fruits, respectively, and the cell wall-related genes were also gradually greater than in control plants during fruit ripening. Whereas the expression levels of AtrBGAL2 was significantly down-regulated by 54.1 % and 73.7 % in gene silenced A. trifoliata and CRISPR/Cas9 tomato mutant plants, respectively, and cell wall-related genes were also significantly reduced. These results demonstrate that AtrBGAL2 plays important roles in regulating fruit cracking during fruit ripening.


Assuntos
Parede Celular , Frutas , Regulação da Expressão Gênica de Plantas , beta-Galactosidase , Frutas/genética , beta-Galactosidase/genética , beta-Galactosidase/metabolismo , Parede Celular/metabolismo , Parede Celular/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pectinas/metabolismo , Inativação Gênica , Plantas Geneticamente Modificadas/genética
8.
Chin J Integr Med ; 30(8): 721-728, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38816636

RESUMO

OBJECTIVE: To investigate the effect of low concentration of Wenyang Tonglin Decoction (WTD) on the binding conditions of R45 plasmid conjugative transfer under liquid phase conjugation and its mechanism. METHODS: Escherichia coli CP9 (R45) and Staphylococcus aureus RN450RF were cultured in medium containing WTD, and their minimum inhibitory concentration (MIC) values were obtained. Using promoter fusion technology, E. coli CP9 (R45) containing a promoter fusion was obtained. ß-Galactosidase activity of TrfAp and TrbBp was tested, and the mRNA expression of regulatory factors (TrbA, KorA, and KorB) was detected by real-time fluorescent quantitative polymerase chain reaction. RESULTS: The MIC of E. coli CP9 (R45) was 400 g/L and that of S. aureus RN450RF was 200 g/L. When the drug concentration in the culture medium was 200 g/L, the highest number of conjugants was (3.47 ±0.20) × 107 CFU/mL At 90 h of conjugation, the maximum number of conjugants was (1.15 ±0.06) × 108 CFU/mL When the initial bacterial concentration was 108 CFU/mL, the maximum number of conjugants was (3.47 ± 0.20) × 107 CFU/mL. When the drug concentration was 200 g/L, the ß-galactosidase activity of TrfAp and TrbBp significantly increased; the relative quantification of TrbA, KorA and KorB were significantly inhibited. CONCLUSION: Low concentration of WTD promoted the development of bacterial resistance by affecting promoters and inhibiting the expression of regulatory factors.


Assuntos
Medicamentos de Ervas Chinesas , Escherichia coli , Testes de Sensibilidade Microbiana , Plasmídeos , Staphylococcus aureus , Medicamentos de Ervas Chinesas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Plasmídeos/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Conjugação Genética , Regiões Promotoras Genéticas/genética , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , beta-Galactosidase/metabolismo , beta-Galactosidase/genética , Relação Dose-Resposta a Droga , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos
9.
Appl Microbiol Biotechnol ; 108(1): 354, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819482

RESUMO

Whey is a byproduct of dairy industries, the aqueous portion which separates from cheese during the coagulation of milk. It represents approximately 85-95% of milk's volume and retains much of its nutrients, including functional proteins and peptides, lipids, lactose, minerals, and vitamins. Due to its composition, mainly proteins and lactose, it can be considered a raw material for value-added products. Whey-derived products are often used to supplement food, as they have shown several physiological effects on the body. Whey protein hydrolysates are reported to have different activities, including antihypertensive, antioxidant, antithrombotic, opioid, antimicrobial, cytomodulatory, and immuno-modulatory. On the other hand, galactooligosaccharides obtained from lactose can be used as prebiotic for beneficial microorganisms for the human gastrointestinal tract. All these compounds can be obtained through physicochemical, microbial, or enzymatic treatments. Particularly, enzymatic processes have the advantage of being highly selective, more stable than chemical transformations, and less polluting, making that the global enzyme market grow at accelerated rates. The sources and different products associated with the most used enzymes are particularly highlighted in this review. Moreover, we discuss metagenomics as a tool to identify novel proteolytic enzymes, from both cultivable and uncultivable microorganisms, which are expected to have new interesting activities. Finally enzymes for the transformation of whey sugar are reviewed. In this sense, carbozymes with ß-galactosidase activity are capable of lactose hydrolysis, to obtain free monomers, and transgalactosylation for prebiotics production. KEY POINTS: • Whey can be used to obtain value-added products efficiently through enzymatic treatments • Proteases transform whey proteins into biopeptides with physiological activities • Lactose can be transformed into prebiotic compounds using ß-galactosidases.


