Your browser doesn't support javascript.
loading
Predicting miRNA's target from primary structure by the nearest neighbor algorithm.
Lin, Kao; Qian, Ziliang; Lu, Lin; Lu, Lingyi; Lai, Lihui; Gu, Jieyi; Zeng, Zhenbing; Li, Haipeng; Cai, Yudong.
Afiliación
  • Lin K; CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
Mol Divers ; 14(4): 719-29, 2010 Nov.
Article en En | MEDLINE | ID: mdl-20041294
We used a machine learning method, the nearest neighbor algorithm (NNA), to learn the relationship between miRNAs and their target proteins, generating a predictor which can then judge whether a new miRNA-target pair is true or not. We acquired 198 positive (true) miRNA-target pairs from Tarbase and the literature, and generated 4,888 negative (false) pairs through random combination. A 0/1 system and the frequencies of single nucleotides and di-nucleotides were used to encode miRNAs into vectors while various physicochemical parameters were used to encode the targets. The NNA was then applied, learning from these data to produce a predictor. We implemented minimum redundancy maximum relevance (mRMR) and properties forward selection (PFS) to reduce the redundancy of our encoding system, obtaining 91 most efficient properties. Finally, via the Jackknife cross-validation test, we got a positive accuracy of 69.2% and an overall accuracy of 96.0% with all the 253 properties. Besides, we got a positive accuracy of 83.8% and an overall accuracy of 97.2% with the 91 most efficient properties. A web-server for predictions is also made available at http://app3.biosino.org:8080/miRTP/index.jsp.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Secuencia de Bases / Homología de Secuencia / Biología Computacional / MicroARNs Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Mol Divers Asunto de la revista: BIOLOGIA MOLECULAR Año: 2010 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Secuencia de Bases / Homología de Secuencia / Biología Computacional / MicroARNs Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Mol Divers Asunto de la revista: BIOLOGIA MOLECULAR Año: 2010 Tipo del documento: Article País de afiliación: China
...