Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.269
Filtrar
1.
PLoS Pathog ; 20(5): e1012187, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38718038

RESUMO

The emergence of carbapenem-resistant Klebsiella pneumoniae (CRKP) has significant challenges to human health and clinical treatment, with KPC-2-producing CRKP being the predominant epidemic strain. Therefore, there is an urgent need to identify new therapeutic targets and strategies. Non-coding small RNA (sRNA) is a post-transcriptional regulator of genes involved in important biological processes in bacteria and represents an emerging therapeutic strategy for antibiotic-resistant bacteria. In this study, we analyzed the transcription profile of KPC-2-producing CRKP using RNA-seq. Of the 4693 known genes detected, the expression of 307 genes was significantly different from that of carbapenem-sensitive Klebsiella pneumoniae (CSKP), including 133 up-regulated and 174 down-regulated genes. Both the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and Gene Ontology (GO) analysis showed that these differentially expressed genes (DEGs) were mainly related to metabolism. In addition, we identified the sRNA expression profile of KPC-2-producing CRKP for the first time and detected 115 sRNAs, including 112 newly discovered sRNAs. Compared to CSKP, 43 sRNAs were differentially expressed in KPC-2-producing CRKP, including 39 up-regulated and 4 down-regulated sRNAs. We chose sRNA51, the most significantly differentially expressed sRNA in KPC-2-producing CRKP, as our research subject. By constructing sRNA51-overexpressing KPC-2-producing CRKP strains, we found that sRNA51 overexpression down-regulated the expression of acrA and alleviated resistance to meropenem and ertapenem in KPC-2-producing CRKP, while overexpression of acrA in sRNA51-overexpressing strains restored the reduction of resistance. Therefore, we speculated that sRNA51 could affect the resistance of KPC-2-producing CRKP by inhibiting acrA expression and affecting the formation of efflux pumps. This provides a new approach for developing antibiotic adjuvants to restore the sensitivity of CRKP.


Assuntos
Carbapenêmicos , Klebsiella pneumoniae , beta-Lactamases , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/efeitos dos fármacos , beta-Lactamases/genética , beta-Lactamases/metabolismo , Carbapenêmicos/farmacologia , Humanos , Regulação Bacteriana da Expressão Gênica , Antibacterianos/farmacologia , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pequeno RNA não Traduzido/genética , RNA Bacteriano/genética , Testes de Sensibilidade Microbiana
2.
Front Cell Infect Microbiol ; 14: 1368622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741889

RESUMO

There is scarce information concerning the role of sporadic clones in the dissemination of antimicrobial resistance genes (ARGs) within the nosocomial niche. We confirmed that the clinical Escherichia coli M19736 ST615 strain, one of the first isolates of Latin America that harbors a plasmid with an mcr-1 gene, could receive crucial ARG by transformation and conjugation using as donors critical plasmids that harbor bla CTX-M-15, bla KPC-2, bla NDM-5, bla NDM-1, or aadB genes. Escherichia coli M19736 acquired bla CTX-M-15, bla KPC-2, bla NDM-5, bla NDM-1, and aadB genes, being only blaNDM-1 maintained at 100% on the 10th day of subculture. In addition, when the evolved MDR-E. coli M19736 acquired sequentially bla CTX-M-15 and bla NDM-1 genes, the maintenance pattern of the plasmids changed. In addition, when the evolved XDR-E. coli M19736 acquired in an ulterior step the paadB plasmid, a different pattern of the plasmid's maintenance was found. Interestingly, the evolved E. coli M19736 strains disseminated simultaneously the acquired conjugative plasmids in different combinations though selection was ceftazidime in all cases. Finally, we isolated and characterized the extracellular vesicles (EVs) from the native and evolved XDR-E. coli M19736 strains. Interestingly, EVs from the evolved XDR-E. coli M19736 harbored bla CTX-M-15 though the pDCAG1-CTX-M-15 was previously lost as shown by WGS and experiments, suggesting that EV could be a relevant reservoir of ARG for susceptible bacteria. These results evidenced the genetic plasticity of a sporadic clone of E. coli such as ST615 that could play a relevant transitional link in the clinical dynamics and evolution to multidrug/extensively/pandrug-resistant phenotypes of superbugs within the nosocomial niche by acting simultaneously as a vector and reservoir of multiple ARGs which later could be disseminated.


Assuntos
Antibacterianos , Infecções por Escherichia coli , Escherichia coli , Transferência Genética Horizontal , Plasmídeos , beta-Lactamases , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Plasmídeos/genética , Humanos , Infecções por Escherichia coli/microbiologia , beta-Lactamases/genética , Antibacterianos/farmacologia , Conjugação Genética , Proteínas de Escherichia coli/genética , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , América Latina , Farmacorresistência Bacteriana/genética
3.
New Microbiol ; 47(1): 1-14, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38700878