Assuntos
Hidrolisados de Proteína , Proteínas do Soro do Leite , Proteínas do Soro do Leite/metabolismo , Hidrolisados de Proteína/metabolismo , Hidrolisados de Proteína/química , Prebióticos , Humanos , Soro do Leite/química , Soro do Leite/metabolismo , Lactose/metabolismo , beta-Galactosidase/metabolismo , beta-Galactosidase/genética
10.
FEBS Open Bio ; 14(6): 888-905, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38726771

RESUMO

The development of the Escherichia coli K-12 laboratory strains JM83, JM109 and XL1-Blue was instrumental in early gene technology. We report the comprehensive genome sequence analysis of JM83 and XL1-Blue using Illumina and Oxford Nanopore technologies and a comparison with both the wild-type sequence (MG1655) and the genome of JM109 deposited at GenBank. Our investigation provides insight into the way how the genomic background that allows blue/white colony selection-by complementing a functionally inactive ω-fragment of ß-galactosidase (LacZ) with its α-peptide encoded on the cloning vector-has been implemented independently in these three strains using classical bacterial genetics. In fact, their comparative analysis reveals recurrent motifs: (i) inactivation of the native enzyme via large deletions of chromosomal regions encompassing the lac locus, or a chemically induced frameshift deletion at the beginning of the lacZ cistron, and (ii) utilization of a defective prophage (ϕ80), or an F'-plasmid, to provide the lacZ∆M15 allele encoding its ω-fragment. While the genetic manipulations of the E. coli strains involved repeated use of mobile genetic elements as well as harsh chemical or physical mutagenesis, the individual modified traits appear remarkably stable as they can be found even in distantly related laboratory strains, beyond those investigated here. Our detailed characterization at the genome sequence level not only offers clues about the mechanisms of classical gene transduction and transposition but should also guide the future fine-tuning of E. coli strains for gene cloning and protein expression, including phage display techniques, utilizing advanced tools for site-specific genome engineering.


Assuntos
Escherichia coli , Genoma Bacteriano , Genoma Bacteriano/genética , Escherichia coli/genética , beta-Galactosidase/genética , beta-Galactosidase/metabolismo , Clonagem Molecular/métodos , Genômica/métodos
11.
Analyst ; 149(13): 3575-3584, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38758107

RESUMO

A restriction endonuclease (RE) is an enzyme that can recognize a specific DNA sequence and cleave that DNA into fragments with double-stranded breaks. This sequence-specific cleaving ability and its ease of use have made REs commonly used tools in molecular biology since their first isolation and characterization in 1970s. While artificial REs still face many challenges in large-scale synthesis and precise activity control for practical use, searching for new REs in natural samples remains a viable route to expanding the RE pool for fundamental research and industrial applications. In this paper, we propose a new strategy to search for REs in an efficient manner. We constructed a host bacterial cell to link the genotype of REs to the phenotype of ß-galactosidase expression based on the bacterial SOS response, and used a high-throughput microfluidic platform to isolate, detect and sort the REs in microfluidic drops at a frequency of ∼800 drops per second. We employed this strategy to screen for the XbaI gene from the constructed libraries of varied sizes. In a single round of sorting, a 90-fold target enrichment was achieved within 1 h. Compared to conventional RE-screening methods, the direct screening approach that we propose excels at efficient search of desirable REs in natural samples - especially unculturable samples - and can be tailored to high-throughput screening of a wide range of genotoxic targets.


