Your browser doesn't support javascript.
loading
Effects of voluntary activity and genetic selection on muscle metabolic capacities in house mice Mus domesticus.
Houle-Leroy, P; Garland, T; Swallow, J G; Guderley, H.
Afiliación
  • Houle-Leroy P; Département de Biologie, Université Laval, Quebec, Quebéc, Canada G1K 7P4.
J Appl Physiol (1985) ; 89(4): 1608-16, 2000 Oct.
Article en En | MEDLINE | ID: mdl-11007602
Selective breeding is an important tool in behavioral genetics and evolutionary physiology, but it has rarely been applied to the study of exercise physiology. We are using artificial selection for increased wheel-running behavior to study the correlated evolution of locomotor activity and physiological determinants of exercise capacity in house mice. We studied enzyme activities and their response to voluntary wheel running in mixed hindlimb muscles of mice from generation 14, at which time individuals from selected lines ran more than twice as many revolutions per day as those from control (unselected) lines. Beginning at weaning and for 8 wk, we housed mice from each of four replicate selected lines and four replicate control lines with access to wheels that were free to rotate (wheel-access group) or locked (sedentary group). Among sedentary animals, mice from selected lines did not exhibit a general increase in aerobic capacities: no mitochondrial [except pyruvate dehydrogenase (PDH)] or glycolytic enzyme activity was significantly (P < 0.05) higher than in control mice. Sedentary mice from the selected lines exhibited a trend for higher muscle aerobic capacities, as indicated by higher levels of mitochondrial (cytochrome-c oxidase, carnitine palmitoyltransferase, citrate synthase, and PDH) and glycolytic (hexokinase and phosphofructokinase) enzymes, with concomitant lower anaerobic capacities, as indicated by lactate dehydrogenase (especially in male mice). Consistent with previous studies of endurance training in rats via voluntary wheel running or forced treadmill exercise, cytochrome-c oxidase, citrate synthase, and carnitine palmitoyltransferase activity increased in the wheel-access groups for both genders; hexokinase also increased in both genders. Some enzymes showed gender-specific responses: PDH and lactate dehydrogenase increased in wheel-access male but not female mice, and glycogen phosphorylase decreased in female but not in male mice. Two-way analysis of covariance revealed significant interactions between line type and activity group; for several enzymes, activities showed greater changes in mice from selected lines, presumably because such mice ran more revolutions per day and at greater velocities. Thus genetic selection for increased voluntary wheel running did not reduce the capability of muscle aerobic capacity to respond to training.
Asunto(s)
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Selección Genética / Músculo Esquelético / Mitocondrias Musculares / Actividad Motora Límite: Animals Idioma: En Revista: J Appl Physiol (1985) Asunto de la revista: FISIOLOGIA Año: 2000 Tipo del documento: Article
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Selección Genética / Músculo Esquelético / Mitocondrias Musculares / Actividad Motora Límite: Animals Idioma: En Revista: J Appl Physiol (1985) Asunto de la revista: FISIOLOGIA Año: 2000 Tipo del documento: Article
...