RESUMO

Antibiotics are designed to effectively treat bacterial infections while minimizing harm to the human body. They work by targeting specific components of bacteria or by disrupting essential processes such as cell wall synthesis, membrane function, protein production, and metabolic pathways. However, the misuse and overuse of antibiotics have led to the emergence of drug resistance in humans, animals, and agriculture, contributing to the global spread of this problem. Drug resistance can be either innate or acquired, with acquired resistance involving changes in the bacterial chromosomes or transferable elements. Bacterial species employ various mechanisms of drug resistance, including modifying the antibiotic targets, inactivating the drug, reducing uptake or increasing efflux, overexpressing the target, utilizing alternative pathways, and forming biofilms. One significant concern in the realm of drug resistance revolves around the emergence and proliferation of extended-spectrum beta-lactamases (ESBLs), a gene that is found in most gram-negative bacteria, primarily carried by Escherichia coli and Klebsiella pneumoniae in healthcare settings. ESBL-mediated resistance poses challenges for diagnosis, treatment, infection control, and antibiotic stewardship. Accurate detection of ESBL genes is crucial, and phenotypic methods are commonly used for initial screening. However, these methods have limitations, and confirmatory molecular techniques such as PCR and DNA sequencing are employed to accurately identify ESBL genes. Despite the significant global concerns surrounding ESBLs, they have spread worldwide, mainly facilitated by healthcare settings, inappropriate antimicrobial use, and host susceptibility. Addressing this issue requires implementing comprehensive measures, including enhanced surveillance, strict infection control practices, antibiotic stewardship programs, rapid diagnostic methods, alternative therapies, public education initiatives, and research focused on developing new drugs. Furthermore, collaboration among the healthcare, public health, and research sectors is pivotal in effectively combating the escalating threat posed by ESBL-mediated resistance. Antibiotics have revolutionized medical care by effectively treating bacterial infections. However, the emergence of ESBL gene resistance poses a global challenge that requires an integrated approach to prevent a threatening future.


Assuntos
Antibacterianos , beta-Lactamases , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Humanos , Animais , Farmacorresistência Bacteriana/genética , Fenótipo , Bactérias/efeitos dos fármacos , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
BMC Microbiol ; 24(1): 168, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760674

RESUMO

BACKGROUND: We aimed to compare the performance of carbapenemase classification in carbapenem-resistant Klebsiella pneumoniae (CRKP) obtained using the BD Phoenix CPO Detect panel (CPO panel) and Cepheid Xpert Carba-R assays. We analyzed 55 CRKP strains from clinical specimens collected between November 2020 and November 2022. The CPO panel was used to detect both antibiotic susceptibility and phenotypic carbapenemase classes, while Xpert Carba-R was employed to identify KPC, NDM, VIM, OXA-48, and IMP genes. Due to the limited availability of molecular kits, we arbitrarily selected 55 isolates, identified as carbapenemase-producing according to the CPO panel and with meropenem minimum inhibitory concentration values > 8 mg/L. RESULTS: According to the Xpert Carba-R assay, 16 of the 55 isolates (29.1%) were categorised as Ambler Class A (11 of which matched CPO panel Class A identification); three isolates (5.5%) were identified as Class B and 27 isolates (49.1%) as Class D (in both cases consistent with CPO panel B and D classifications). A further eight isolates (14.5%) exhibited multiple carbapenemase enzymes and were designated as dual-carbapenemase producers, while one isolate (1.8%) was identified as a non-carbapenemase-producer. The CPO panel demonstrated positive and negative percent agreements of 100% and 85.7% for Ambler Class A, 100% and 100% for Class B, and 96.4% and 100% for Class D carbapenemase detection, respectively. CONCLUSION: While the CPO panel's phenotypic performance was satisfactory in detecting Class B and D carbapenemases, additional confirmatory testing may be necessary for Class A carbapenemases as part of routine laboratory procedures.


Assuntos
Proteínas de Bactérias , Infecções por Klebsiella , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases , beta-Lactamases/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/efeitos dos fármacos , Proteínas de Bactérias/genética , Humanos , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/diagnóstico , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/isolamento & purificação , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/enzimologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos
5.
PLoS One ; 19(5): e0303872, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38771780

RESUMO

BACKGROUND: Antimicrobial resistance (AMR) is among the top public health concerns in the globe. Estimating the prevalence of multidrug resistance (MDR), MDR index (MDR-I) and extended-spectrum beta-lactamase (ESBL)-producing lactose fermenting Enterobacteriaceae (LFE) is important in designing strategies to combat AMR. Thus, this study was designed to determine the status of MDR, MDR-I and ESBL-producing LFE isolated from the human-dairy interface in the northwestern part of Ethiopia, where such information is lacking. METHODOLOGY: A cross-sectional study was conducted from June 2022 to August 2023 by analyzing 362 samples consisting of raw pooled milk (58), milk container swabs (58), milker's hand swabs (58), farm sewage (57), milker's stool (47), and cow's feces (84). The samples were analyzed using standard bacteriological methods. The antimicrobial susceptibility patterns and ESBL production ability of the LFE isolates were screened using the Kirby-Bauer disk diffusion method, and candidate isolates passing the screening criteria were phenotypically confirmed by using cefotaxime (30 µg) and cefotaxime /clavulanic acid (30 µg/10 µg) combined-disk diffusion test. The isolates were further characterized genotypically using multiplex polymerase chain reaction targeting the three ESBL-encoding- genes namely blaTEM, blaSHV, and blaCTX-M. RESULTS: A total of 375 bacterial isolates were identified and the proportion of MDR and ESBL-producing bacterial isolates were 70.7 and 21.3%, respectively. The MDR-I varied from 0.0 to 0.81 with an average of 0.30. The ESBL production was detected in all sample types. Genotypically, the majority of the isolates (97.5%), which were positive on the phenotypic test, were carrying one or more of the three genes. CONCLUSION: A high proportion of the bacterial isolates were MDR; had high MDR-I and were positive for ESBL production. The findings provide evidence that the human-dairy interface is one of the important reservoirs of AMR traits. Therefore, the implementation of AMR mitigation strategies is highly needed in the area.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Enterobacteriaceae , Lactose , beta-Lactamases , Humanos , Etiópia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Enterobacteriaceae/genética , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/enzimologia , Lactose/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Estudos Transversais , Antibacterianos/farmacologia , Animais , Testes de Sensibilidade Microbiana , Bovinos , Infecções por Enterobacteriaceae/microbiologia , Cefotaxima/farmacologia , Leite/microbiologia , Fermentação , Fezes/microbiologia
6.
Nat Commun ; 15(1): 3947, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38729951