Assuntos
Enzimas de Restrição do DNA , Escherichia coli , Resposta SOS em Genética , Escherichia coli/genética , Escherichia coli/enzimologia , Enzimas de Restrição do DNA/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/química , beta-Galactosidase/metabolismo , beta-Galactosidase/genética
12.
Physiol Rep ; 12(8): e16014, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644513

RESUMO

HMG (high mobility group) proteins are a diverse family of nonhistone chromosomal proteins that interact with DNA and a wide range of transcriptional regulators to regulate the structural architecture of DNA. HMGXB4 (also known as HMG2L1) is an HMG protein family member that contains a single HMG box domain. Our previous studies have demonstrated that HMGXB4 suppresses smooth muscle differentiation and exacerbates endotoxemia by promoting a systemic inflammatory response in mice. However, the expression of Hmgxb4 in vivo has not fully examined. Herein, we generated a mouse model that harbors a gene trap in the form of a lacZ gene insertion into the Hmgxb4 gene. This mouse enables the visualization of endogenous HMGXB4 expression in different tissues via staining for the ß-galactosidase activity of LacZ which is under the control of the endogenous Hmgxb4 gene promoter. We found that HMGXB4 is widely expressed in mouse tissues and is a nuclear protein. Furthermore, the Hmgxb4 gene trap mice exhibit normal cardiac function and blood pressure. Measurement of ß-galactosidase activity in the Hmgxb4 gene trap mice demonstrated that the arterial injury significantly induces Hmgxb4 expression. In summary, the Hmgxb4 gene trap reporter mouse described here provides a valuable tool to examine the expression level of endogenous Hmgxb4 in both physiological and pathological settings in vivo.


Assuntos
Proteínas de Grupo de Alta Mobilidade , Camundongos Endogâmicos C57BL , Animais , Masculino , Camundongos , beta-Galactosidase/metabolismo , beta-Galactosidase/genética , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Óperon Lac/genética , Camundongos Transgênicos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Aging (Albany NY) ; 16(8): 6673-6693, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38683123

RESUMO

PURPOSE: The objective of this study was to investigate the senescent phenotypes of human corneal endothelial cells (hCEnCs) upon treatment with ultraviolet (UV)-A. METHODS: We assessed cell morphology, senescence-associated ß-galactosidase (SA-ß-gal) activity, cell proliferation and expression of senescence markers (p16 and p21) in hCEnCs exposed to UV-A radiation, and senescent hCEnCs induced by ionizing radiation (IR) were used as positive controls. We performed RNA sequencing and proteomics analyses to compare gene and protein expression profiles between UV-A- and IR-induced senescent hCEnCs, and we also compared the results to non-senescent hCEnCs. RESULTS: Cells exposed to 5 J/cm2 of UV-A or to IR exhibited typical senescent phenotypes, including enlargement, increased SA-ß-gal activity, decreased cell proliferation and elevated expression of p16 and p21. RNA-Seq analysis revealed that 83.9% of the genes significantly upregulated and 82.6% of the genes significantly downregulated in UV-A-induced senescent hCEnCs overlapped with the genes regulated in IR-induced senescent hCEnCs. Proteomics also revealed that 93.8% of the proteins significantly upregulated in UV-A-induced senescent hCEnCs overlapped with those induced by IR. In proteomics analyses, senescent hCEnCs induced by UV-A exhibited elevated expression levels of several factors part of the senescence-associated secretory phenotype. CONCLUSIONS: In this study, where senescence was induced by UV-A, a more physiological stress for hCEnCs compared to IR, we determined that UV-A modulated the expression of many genes and proteins typically altered upon IR treatment, a more conventional method of senescence induction, even though UV-A also modulated specific pathways unrelated to IR.


Assuntos
Proliferação de Células , Senescência Celular , Células Endoteliais , Raios Ultravioleta , Humanos , Senescência Celular/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Proliferação de Células/efeitos da radiação , Células Endoteliais/efeitos da radiação , Células Endoteliais/metabolismo , Endotélio Corneano/efeitos da radiação , Endotélio Corneano/metabolismo , Células Cultivadas , Proteômica , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , beta-Galactosidase/metabolismo , beta-Galactosidase/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética
14.
J Bacteriol ; 206(2): e0033423, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38299857

