Your browser doesn't support javascript.
loading
Evaluation of methods for oligonucleotide array data via quantitative real-time PCR.
Qin, Li-Xuan; Beyer, Richard P; Hudson, Francesca N; Linford, Nancy J; Morris, Daryl E; Kerr, Kathleen F.
Afiliación
  • Qin LX; Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA. qinl@mskcc.org
BMC Bioinformatics ; 7: 23, 2006 Jan 17.
Article en En | MEDLINE | ID: mdl-16417622
BACKGROUND: There are currently many different methods for processing and summarizing probe-level data from Affymetrix oligonucleotide arrays. It is of great interest to validate these methods and identify those that are most effective. There is no single best way to do this validation, and a variety of approaches is needed. Moreover, gene expression data are collected to answer a variety of scientific questions, and the same method may not be best for all questions. Only a handful of validation studies have been done so far, most of which rely on spike-in datasets and focus on the question of detecting differential expression. Here we seek methods that excel at estimating relative expression. We evaluate methods by identifying those that give the strongest linear association between expression measurements by array and the "gold-standard" assay. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) is generally considered the "gold-standard" assay for measuring gene expression by biologists and is often used to confirm findings from microarray data. Here we use qRT-PCR measurements to validate methods for the components of processing oligo array data: background adjustment, normalization, mismatch adjustment, and probeset summary. An advantage of our approach over spike-in studies is that methods are validated on a real dataset that was collected to address a scientific question. RESULTS: We initially identify three of six popular methods that consistently produced the best agreement between oligo array and RT-PCR data for medium- and high-intensity genes. The three methods are generally known as MAS5, gcRMA, and the dChip mismatch mode. For medium- and high-intensity genes, we identified use of data from mismatch probes (as in MAS5 and dChip mismatch) and a sequence-based method of background adjustment (as in gcRMA) as the most important factors in methods' performances. However, we found poor reliability for methods using mismatch probes for low-intensity genes, which is in agreement with previous studies. CONCLUSION: We advocate use of sequence-based background adjustment in lieu of mismatch adjustment to achieve the best results across the intensity spectrum. No method of normalization or probeset summary showed any consistent advantages.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oligonucleótidos / Regulación de la Expresión Génica / Biología Computacional / Reacción en Cadena de la Polimerasa de Transcriptasa Inversa / Análisis de Secuencia por Matrices de Oligonucleótidos Tipo de estudio: Diagnostic_studies / Evaluation_studies / Prognostic_studies / Risk_factors_studies Límite: Animals Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2006 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oligonucleótidos / Regulación de la Expresión Génica / Biología Computacional / Reacción en Cadena de la Polimerasa de Transcriptasa Inversa / Análisis de Secuencia por Matrices de Oligonucleótidos Tipo de estudio: Diagnostic_studies / Evaluation_studies / Prognostic_studies / Risk_factors_studies Límite: Animals Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2006 Tipo del documento: Article País de afiliación: Estados Unidos
...