Your browser doesn't support javascript.
loading
Combined proteasome and histone deacetylase inhibition in non-small cell lung cancer.
Denlinger, Chadrick E; Keller, Michael D; Mayo, Marty W; Broad, R Michael; Jones, David R.
Afiliación
  • Denlinger CE; Department of Surgery, University of Virginia School of Medicine, Charlottesville, 22908, USA.
J Thorac Cardiovasc Surg ; 127(4): 1078-86, 2004 Apr.
Article en En | MEDLINE | ID: mdl-15052205
ABSTRACT

OBJECTIVE:

Inhibitors of histone deacetylases are potent inducers of cell-cycle arrest and apoptosis in certain malignancies. We have previously demonstrated that chemotherapy activates the antiapoptotic transcription factor nuclear factor kappa B in non-small cell lung cancer and fails to induce significant levels of apoptosis. We hypothesize that nuclear factor kappa B inhibition with the proteasome inhibitor bortezomib (formerly known as PS-341) will sensitize non-small cell lung cancer cells to histone deacetylase inhibitor-mediated apoptosis.

METHODS:

Tumorigenic non-small cell lung cancer cells (A549, H358, and H460) were treated with bortezomib, followed by the histone deactylase inhibitor sodium butyrate. After treatment, nuclear factor kappa B transcriptional activity was measured by using a luciferase reporter assay and transcription of the nuclear factor kappa B-dependent gene IL8. Apoptosis was determined on the basis of caspase-3 activation and DNA fragmentation. Western blot analyses for the cell-cycle regulatory proteins p21 and p53 were performed, and cell-cycle alterations were determined by means of FACS analysis. Experiments were performed in triplicate, and statistical significance was determined by using unpaired t tests.

RESULTS:

Butyrate increased nuclear factor kappa B transcriptional activity 4-fold relative to that seen in control cells (P =.05) in all non-small cell lung cancer cell lines. Treatment with bortezomib reduced butyrate-induced activation of nuclear factor kappa B to baseline levels. The proteins p21 and p53 were stabilized after treatment with bortezomib, correlating with a G(2)/M cell-cycle arrest. Treatment with butyrate alone resulted in minimal apoptosis, but combined histone deacetylase and proteasome inhibition increased apoptosis 3- to 4-fold (P =.02).

CONCLUSIONS:

Combined molecular targeting of histone deacteylases and proteasomes synergistically induced apoptosis in non-small cell lung cancer. Pharmacologic nuclear factor kappa B suppression through proteasome inhibition, followed by treatment with histone deacetylase inhibitors, might represent a novel treatment strategy for patients with non-small cell lung cancer.
Asunto(s)
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 6_ODS3_enfermedades_notrasmisibles Problema de salud: 6_other_respiratory_diseases / 6_trachea_bronchus_lung_cancer Asunto principal: Protocolos de Quimioterapia Combinada Antineoplásica / Carcinoma de Pulmón de Células no Pequeñas / Neoplasias Pulmonares Límite: Humans Idioma: En Revista: J Thorac Cardiovasc Surg Año: 2004 Tipo del documento: Article País de afiliación: Estados Unidos
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 6_ODS3_enfermedades_notrasmisibles Problema de salud: 6_other_respiratory_diseases / 6_trachea_bronchus_lung_cancer Asunto principal: Protocolos de Quimioterapia Combinada Antineoplásica / Carcinoma de Pulmón de Células no Pequeñas / Neoplasias Pulmonares Límite: Humans Idioma: En Revista: J Thorac Cardiovasc Surg Año: 2004 Tipo del documento: Article País de afiliación: Estados Unidos
...