RESUMO

Among the first microorganisms to colonize the human gut of breastfed infants are bacteria capable of fermenting human milk oligosaccharides (HMOs). One of the most abundant HMOs, 2'-fucosyllactose (2'-FL), may specifically drive bacterial colonization of the intestine. Recently, differential growth has been observed across multiple species of Akkermansia on various HMOs including 2'-FL. In culture, we found growth of two species, A. muciniphila MucT and A. biwaensis CSUN-19,on HMOs corresponded to a decrease in the levels of 2'-FL and an increase in lactose, indicating that the first step in 2'-FL catabolism is the cleavage of fucose. Using phylogenetic analysis and transcriptional profiling, we found that the number and expression of fucosidase genes from two glycoside hydrolase (GH) families, GH29 and GH95, vary between these two species. During the mid-log phase of growth, the expression of several GH29 genes was increased by 2'-FL in both species, whereas the GH95 genes were induced only in A. muciniphila. We further show that one putative fucosidase and a ß-galactosidase from A. biwaensis are involved in the breakdown of 2'-FL. Our findings indicate that the plasticity of GHs of human-associated Akkermansia sp. enables access to additional growth substrates present in HMOs, including 2'-FL. Our work highlights the potential for Akkermansia to influence the development of the gut microbiota early in life and expands the known metabolic capabilities of this important human symbiont.IMPORTANCEAkkermansia are mucin-degrading specialists widely distributed in the human population. Akkermansia biwaensis has recently been observed to have enhanced growth relative to other human-associated Akkermansia on multiple human milk oligosaccharides (HMOs). However, the mechanisms for enhanced growth are not understood. Here, we characterized the phylogenetic diversity and function of select genes involved in the growth of A. biwaensis on 2'-fucosyllactose (2'-FL), a dominant HMO. Specifically, we demonstrate that two genes in a genomic locus, a putative ß-galactosidase and α-fucosidase, are likely responsible for the enhanced growth on 2'-FL. The functional characterization of A. biwaensis growth on 2'-FL delineates the significance of a single genomic locus that may facilitate enhanced colonization and functional activity of select Akkermansia early in life.


Assuntos
Akkermansia , Trissacarídeos , alfa-L-Fucosidase , Lactente , Humanos , Akkermansia/metabolismo , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo , Filogenia , Oligossacarídeos/metabolismo , beta-Galactosidase/genética
15.
Adv Sci (Weinh) ; 11(17): e2309547, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38408141

RESUMO

Hierarchical self-assembly from simple building blocks to complex polymers is a feasible approach to constructing multi-functional smart materials. However, the polymerization process of polymers often involves challenges such as the design of building blocks and the drive of external energy. Here, a hierarchical self-assembly with self-driven and energy conversion capabilities based on p-aminophenol and diethylenetriamine building blocks is reported. Through ß-galactosidase (ß-Gal) specific activation to the self-assembly, the intelligent assemblies (oligomer and superpolymer) with excellent photothermal and fluorescent properties are dynamically formed in situ, and thus the sensitive multi-mode detection of ß-Gal activity is realized. Based on the overexpression of ß-Gal in ovarian cancer cells, the self-assembly superpolymer is specifically generated in SKOV-3 cells to achieve fluorescence imaging. The photothermal therapeutic ability of the self-assembly oligomer (synthesized in vitro) is evaluated by a subcutaneous ovarian cancer model, showing satisfactory anti-tumor effects. This work expands the construction of intelligent assemblies through the self-driven cascade assembly of small molecules and provides new methods for the diagnosis and treatment of ovarian cancer.


Assuntos
Neoplasias Ovarianas , Nanomedicina Teranóstica , Feminino , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/metabolismo , Humanos , Nanomedicina Teranóstica/métodos , Linhagem Celular Tumoral , Camundongos , Animais , Modelos Animais de Doenças , Polímeros/química , beta-Galactosidase/metabolismo , beta-Galactosidase/genética
16.
J Dairy Sci ; 107(6): 3429-3442, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38246536