RESUMO

Gram-negative bacteria (GNB) are a major cause of neonatal sepsis in low- and middle-income countries (LMICs). Although the World Health Organization (WHO) reports that over 80% of these sepsis deaths could be prevented through improved treatment, the efficacy of the currently recommended first- and second-line treatment regimens for this condition is increasingly affected by high rates of drug resistance. Here we assess three well known antibiotics, fosfomycin, flomoxef and amikacin, in combination as potential antibiotic treatment regimens by investigating the drug resistance and genetic profiles of commonly isolated GNB causing neonatal sepsis in LMICs. The five most prevalent bacterial isolates in the NeoOBS study (NCT03721302) are Klebsiella pneumoniae, Acinetobacter baumannii, E. coli, Serratia marcescens and Enterobacter cloacae complex. Among these isolates, high levels of ESBL and carbapenemase encoding genes are detected along with resistance to ampicillin, gentamicin and cefotaxime, the current WHO recommended empiric regimens. The three new combinations show excellent in vitro activity against ESBL-producing K. pneumoniae and E. coli isolates. Our data should further inform and support the clinical evaluation of these three antibiotic combinations for the treatment of neonatal sepsis in areas with high rates of multidrug-resistant Gram-negative bacteria.


Assuntos
Acinetobacter baumannii , Antibacterianos , Bactérias Gram-Negativas , Infecções por Bactérias Gram-Negativas , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Sepse Neonatal , Humanos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Sepse Neonatal/microbiologia , Sepse Neonatal/tratamento farmacológico , Recém-Nascido , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/isolamento & purificação , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Acinetobacter baumannii/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/genética , Amicacina/farmacologia , Amicacina/uso terapêutico , Fosfomicina/farmacologia , Fosfomicina/uso terapêutico , beta-Lactamases/genética , beta-Lactamases/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Países em Desenvolvimento , Farmacorresistência Bacteriana Múltipla/genética , Quimioterapia Combinada , Serratia marcescens/efeitos dos fármacos , Serratia marcescens/genética , Serratia marcescens/isolamento & purificação , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/genética , Enterobacter cloacae/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
7.
BMC Microbiol ; 24(1): 175, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773370

RESUMO

BACKGROUND: Data about the prevalence of plasmid-mediated quinolone resistance (PMQR) and extended-spectrum beta-lactamase (ESBL) production in P. aeruginosa compared to the Enterobacteriaceae family is limited. The availability of limited therapeutic options raises alarming concerns about the treatment of multidrug-resistant P. aeruginosa. This study aimed to assess the presence of PMQR and ESBL genes among P. aeruginosa strains. METHODS: Fifty-six P. aeruginosa strains were isolated from 330 patients with different clinical infections. Phenotypically fluoroquinolone-resistant isolates were tested by PCR for the presence of six PMQR genes. Then, blaTEM, blaSHV, and blaCTX-M type ESBL genes were screened to study the co-existence of different resistance determinants. RESULTS: Overall, 22/56 (39.3%) of the studied P. aeruginosa isolates were phenotypically resistant to fluoroquinolones. PMQR-producing P. aeruginosa isolates were identified in 20 isolates (90.9%). The acc(6')-Ib-cr was the most prevalent PMQR gene (77.3%). The qnr genes occurred in 72.7%, with the predominance of the qnrA gene at 54.5%, followed by the qnrS gene at 27.3%, then qnrB and qnrC at 22.7%. The qepA was not detected in any isolate. The acc(6')-Ib-cr was associated with qnr genes in 65% of positive PMQR isolates. Significant differences between the fluoroquinolone-resistant and fluoroquinolone-susceptible isolates in terms of the antibiotic resistance rates of amikacin, imipenem, and cefepime (P value < 0.0001) were found. The ESBL genes were detected in 52% of cephalosporin-resistant P. aeruginosa isolates. The most frequent ESBL gene was blaCTX-M (76.9%), followed by blaTEM (46.2%). No isolates carried the blaSHV gene. The acc(6')-Ib-cr gene showed the highest association with ESBL genes, followed by the qnrA gene. The correlation matrix of the detected PMQR and ESBL genes indicated overall positive correlations. The strongest and most highly significant correlation was between qnrA and acc(6')-Ib-cr (r = 0.602) and between qnrA and blaCTX-M (r = 0.519). CONCLUSION: A high prevalence of PMQR genes among the phenotypic fluoroquinolone-resistant P. aeruginosa isolates was detected, with the co-carriage of different PMQR genes. The most frequent PMQR was the acc(6')-Ib-cr gene. Co-existence between PMQR and ESBL genes was found, with 75% of PMQR-positive isolates carrying at least one ESBL gene. A high and significant correlation between the ESBL and PMQR genes was detected.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Plasmídeos , Infecções por Pseudomonas , Pseudomonas aeruginosa , Quinolonas , beta-Lactamases , Humanos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/enzimologia , beta-Lactamases/genética , Egito , Plasmídeos/genética , Antibacterianos/farmacologia , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/epidemiologia , Quinolonas/farmacologia , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla/genética , Fluoroquinolonas/farmacologia , Adulto , Feminino , Masculino
8.
Emerg Microbes Infect ; 13(1): 2352432, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38712634

