Your browser doesn't support javascript.
loading
Structural and kinetic isotope effect studies of nicotinamidase (Pnc1) from Saccharomyces cerevisiae.
Smith, Brian C; Anderson, Mark A; Hoadley, Kelly A; Keck, James L; Cleland, W Wallace; Denu, John M.
Afiliación
  • Smith BC; Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States.
Biochemistry ; 51(1): 243-56, 2012 Jan 10.
Article en En | MEDLINE | ID: mdl-22229411
ABSTRACT
Nicotinamidases catalyze the hydrolysis of nicotinamide to nicotinic acid and ammonia. Nicotinamidases are absent in mammals but function in NAD(+) salvage in many bacteria, yeast, plants, protozoa, and metazoans. We have performed structural and kinetic investigations of the nicotinamidase from Saccharomyces cerevisiae (Pnc1). Steady-state product inhibitor analysis revealed an irreversible reaction in which ammonia is the first product released, followed by nicotinic acid. A series of nicotinamide analogues acting as inhibitors or substrates were examined, revealing that the nicotinamide carbonyl oxygen and ring nitrogen are critical for binding and reactivity. X-ray structural analysis revealed a covalent adduct between nicotinaldehyde and Cys167 of Pnc1 and coordination of the nicotinamide ring nitrogen to the active-site zinc ion. Using this structure as a guide, the function of several residues was probed via mutagenesis and primary (15)N and (13)C kinetic isotope effects (KIEs) on V/K for amide bond hydrolysis. The KIE values of almost all variants were increased, indicating that C-N bond cleavage is at least partially rate limiting; however, a decreased KIE for D51N was indicative of a stronger commitment to catalysis. In addition, KIE values using slower alternate substrates indicated that C-N bond cleavage is at least partially rate limiting with nicotinamide to highly rate limiting with thionicotinamide. A detailed mechanism involving nucleophilic attack of Cys167, followed by elimination of ammonia and then hydrolysis to liberate nicotinic acid, is discussed. These results will aid in the design of mechanism-based inhibitors to target pathogens that rely on nicotinamidase activity.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Proteínas de Saccharomyces cerevisiae / Nicotinamidasa Límite: Animals Idioma: En Revista: Biochemistry Año: 2012 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Saccharomyces cerevisiae / Proteínas de Saccharomyces cerevisiae / Nicotinamidasa Límite: Animals Idioma: En Revista: Biochemistry Año: 2012 Tipo del documento: Article País de afiliación: Estados Unidos
...