RESUMO

Commercial ß-galactosidases exhibit undesirable kinetic properties regarding substrate affinity (Michaelis-Menten constant [KM] for lactose) and product inhibition (inhibitor constant [Ki] for galactose). An in silico screening of gene sequences was done and identified a putative ß-galactosidase (Paenibacillus wynnii ß-galactosidase, BgaPw) from the psychrophilic bacterium Paenibacillus wynnii. The cultivation of the wild-type P. wynnii strain resulted in very low ß-galactosidase activities of a maximum of 150 nkat per liter of medium with o-nitrophenyl-ß-d-galactopyranoside (oNPGal) as substrate. The recombinant production of BgaPw in Escherichia coli BL21(DE3) increased the yield ∼9,000-fold. Here, a volumetric activity of 1,350.18 ± 11.82 µkatoNPGal/Lculture was achieved in a bioreactor cultivation. The partly purified BgaPw showed a pH optimum at 7.0, a temperature maximum at 40°C, and an excellent stability at 8°C with a half-life of 77 d. Kinetic studies with BgaPw were done in milk or in milk-imitating synthetic buffer (Novo buffer), respectively. Remarkably, the KM value of BgaPw with lactose was as low as 0.63 ± 0.045 mM in milk. It was found that the resulting products of lactose hydrolysis, namely galactose and glucose, did not inhibit the ß-galactosidase activity of BgaPw, but instead showed a striking activating effect in both cases (up to 144%). In a comparison study in milk, lactose was completely hydrolyzed by BgaPw in 72 h at 8°C, whereas 2 other known ß-galactosidases were less powerful and converted only about 90% of lactose in the same time. Finally, the formation of galactooligosaccharides (GOS) was demonstrated with the new BgaPw, starting with pharma-lactose (400 g/L). A GOS production of about 144 g/L was achieved after 24 h (36.0% yield).


Assuntos
Lactose , Paenibacillus , beta-Galactosidase , beta-Galactosidase/metabolismo , beta-Galactosidase/genética , Paenibacillus/enzimologia , Paenibacillus/genética , Cinética , Lactose/metabolismo , Leite , Animais , Galactose/metabolismo , Concentração de Íons de Hidrogênio
17.
Artigo em Inglês | MEDLINE | ID: mdl-38240740

RESUMO

This study describes two Gram-negative, flexirubin-producing, biofilm-forming, motile-by-gliding and rod-shaped bacteria, isolated from the marine sponges Ircinia variabilis and Sarcotragus spinosulus collected off the coast of Algarve, Portugal. Both strains, designated Aq135T and Aq349T, were classified into the genus Aquimarina by means of 16S rRNA gene sequencing. We then performed phylogenetic, phylogenomic and biochemical analyses to determine whether these strains represent novel Aquimarina species. Whereas the closest 16S rRNA gene relatives to strain Aq135T were Aquimarina macrocephali JAMB N27T (97.8 %) and Aquimarina sediminis w01T (97.1 %), strain Aq349T was more closely related to Aquimarina megaterium XH134T (99.2 %) and Aquimarina atlantica 22II-S11-z7T (98.1 %). Both strains showed genome-wide average nucleotide identity scores below the species level cut-off (95 %) with all Aquimarina type strains with publicly available genomes, including their closest relatives. Digital DNA-DNA hybridization further suggested a novel species status for both strains since values lower than 70 % hybridization level with other Aquimarina type strains were obtained. Strains Aq135T and Aq349T grew from 4 to 30°C and with between 1-5 % (w/v) NaCl in marine broth. The most abundant fatty acids were iso-C17 : 03-OH and iso-C15 : 0 and the only respiratory quinone was MK-6. Strain Aq135T was catalase-positive and ß-galactosidase-negative, while Aq349T was catalase-negative and ß-galactosidase-positive. These strains hold unique sets of secondary metabolite biosynthetic gene clusters and are known to produce the peptide antibiotics aquimarins (Aq135T) and the trans-AT polyketide cuniculene (Aq349T), respectively. Based on the polyphasic approach employed in this study, we propose the novel species names Aquimarina aquimarini sp. nov. (type strain Aq135T=DSM 115833T=UCCCB 169T=ATCC TSD-360T) and Aquimarina spinulae sp. nov. (type strain Aq349T=DSM 115834T=UCCCB 170T=ATCC TSD-361T).