RESUMO

This study investigated resistance evolution mechanisms of conjugated plasmids and bacterial hosts under different concentrations of antibiotic pressure. Ancestral strain ECNX52 was constructed by introducing the blaNDM-5-carrying IncX3 plasmid into E. coli C600, and was subjected to laboratory evolution under different concentrations of meropenem pressure. Minimal inhibitory concentrations and conjugation frequency were determined. Fitness of these strains was assessed. Whole genome sequencing and transcriptional changes were performed. Ancestral host or plasmids were recombined with evolved hosts or plasmids to verify plasmid or host factors in resistance evolution. Role of the repA mutation on plasmid copy number was determined. Two out of the four clones (EM2N1 and EM2N3) exhibited four-fold increase in MIC when exposed to a continuous pressure of 2 µg/mL MEM (1/32 MIC), by down regulating expression of outer membrane protein ompF. Besides, all four clones displayed four-fold increase in MIC and higher conjugation frequency when subjected to a continuous pressure of 4 µg/mL MEM (1/16 MIC), attributing to increasing plasmid copy number generated by repA D140Y (GAT→TAT) mutation. Bacterial hosts and conjugative plasmids can undergo resistance evolution under certain concentrations of antimicrobial pressure by reducing the expression of outer membrane proteins or increasing plasmid copy numbers.


Assuntos
Antibacterianos , Proteínas de Escherichia coli , Escherichia coli , Testes de Sensibilidade Microbiana , Plasmídeos , Porinas , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Plasmídeos/genética , Antibacterianos/farmacologia , Porinas/genética , Porinas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Carbapenêmicos/farmacologia , Meropeném/farmacologia , Mutação , Evolução Molecular , Conjugação Genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Sequenciamento Completo do Genoma , Dosagem de Genes , beta-Lactamases/genética
9.
Curr Microbiol ; 81(7): 177, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758473

RESUMO

The purpose of this study was to determine if orangutans (Pongo spp.) living in captivity at a zoo in Wisconsin were colonized with antimicrobial-resistant bacteria and, if found, to identify underlying genetic mechanisms contributing to their resistant phenotypes. We hypothesize that since antimicrobial-resistant bacteria are so prevalent within humans, the animals could also be carriers of such strains given the daily contact between the animals and the zoo staff that care for them. To test this theory, fecal samples from two orangutans were examined for resistant bacteria by inoculation on HardyCHROM™ ESBL and HardyCHROM™ CRE agars. Isolates were identified using MALDI-TOF mass spectrometry and antimicrobial susceptibility testing was performed using a Microscan autoSCAN-4 System. An isolate was selected for additional characterization, including whole genome sequencing (WGS). Using the Type (Strain) Genome Server (TYGS) the bacterium was identified as Escherichia coli. The sequence type identified was (ST/phylogenetic group/ß-lactamase): ST6448/B1/CTX-M-55.


Assuntos
Antibacterianos , Infecções por Escherichia coli , Escherichia coli , Fezes , beta-Lactamases , Animais , beta-Lactamases/genética , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Fezes/microbiologia , Antibacterianos/farmacologia , Animais de Zoológico/microbiologia , Testes de Sensibilidade Microbiana , Filogenia , Sequenciamento Completo do Genoma , Wisconsin , Proteínas de Escherichia coli/genética , Genoma Bacteriano
10.
Nat Commun ; 15(1): 4093, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750030

RESUMO

Plasmids carrying antibiotic resistance genes (ARG) are the main mechanism of resistance dissemination in Enterobacterales. However, the fitness-resistance trade-off may result in their elimination. Chromosomal integration of ARGs preserves resistance advantage while relieving the selective pressure for keeping costly plasmids. In some bacterial lineages, such as carbapenemase producing sequence type ST38 Escherichia coli, most ARGs are chromosomally integrated. Here we reproduce by experimental evolution the mobilisation of the carbapenemase blaOXA-48 gene from the pOXA-48 plasmid into the chromosome. We demonstrate that this integration depends on a plasmid-induced fitness cost, a mobile genetic structure embedding the ARG and a novel antiplasmid system ApsAB actively involved in pOXA-48 destabilization. We show that ApsAB targets high and low-copy number plasmids. ApsAB combines a nuclease/helicase protein and a novel type of Argonaute-like protein. It belongs to a family of defense systems broadly distributed among bacteria, which might have a strong ecological impact on plasmid diffusion.


