Transgenic mice expressing CUG-BP1 reproduce splicing mis-regulation observed in myotonic dystrophy.
Hum Mol Genet
; 14(11): 1539-47, 2005 Jun 01.
Article
en En
| MEDLINE
| ID: mdl-15843400
Myotonic dystrophy type I (DM1) is an RNA-mediated disease caused by a non-coding CTG repeat expansion. A key feature of the RNA-mediated pathogenesis model for DM is the disrupted splicing of specific pre-mRNA targets. A link has been established between splicing regulation by CUG-BP1, a member of the CELF family of proteins, and DM1 pathogenesis. To determine whether increased CUG-BP1 function was sufficient to model DM, transgenic mice overexpressing CUG-BP1 (MCKCUG-BP1) in heart and skeletal muscle, two tissues affected in DM1, were generated. Histological and electron microscopic analyses of skeletal muscle reveal common pathological features with DM tissues: chains of central nuclei, degenerating fibers and centralized NADH reactivity. MCKCUG-BP1 mice have disrupted splicing of three CELF target pre-mRNAs, cardiac troponin T (Tnnt2), myotubularin-related 1 gene (Mtmr1) and the muscle-specific chloride channel (Clcn1), consistent with that observed in DM heart and skeletal muscle. The results are consistent with a mechanism for DM pathogenesis in which expanded repeats result in increased CUG-BP1 activity and/or other CELF family members and have trans-dominant effects on specific pre-mRNA targets.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Empalme del ARN
/
Proteínas de Unión al ARN
/
Distrofia Miotónica
Límite:
Animals
Idioma:
En
Revista:
Hum Mol Genet
Asunto de la revista:
BIOLOGIA MOLECULAR
/
GENETICA MEDICA
Año:
2005
Tipo del documento:
Article
País de afiliación:
Estados Unidos