Assuntos
Flavobacteriaceae , Poríferos , Animais , Água do Mar/microbiologia , Catalase/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , beta-Galactosidase/genética , Vitamina K 2
18.
Molecules ; 29(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257371

RESUMO

Gaucher disease (GD) is a rare genetic metabolic disorder characterized by a dysfunction of the lysosomal glycoside hydrolase glucocerebrosidase (GCase) due to mutations in the gene GBA1, leading to the cellular accumulation of glucosylceramide (GlcCer). While most of the current research focuses on the primary accumulated material, lesser attention has been paid to secondary storage materials and their reciprocal intertwining. By using a novel approach based on flow cytometry and fluorescent labelling, we monitored changes in storage materials directly in fibroblasts derived from GD patients carrying N370S/RecNcil and homozygous L444P or R131C mutations with respect to wild type. In L444P and R131C fibroblasts, we detected not only the primary accumulation of GlcCer accumulation but also a considerable secondary increase in GM1 storage, comparable with the one observed in infantile patients affected by GM1 gangliosidosis. In addition, the ability of a trivalent trihydroxypiperidine iminosugar compound (CV82), which previously showed good pharmacological chaperone activity on GCase enzyme, to reduce the levels of storage materials in L444P and R131C fibroblasts was tested. Interestingly, treatment with different concentrations of CV82 led to a significant reduction in GM1 accumulation only in L444P fibroblasts, without significantly affecting GlcCer levels. The compound CV82 was selective against the GCase enzyme with respect to the ß-Galactosidase enzyme, which was responsible for the catabolism of GM1 ganglioside. The reduction in GM1-ganglioside level cannot be therefore ascribed to a direct action of CV82 on ß-Galactosidase enzyme, suggesting that GM1 decrease is rather related to other unknown mechanisms that follow the direct action of CV82 on GCase. In conclusion, this work indicates that the tracking of secondary storages can represent a key step for a better understanding of the pathways involved in the severity of GD, also underlying the importance of developing drugs able to reduce both primary and secondary storage-material accumulations in GD.


Assuntos
Gangliosídeo G(M1) , Doença de Gaucher , Humanos , Fibroblastos , beta-Galactosidase/genética , Corantes , Citometria de Fluxo , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/genética , Glucosilceramidas
19.
mBio ; 15(2): e0207323, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38179948

RESUMO

Tuberculosis (TB) is a significant global public health threat. Despite the long-standing use of para-aminosalicylic acid (PAS) as a second-line anti-TB drug, its resistance mechanism remains unclear. In this study, we isolated 90 mutants of PAS-resistant Mycobacterium tuberculosis (MTB) H37Ra in 7H11 solid medium and performed whole-genome sequencing, gene overexpression, transcription level comparison and amino acid level determination in MTB, and promoter activity by ß-galactosidase assays in Mycobacterium smegmatis to elucidate the mechanism of PAS resistance. Herein, we found that 47 of 90 (52.2%) PAS-resistant mutants had nine different mutations in the intergenic region of metM (Rv3253c) and Rv3254. Beta-galactosidase assays confirmed that mutations increased promoter activity only for metM but not Rv3254. Interestingly, overexpression of MetM or its M. smegmatis homolog (MSMEI_1796) either by its promoter in metM's direction or by exogenous expression in MTB induced PAS resistance in a methionine-dependent manner. Therefore, drug susceptibility results for the metM promoter mutants can be misleading when using standard 7H10 or 7H9 medium, which lacks methionine. At the metabolism level, PAS treatment led to higher intracellular methionine levels in the mutants than the wild type, antagonizing PAS and conferring resistance. Furthermore, 12 different mutations in the metM promoter were identified in clinical MTB strains. In summary, we found a novel mechanism of PAS resistance in MTB. Mutations in the metM (Rv3253c) promoter upregulate metM transcription and elevate intracellular methionine, which antagonize PAS. Our findings shed new light on the mechanism of PAS resistance in MTB and highlight issues with the current PAS susceptibility culture medium.IMPORTANCEAlthough para-aminosalicylic acid (PAS) has been used to treat TB for more than 70 years, the understanding of PAS resistance mechanisms is still vague, living gaps in our ability to predict resistance and apply PAS effectively in clinical practice. This study aimed to address this knowledge gap by inducing in vitro PAS resistance in Mycobacterium tuberculosis (MTB) using 7H11 medium and discovering a new PAS resistance mechanism. Our research revealed that spontaneous mutations occurring in the promoter region of the methionine transporting gene, metM, can upregulate the expression of metM, resulting in increased intracellular transport of methionine and consequently high-level resistance of Mycobacterium tuberculosis to PAS. Notably, this resistance phenotype cannot be observed when using the commonly recommended 7H10 medium, possibly due to the lack of additional methionine supply compared with that when using the 7H11 medium. Mutations on the regulatory region of metM were also found in some clinical MTB strains. These findings may have important implications for the unexplained PAS resistance observed in clinical settings and provide insight into the failures of PAS treatment. Additionally, they underscore the importance of considering the choice of culture media when conducting drug susceptibility testing for MTB.