Assuntos
Escherichia coli , Plasmídeos , beta-Lactamases , Plasmídeos/genética , beta-Lactamases/genética , beta-Lactamases/metabolismo , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Cromossomos Bacterianos/genética
11.
J Microbiol Methods ; 221: 106940, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38702032

RESUMO

Bloodstream infections (BSI) caused by carbapenem-resistant Gram-negative bacilli (CR-GNB) are a subject of major clinical concern, mainly those associated with carbapenemase-producing isolates. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been proposed to detect specific ß-lactamases, including KPC. We aimed to detect KPC enzyme directly from positive blood cultures using MALDI-TOF MS. Overall, 146 clinical Gram-negative bacilli (46 CR-GNB) recovered from consecutive blood cultures were evaluated. Proteins were extracted using formic acid, isopropyl alcohol, and water and spotted onto a steel target plate using the double-layer sinapinic acid method. The relative ions intensity ≥120 arbitrary units (a.u.) of a peak close to 28,700 m/z indicated the presence of KPC. The results were compared to HRM-qPCR methodology. This specific peak was observed in 11/14 blood bottles with blaKPC positive isolates (78.6% sensitivity), with 3 false-positive results (97.7% specificity). Analysis from colonies reached identical sensitivity (78.6%), but higher specificity (100%). The detection of KPC peaks directly from positive blood cultures using MALDI-TOF MS is feasible and rapid. It's excellent specificity indicates that positive results are consistently associated with the presence of a KPC producer in positive blood culture.


Assuntos
Proteínas de Bactérias , Hemocultura , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , beta-Lactamases , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Humanos , beta-Lactamases/genética , Hemocultura/métodos , Proteínas de Bactérias/genética , Sensibilidade e Especificidade , Bactérias Gram-Negativas/isolamento & purificação , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/genética , Bacteriemia/microbiologia , Bacteriemia/diagnóstico , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/sangue , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia
12.
Sci Total Environ ; 931: 172873, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38692330

RESUMO

Carbapenem resistance's global proliferation poses a significant public health challenge. The primary resistance mechanism is carbapenemase production. In this study, we discovered a novel carbapenemase, RATA, located on the chromosome of Riemerella anatipestifer isolates. This enzyme shares ≤52 % amino acid sequence identity with other known ß-lactamases. Antimicrobial susceptibility tests and kinetic assays demonstrated that RATA could hydrolyze not only penicillins and extended-spectrum cephalosporins but also monobactams, cephamycins, and carbapenems. Furthermore, its activity was readily inhibited by ß-lactamase inhibitors. Bioinformatic analysis revealed 46 blaRATA-like genes encoding 27 variants in the NCBI database, involving 21 different species, including pathogens, host-associated bacteria, and environmental isolates. Notably, blaRATA-positive strains were globally distributed and primarily collected from marine environments. Concurrently, taxonomic analysis and GC content analysis indicated that blaRATA orthologue genes were predominantly located on the chromosomes of Flavobacteriaceae and shared a similar GC content as Flavobacteriaceae. Although no explicit mobile genetic elements were identified by genetic environment analysis, blaRATA-2 possessed the ability of horizontal transfer in R. anatipestifer via natural transformation. This work's data suggest that RATA is a new chromosome-encoded class A carbapenemase, and Flavobacteriaceae from marine environments could be the primary reservoir of the blaRATA gene.


Assuntos
Proteínas de Bactérias , beta-Lactamases , beta-Lactamases/genética , beta-Lactamases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Carbapenêmicos/farmacologia
13.
Rev Med Suisse ; 20(872): 866-871, 2024 May 01.
Artigo em Francês | MEDLINE | ID: mdl-38693798

RESUMO

Multi-resistant Enterobacterales (MRE) are on the increase worldwide, with the main mechanism of resistance acquisition being horizontal transfer of plasmids coding for extended-spectrum betalactamase and/or carbapenemase. Low- and middle-income countries are the most affected, but surveillance in low-endemicity countries, such as Switzerland, is essential. International travel is one of the sources of MRE dissemination in the community, with the main risk factors for acquiring MRE being a stay in South or Southeast Asia and the use of antibiotics during travel. Other factors, notably animal and environmental, also explain this increase. Measures encompassing a One Health approach are therefore needed to address this issue.


Les entérobactéries multirésistantes (EMR) sont en augmentation dans le monde, avec comme mécanisme principal d'acquisition de résistance le transfert horizontal de plasmides codant pour une bêtalactamase à spectre étendu et/ou une carbapénèmase. Les pays à bas et moyens revenus sont les plus touchés, mais une surveillance dans les pays à faible endémicité, comme la Suisse, est essentielle. Les voyages internationaux sont l'une des sources de dissémination d'EMR dans la communauté, avec comme facteurs de risque principaux d'acquisition d'EMR un séjour en Asie du Sud ou du Sud-Est et l'utilisation d'antibiotiques durant le voyage. D'autres facteurs, notamment animaliers et environnementaux, expliquent aussi cette augmentation. Ainsi, il est nécessaire que des mesures englobant une approche « One Health ¼ répondent à cette problématique.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Infecções por Enterobacteriaceae , Enterobacteriaceae , Viagem , Humanos , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Enterobacteriaceae/efeitos dos fármacos , Antibacterianos/farmacologia , Fatores de Risco , Animais , Saúde Única , Plasmídeos , beta-Lactamases/genética
14.
Front Cell Infect Microbiol ; 14: 1297312, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690325

