Your browser doesn't support javascript.
loading
Feedback associative memory based on a new hybrid model of generalized regression and self-feedback neural networks.
Amiri, Mahmood; Davande, Hamed; Sadeghian, Alireza; Chartier, Sylvain.
Afiliación
  • Amiri M; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran. ma.amiri@ece.ut.ac.ir
Neural Netw ; 23(7): 892-904, 2010 Sep.
Article en En | MEDLINE | ID: mdl-20627454
The focus of this paper is to propose a hybrid neural network model for associative recall of analog and digital patterns. This hybrid model consists of self-feedback neural network structures (SFNN) in parallel with generalized regression neural networks (GRNN). Using a new one-shot learning algorithm developed in the paper, pattern representations are first stored as the asymptotically stable fixed points of the SFNN. Then in the retrieving process, each pattern is applied to the GRNN to make the corresponding initial condition and to initiate the dynamical equations of the SFNN that should in turn output the corresponding representation. In this way, the corresponding stored patterns are retrieved even under high noise degradation. Moreover, contrary to many associative memories, the proposed hybrid model is without any spurious attractors and can store both binary and real-value patterns without any preprocessing. Several simulations confirm the theoretical analyses of the model. Results indicate that the performance of the hybrid model is better than that of recurrent associative memory and competitive with other classes of networks.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aprendizaje por Asociación / Simulación por Computador / Retroalimentación Fisiológica / Modelos Neurológicos / Red Nerviosa Tipo de estudio: Diagnostic_studies / Risk_factors_studies Idioma: En Revista: Neural Netw Asunto de la revista: NEUROLOGIA Año: 2010 Tipo del documento: Article País de afiliación: Irán

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aprendizaje por Asociación / Simulación por Computador / Retroalimentación Fisiológica / Modelos Neurológicos / Red Nerviosa Tipo de estudio: Diagnostic_studies / Risk_factors_studies Idioma: En Revista: Neural Netw Asunto de la revista: NEUROLOGIA Año: 2010 Tipo del documento: Article País de afiliación: Irán
...