A Study of the Effect of Inhibitors of the Animal Sarcoplasmic/Endoplasmic Reticulum-Type Calcium Pumps on the Primary Ca2+-ATPases of Red Beet.
Plant Physiol
; 104(4): 1295-1300, 1994 Apr.
Article
en En
| MEDLINE
| ID: mdl-12232168
The inhibitor sensitivity of the endoplasmic reticulum (ER) and plasma membrane (PM) calcium pumps of red beet (Beta vulgaris L.) were studied by measuring the ATP-driven accumulation of 45Ca2+ into isolated membrane vesicles. Both transporters were strongly inhibited by 50 [mu]mol m-3 erythrosin B, but only by 50% in the presence of 100 mmol m-3 vanadate. A number of inhibitors considered to be specific for the sarcoplasmic reticulum (SR)/ER-type calcium pump in animal cells were used to further characterize the PM and ER Ca2+-ATPases in red beet and were compared with their effect on the transport and hydrolytic activities of the PM and tonoplast H+-ATPases. The hydroquinones 2,5-di(tert-butyl)-1,4-benzohydroquinone and 2,5-di(tert-amyl)-1,4-benzohydroquinone produced around 20 and 40% inhibition of activity, respectively, of the PM and ER calcium pumps and the PM H+-ATPase when present at concentrations of 30 mmol m-3. In contrast, the vacuolar proton pump displayed a much higher sensitivity to these two compounds. Nonylphenol appeared to have a general inhibitory effect on all four membrane transport proteins and gave almost complete inhibition when present at a concentration of 100 mmol m-3. Thapsigargin and the structurally related compound trilobolide produced 50% inhibition of both the ER and PM calcium pumps at concentrations of 12.5 and 24 mmol m-3, respectively. The PM and tonoplast proton pumps were also sensitive to these compounds. The ER and PM calcium pumps were almost completely insensitive to cyclopiazonic acid (CPA) up to a concentration of 20 mmol m-3. When present at 100 mmol m-3 CPA caused 30% inhibition of the transport properties of all four ATPases. The high concentrations of all of the inhibitors of the SR/ER Ca-ATPase required to inhibit the red beet ER calcium pump, together with the similar effects on the PM calcium pump and the PM and tonoplast proton pumps, suggests that these hydrophobic compounds have a general nonselective action in red beet, possibly through disruption of membrane lipid-protein interactions.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Plant Physiol
Año:
1994
Tipo del documento:
Article
País de afiliación:
Reino Unido