RESUMO

Background: During the coronavirus disease 2019 (COVID-19) pandemic, in patients treated for SARS-CoV-2 infection, infections with the Klebsiella pneumoniae bacteria producing New Delhi metallo-B-lactamase (NDM) carbapenemase in the USA, Brazil, Mexico, and Italy were observed, especially in intensive care units (ICUs). This study aimed to assess the impact of Klebsiella pneumoniae NDM infection and other bacterial infections on mortality in patients treated in ICUs due to COVID-19. Methods: The 160 patients who qualified for the study were hospitalized in ICUs due to COVID-19. Three groups were distinguished: patients with COVID-19 infection only (N = 72), patients with COVID-19 infection and infection caused by Klebsiella pneumoniae NDM (N = 30), and patients with COVID-19 infection and infection of bacterial etiology other than Klebsiella pneumoniae NDM (N = 58). Mortality in the groups and chosen demographic data; biochemical parameters analyzed on days 1, 3, 5, and 7; comorbidities; and ICU scores were analyzed. Results: Bacterial infection, including with Klebsiella pneumoniae NDM type, did not elevate mortality rates. In the group of patients who survived the acute phase of COVID-19 the prolonged survival time was demonstrated: the median overall survival time was 13 days in the NDM bacterial infection group, 14 days in the other bacterial infection group, and 7 days in the COVID-19 only group. Comparing the COVID-19 with NDM infection and COVID-19 only groups, the adjusted model estimated a statistically significant hazard ratio of 0.28 (p = 0.002). Multivariate analysis revealed that age, APACHE II score, and CRP were predictors of mortality in all the patient groups. Conclusion: In patients treated for SARS-CoV-2 infection acquiring a bacterial infection due to prolonged hospitalization associated with the treatment of COVID-19 did not elevate mortality rates. The data suggests that in severe COVID-19 patients who survived beyond the first week of hospitalization, bacterial infections, particularly Klebsiella pneumoniae NDM, do not significantly impact mortality. Multivariate analysis revealed that age, APACHE II score, and CRP were predictors of mortality in all the patient groups.


Assuntos
COVID-19 , Farmacorresistência Bacteriana Múltipla , Unidades de Terapia Intensiva , Infecções por Klebsiella , Klebsiella pneumoniae , SARS-CoV-2 , beta-Lactamases , Humanos , COVID-19/mortalidade , COVID-19/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Masculino , Feminino , Infecções por Klebsiella/mortalidade , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/epidemiologia , beta-Lactamases/metabolismo , beta-Lactamases/genética , Pessoa de Meia-Idade , Idoso , Adulto , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Idoso de 80 Anos ou mais
15.
J Korean Med Sci ; 39(17): e157, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711319

RESUMO

This study assessed the performance of the BioFire Blood Culture Identification 2 (BCID2) panel in identifying microorganisms and antimicrobial resistance (AMR) profiles in positive blood cultures (BCs) and its influence on turnaround time (TAT) compared with conventional culture methods. We obtained 117 positive BCs, of these, 102 (87.2%) were correctly identified using BCID2. The discordance was due to off-panel pathogens detected by culture (n = 13), and additional pathogens identified by BCID2 (n = 2). On-panel pathogen concordance between the conventional culture and BCID2 methods was 98.1% (102/104). The conventional method detected 19 carbapenemase-producing organisms, 14 extended-spectrum beta-lactamase-producing Enterobacterales, 18 methicillin-resistant Staphylococcus spp., and four vancomycin-resistant Enterococcus faecium. BCID2 correctly predicted 53 (96.4%) of 55 phenotypic resistance patterns by detecting AMR genes. The TAT for BCID2 was significantly lower than that for the conventional method. BCID2 rapidly identifies pathogens and AMR genes in positive BCs.


Assuntos
Hemocultura , Reação em Cadeia da Polimerase Multiplex , Reação em Cadeia da Polimerase Multiplex/métodos , Humanos , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética , Proteínas de Bactérias/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Enterococcus faecium/genética , Enterococcus faecium/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/genética , Enterococos Resistentes à Vancomicina/isolamento & purificação , Bacteriemia/microbiologia , Bacteriemia/diagnóstico
16.
Biotechnol J ; 19(5): e2400023, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38719589

RESUMO

The discovery of antibiotics has noticeably promoted the development of human civilization; however, antibiotic resistance in bacteria caused by abusing and overusing greatly challenges human health and food safety. Considering the worsening situation, it is an urgent demand to develop emerging nontraditional technologies or methods to address this issue. With the expanding of synthetic biology, optogenetics exhibits a tempting prospect for precisely regulating gene expression in many fields. Consequently, it is attractive to employ optogenetics to reduce the risk of antibiotic resistance. Here, a blue light-controllable gene expression system was established in Escherichia coli based on a photosensitive DNA-binding protein (EL222). Further, this strategy was successfully applied to repress the expression of ß-lactamase gene (bla) using blue light illumination, resulting a dramatic reduction of ampicillin resistance in engineered E. coli. Moreover, blue light was utilized to induce the expression of the mechanosensitive channel of large conductance (MscL), triumphantly leading to the increase of streptomycin susceptibility in engineered E. coli. Finally, the increased susceptibility of ampicillin and streptomycin was simultaneously induced by blue light in the same E. coli cell, revealing the excellent potential of this strategy in controlling multidrug-resistant (MDR) bacteria. As a proof of concept, our work demonstrates that light can be used as an alternative tool to prolong the use period of common antibiotics without developing new antibiotics. And this novel strategy based on optogenetics shows a promising foreground to combat antibiotic resistance in the future.


