Estimating standard errors in feature network models.
Br J Math Stat Psychol
; 60(Pt 1): 1-28, 2007 May.
Article
en En
| MEDLINE
| ID: mdl-17535577
Feature network models are graphical structures that represent proximity data in a discrete space while using the same formalism that is the basis of least squares methods employed in multidimensional scaling. Existing methods to derive a network model from empirical data only give the best-fitting network and yield no standard errors for the parameter estimates. The additivity properties of networks make it possible to consider the model as a univariate (multiple) linear regression problem with positivity restrictions on the parameters. In the present study, both theoretical and empirical standard errors are obtained for the constrained regression parameters of a network model with known features. The performance of both types of standard error is evaluated using Monte Carlo techniques.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Contexto en salud:
1_ASSA2030
Problema de salud:
1_financiamento_saude
Asunto principal:
Reconocimiento Visual de Modelos
/
Fonación
/
Escritura
/
Fonética
/
Análisis de los Mínimos Cuadrados
/
Modelos Lineales
/
Modelos Estadísticos
Tipo de estudio:
Health_economic_evaluation
/
Risk_factors_studies
Límite:
Humans
Idioma:
En
Revista:
Br J Math Stat Psychol
Año:
2007
Tipo del documento:
Article
País de afiliación:
Países Bajos