Your browser doesn't support javascript.
loading
Four-wave mixing in slow light engineered silicon photonic crystal waveguides.
Monat, C; Ebnali-Heidari, M; Grillet, C; Corcoran, B; Eggleton, B J; White, T P; O'Faolain, L; Li, J; Krauss, T F.
Afiliación
  • Monat C; Centre for Ultrahigh-bandwidth Devices for Optical Systems, Institute for Photonics and Optical Sciences, School of Physics, University of Sydney, NSW 2006, Australia. monat@physics.usyd.edu.au
Opt Express ; 18(22): 22915-27, 2010 Oct 25.
Article en En | MEDLINE | ID: mdl-21164630
ABSTRACT
We experimentally investigate four-wave mixing (FWM) in short (80 µm) dispersion-engineered slow light silicon photonic crystal waveguides. The pump, probe and idler signals all lie in a 14 nm wide low dispersion region with a near-constant group velocity of c/30. We measure an instantaneous conversion efficiency of up to -9dB between the idler and the continuous-wave probe, with 1W peak pump power and 6 nm pump-probe detuning. This conversion efficiency is found to be considerably higher (>10 × ) than that of a Si nanowire with a group velocity ten times larger. In addition, we estimate the FWM bandwidth to be at least that of the flat band slow light window. These results, supported by numerical simulations, emphasize the importance of engineering the dispersion of PhC waveguides to exploit the slow light enhancement of FWM efficiency, even for short device lengths.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2010 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Opt Express Asunto de la revista: OFTALMOLOGIA Año: 2010 Tipo del documento: Article País de afiliación: Australia
...