Assuntos
Antibacterianos , Escherichia coli , Luz , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Antibacterianos/farmacologia , Optogenética/métodos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Ampicilina/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Farmacorresistência Bacteriana/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Estreptomicina/farmacologia , Luz Azul
17.
BMC Vet Res ; 20(1): 174, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702700

RESUMO

Antimicrobial resistance is considered one of the most critical threat for both human and animal health. Recently, reports of infection or colonization by carbapenemase-producing Enterobacterales in companion animals had been described. This study report the first molecular characterization of NDM-producing Enterobacterales causing infections in companion animals from Argentina. Nineteen out of 3662 Enterobacterales isolates analyzed between October 2021 and July 2022 were resistant to carbapenemes by VITEK2C and disk diffusion method, and suspected to be carbapenemase-producers. Ten isolates were recovered from canine and nine from feline animals. Isolates were identified as K. pneumoniae (n = 9), E. coli (n = 6) and E. cloacae complex (n = 4), and all of them presented positive synergy among EDTA and carbapenems disks, mCIM/eCIM indicative of metallo-carbapenemase production and were also positive by PCR for blaNDM gene. NDM variants were determined by Sanger sequencing method. All 19 isolates were resistant to ß-lactams and aminoglycosides but remained susceptible to colistin (100%), tigecycline (95%), fosfomycin (84%), nitrofurantoin (63%), minocycline (58%), chloramphenicol (42%), doxycycline (21%), enrofloxacin (5%), ciprofloxacin (5%) and trimethoprim/sulfamethoxazole (5%). Almost all isolates (17/19) co-harbored blaCTX-M plus blaCMY, one harbored blaCTX-M alone and the remaining blaCMY. E. coli and E. cloacae complex isolates harbored blaCTX-M-1/15 or blaCTX-M-2 groups, while all K. pneumoniae harbored only blaCTX-M-1/15 genes. All E. coli and E. cloacae complex isolates harbored blaNDM-1, while in K. pneumoniae blaNDM-1 (n = 6), blaNDM-5 (n = 2), and blaNDM-1 plus blaNDM-5 (n = 1) were confirmed. MLST analysis revealed the following sequence types by species, K. pneumoniae: ST15 (n = 5), ST273 (n = 2), ST11, and ST29; E. coli: ST162 (n = 3), ST457, ST224, and ST1196; E. cloacae complex: ST171, ST286, ST544 and ST61. To the best of our knowledge, this is the first description of NDM-producing E. cloacae complex isolates recovered from cats. Even though different species and clones were observed, it is remarkable the finding of some major clones among K. pneumoniae and E. coli, as well as the circulation of NDM as the main carbapenemase. Surveillance in companion pets is needed to detect the spread of carbapenem-resistant Enterobacterales and to alert about the dissemination of these pathogens among pets and humans.


Assuntos
Antibacterianos , Doenças do Gato , Doenças do Cão , Infecções por Enterobacteriaceae , beta-Lactamases , Animais , Gatos , Cães , Doenças do Gato/microbiologia , Doenças do Gato/epidemiologia , beta-Lactamases/genética , Argentina/epidemiologia , Infecções por Enterobacteriaceae/veterinária , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/epidemiologia , Antibacterianos/farmacologia , Doenças do Cão/microbiologia , Doenças do Cão/epidemiologia , Testes de Sensibilidade Microbiana , Animais de Estimação , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/genética , Enterobacteriaceae/enzimologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Klebsiella pneumoniae/enzimologia
18.
Sci Rep ; 14(1): 11260, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755240

RESUMO

Β-lactamases-producing Escherichia coli are a widely distributed source of antimicrobial resistance (AMR), for animals and humans. Little is known about the sensitivity profile and genetic characteristics of E. coli strains isolated from domestic cats. We report a cross-sectional study that evaluated E. coli strains isolated from domestic cats in Panama. For this study the following antibiotics were analyzed: ampicillin, amoxicillin-clavulanate cefepime, cefotaxime, cefoxitin, ceftazidime, aztreonam, imipenem, gentamicin, kanamycin, streptomycin, tetracycline, ciprofloxacin, nalidixic acid, trimethoprim-sulfamethoxazole, and chloramphenicol. The data obtained were classified as resistant, intermediate, or sensitive. MDR strains were established when the strain presented resistance to at least one antibiotic from three or more antimicrobial classes. Forty-eight E. coli isolates were obtained, of which 80% presented resistance to at least one of the antibiotics analyzed, while only 20% were sensitive to all (p = 0.0001). The most common resistance was to gentamicin (58%). Twenty-nine percent were identified as multidrug-resistant isolates and 4% with extended spectrum beta-lactamase phenotype. The genes blaTEM (39%), blaMOX(16%), blaACC (16%) and blaEBC (8%) were detected. Plasmid-mediated resistance qnrB (25%) and qnrA (13%) are reported. The most frequent sequence types (STs) being ST399 and we reported 5 new STs. Our results suggest that in intestinal strains of E. coli isolated from domestic cats there is a high frequency of AMR.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Testes de Sensibilidade Microbiana , Animais , Gatos/microbiologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , Fenótipo , beta-Lactamases/genética , Estudos Transversais , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Variação Genética
19.
PLoS One ; 19(5): e0303555, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753729

