Synthesis and HCV inhibitory properties of 9-deaza- and 7,9-dideaza-7-oxa-2'-C-methyladenosine.
Bioorg Med Chem
; 15(15): 5219-29, 2007 Aug 01.
Article
en En
| MEDLINE
| ID: mdl-17521911
As a part of an ongoing medicinal chemistry effort to identify inhibitors of the Hepatitis C Virus RNA replication, we report here the synthesis and biological evaluation of 9-deaza- and 7,9-dideaza-7-oxa-2'-C-methyladenosine. The parent 2'-C-methyladenosine shows excellent intracellular inhibitory activity but poor pharmacokinetic profile. Replacement of the nucleoside-defining 9-N of 2'-C-methyladenosine with a carbon atom was designed to yield metabolically more stable C-nucleosides. Modifications at position 7 were designed to exploit the importance of the hydrogen bond accepting properties of this heteroatom in modulating the adenosine deaminase (ADA) mediated 6-N deamination. 7-Oxa-7,9-dideaza-2'-C-methyladenosine was found to be a moderately active inhibitor of intracellular HCV RNA replication, whereas 9-deaza- 2'-C-methyladenosine showed only weak activity despite excellent overlap of both of the synthesized target compounds with 2'-C-methyladenosine's three dimensional structure. Position 7 of the nucleobase proved to be an effective handle for modulating ADA-mediated degradation, with the rate of degradation correlating with the hydrogen-bonding properties at this position.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Antivirales
/
Adenosina
/
Hepacivirus
Límite:
Humans
Idioma:
En
Revista:
Bioorg Med Chem
Asunto de la revista:
BIOQUIMICA
/
QUIMICA
Año:
2007
Tipo del documento:
Article
País de afiliación:
Estados Unidos