Assuntos
Ácido Aminossalicílico , Mycobacterium tuberculosis , Ácido Aminossalicílico/farmacologia , Ácido Aminossalicílico/metabolismo , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética , Antituberculosos/farmacologia , Mutação , Metionina/metabolismo , beta-Galactosidase/genética
20.
Am J Clin Nutr ; 119(3): 702-710, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38159728

RESUMO

BACKGROUND: Approximately 70%-100% of the Asian adult population is lactase nonpersistent (LNP). The literature shows that many individuals with the LNP-genotype can consume ≤12 g of lactose without experiencing gastrointestinal discomfort. Repetitive consumption of lactose may reduce intolerance symptoms via adaptation of the gut microbiota. OBJECTIVE: This study aimed to assess the effects of daily consumption of incremental lactose doses on microbiota composition and function, and intolerance symptoms. METHODS: Twenty-five healthy adults of Asian origin, carrying the LNP-genotype were included in this 12-wk before and after intervention trial. Participants consumed gradually increasing lactose doses from 3 to 6 g to 12 g twice daily, each daily dose of 6 g, 12 g, or 24 g being provided for 4 consecutive weeks. Participants handed-in repeated stool samples and underwent a 25 g lactose challenge hydrogen breath test (HBT) before and after the 12-wk intervention. Daily gastrointestinal symptoms and total symptom scores (TSSs) during the lactose challenge were recorded. RESULTS: A significant increase from 5.5% ± 7.6% to 10.4% ± 9.6% was observed in Bifidobacterium relative abundance after the intervention (P = 0.009), accompanied by a 2-fold increase (570 ± 269 U/g; P < 0.001) in fecal ß-galactosidase activity compared with baseline (272 ± 158 U/g). A 1.5-fold decrease (incremental area under the curve; P = 0.01) in expired hydrogen was observed during the second HBT (38 ± 35 ppm·min), compared with the baseline HBT (57 ± 38 ppm·min). There was a nonsignificant decrease in TSS (10.6 ± 8.3 before compared with 8.1 ± 7.2 after intervention; P = 0.09). Daily consumption of lactose was well tolerated, with mild to no gastrointestinal complaints reported during the intervention. CONCLUSIONS: Increased levels of Bifidobacterium indicate an adaptation of the gut microbiota upon repetitive consumption of incremental doses of lactose, which was well tolerated as demonstrated by reduced expired hydrogen concentrations during the second 25-g lactose HBT. Bifidobacteria metabolize lactose without gas production thereby potentially reducing intestinal gas formation in the gut of individuals with the LNP-genotype. This increased lactose tolerance possibly lifts the necessity to remove nutrient-rich dairy foods completely from the diet. The trial is registered at the International Clinical Trials Registry Platform: NL9516. The effect of dietary lactose in lactase nonpersistent individuals on gut microbiota.


Assuntos
Microbioma Gastrointestinal , Intolerância à Lactose , Adulto , Humanos , Intolerância à Lactose/genética , Lactase/genética , Lactose/metabolismo , beta-Galactosidase/genética , beta-Galactosidase/uso terapêutico , Genótipo , Hidrogênio/uso terapêutico , Suplementos Nutricionais , Testes Respiratórios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...