RESUMO

Cluster regularly interspaced short palindromic repeats and CRISPR associated protein 9 (CRISPR-Cas9) is a promising tool for antimicrobial re-sensitization by inactivating antimicrobial resistance (AMR) genes of bacteria. Here, we programmed CRISPR-Cas9 with common spacers to target predominant blaCTX-M variants in group 1 and group 9 and their promoter in an Escherichia coli model. The CRISPR-Cas9 was delivered by non-replicative phagemid particles from a two-step process, including insertion of spacer in CRISPR and construction of phagemid vector. Spacers targeting blaCTX-M promoters and internal sequences of blaCTX-M group 1 (blaCTX-M-15 and -55) and group 9 (blaCTX-M-14, -27, -65, and -90) were cloned into pCRISPR and phagemid pRC319 for spacer evaluation and phagemid particle production. Re-sensitization and plasmid clearance were mediated by the spacers targeting internal sequences of each group, resulting in 3 log10 to 4 log10 reduction of the ratio of resistant cells, but not by those targeting the promoters. The CRISPR-Cas9 delivered by modified ΦRC319 particles were capable of re-sensitizing E. coli K-12 carrying either blaCTX-M group 1 or group 9 in a dose-dependent manner from 0.1 to 100 multiplicity of infection (MOI). In conclusion, CRISPR-Cas9 system programmed with well-designed spacers targeting multiple variants of AMR gene along with a phage-based delivery system could eliminate the widespread blaCTX-M genes for efficacy restoration of available third-generation cephalosporins by reversal of resistance in bacteria.


Assuntos
Bacteriófagos , Sistemas CRISPR-Cas , Escherichia coli , Escherichia coli/genética , Escherichia coli/virologia , Bacteriófagos/genética , beta-Lactamases/genética , Proteínas de Escherichia coli/genética , Plasmídeos/genética , Regiões Promotoras Genéticas , Edição de Genes/métodos , Antibacterianos/farmacologia
20.
PLoS One ; 19(5): e0303753, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758757

RESUMO

NDM-producing carbapenem-resistant bacterial infections became a challenge for clinicians. Combination therapy of aztreonam and ceftazidime-avibactam is a prudent choice for these infections. However, there is still no recommendation of a practically feasible method for testing aztreonam and ceftazidime-avibactam synergy. We proposed a simple method for testing aztreonam and ceftazidime-avibactam synergy and compared it with reference broth micro-dilution and other methods. Carbapenem-resistant Enterobacterales clinical isolates were screened for the presence of the NDM gene by the Carba R test. NDM harbouring isolates were tested for aztreonam and ceftazidime-avibactam synergy by broth microdilution (reference method), E strip-disc diffusion, double disc diffusion, and disc replacement methods. In the newly proposed method, the MHA medium was supplemented with ceftazidime-avibactam (corresponding to an aztreonam concentration of 4µg/ml). The MHA medium was then inoculated with the standard inoculum (0.5 McFarland) of the test organism. An AZT disc (30 µg) was placed on the supplemented MHA medium, and the medium was incubated overnight at 37°C. Aztreonam zone diameter on the supplemented MHA medium (in the presence of ceftazidime-avibactam) was compared with that from a standard disc diffusion plate (without ceftazidime-avibactam), performed in parallel. Interpretation of synergy was based on the restoration of aztreonam zone diameter (in the presence of ceftazidime-avibactam) crossing the CLSI susceptibility breakpoint, i.e., ≥ 21 mm. Of 37 carbapenem-resistant NDM-producing isolates, 35 (94.6%) were resistant to aztreonam and tested synergy positive by the proposed method. Its sensitivity and specificity were 97.14% and 100%, respectively. Cohen's kappa value showed substantial agreement of the reference method with the proposed method (κ = 0.78) but no other methods. The proposed method is simple, easily interpretable, and showed excellent sensitivity, specificity, and agreement with the reference method. Therefore, the new method is feasible and reliable for testing aztreonam synergy with avibactam in NDM-producing Enterobacterales.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Aztreonam , Ceftazidima , Combinação de Medicamentos , Enterobacteriaceae , Testes de Sensibilidade Microbiana , beta-Lactamases , Ceftazidima/farmacologia , Aztreonam/farmacologia , Compostos Azabicíclicos/farmacologia , beta-Lactamases/metabolismo , beta-Lactamases/genética , Testes de Sensibilidade Microbiana/métodos , Antibacterianos/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/enzimologia , Enterobacteriaceae/genética , Humanos , Sinergismo Farmacológico , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA