Your browser doesn't support javascript.
loading
Estimating biophysical parameters of rice with remote sensing data using support vector machines.
Yang, Xiaohua; Huang, Jingfeng; Wu, Yaoping; Wang, Jianwen; Wang, Pei; Wang, Xiaoming; Huete, Alfredo R.
Afiliación
  • Yang X; Institute of Remote Sensing & Information Application, Zhejiang University, Hangzhou 310029, China. dr.xiaohuayang@gmail.com
Sci China Life Sci ; 54(3): 272-81, 2011 Mar.
Article en En | MEDLINE | ID: mdl-21416328
Hyperspectral reflectance (350-2500 nm) measurements were made over two experimental rice fields containing two cultivars treated with three levels of nitrogen application. Four different transformations of the reflectance data were analyzed for their capability to predict rice biophysical parameters, comprising leaf area index (LAI; m(2) green leaf area m(-2) soil) and green leaf chlorophyll density (GLCD; mg chlorophyll m(-2) soil), using stepwise multiple regression (SMR) models and support vector machines (SVMs). Four transformations of the rice canopy data were made, comprising reflectances (R), first-order derivative reflectances (D1), second-order derivative reflectances (D2), and logarithm transformation of reflectances (LOG). The polynomial kernel (POLY) of the SVM using R was the best model to predict rice LAI, with a root mean square error (RMSE) of 1.0496 LAI units. The analysis of variance kernel of SVM using LOG was the best model to predict rice GLCD, with an RMSE of 523.0741 mg m(-2). The SVM approach was not only superior to SMR models for predicting the rice biophysical parameters, but also provided a useful exploratory and predictive tool for analyzing different transformations of reflectance data.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oryza / Telemetría / Toma de Decisiones / Modelos Teóricos / Nitrógeno Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci China Life Sci Asunto de la revista: BIOLOGIA / CIENCIA Año: 2011 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Oryza / Telemetría / Toma de Decisiones / Modelos Teóricos / Nitrógeno Tipo de estudio: Prognostic_studies Idioma: En Revista: Sci China Life Sci Asunto de la revista: BIOLOGIA / CIENCIA Año: 2011 Tipo del documento: Article País de afiliación: China
...