Self-organized 2D periodic arrays of nanostructures in silicon by nanosecond laser irradiation.
Appl Opt
; 50(16): 2349-55, 2011 Jun 01.
Article
en En
| MEDLINE
| ID: mdl-21629312
We report a phenomenon of spontaneous formation of self-organized 2D periodic arrays of nanostructures (protrusions) by directly exposing a silicon surface to multiple nanosecond laser pulses. These self-organized 2D periodic nanostructures are produced toward the edge as an annular region around the circular laser spot. The heights of these nanostructures are around 500 nm with tip diameter ~100 nm. The period of the nanostructures is about 1064 nm, the wavelength of the incident radiation. In the central region of the laser spot, nanostructures are destroyed because of the higher laser intensity (due to the Gaussian shape of the laser beam) and accumulation of large number of laser pulses. Optical diffraction from these nanostructures indicates a threefold symmetry, which is in accordance with the observed morphological symmetries of these nanostructures.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Appl Opt
Año:
2011
Tipo del documento:
Article
País de afiliación:
Estados Unidos