Your browser doesn't support javascript.
loading
OptCom: a multi-level optimization framework for the metabolic modeling and analysis of microbial communities.
Zomorrodi, Ali R; Maranas, Costas D.
Afiliación
  • Zomorrodi AR; Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA.
PLoS Comput Biol ; 8(2): e1002363, 2012 Feb.
Article en En | MEDLINE | ID: mdl-22319433
ABSTRACT
Microorganisms rarely live isolated in their natural environments but rather function in consolidated and socializing communities. Despite the growing availability of high-throughput sequencing and metagenomic data, we still know very little about the metabolic contributions of individual microbial players within an ecological niche and the extent and directionality of interactions among them. This calls for development of efficient modeling frameworks to shed light on less understood aspects of metabolism in microbial communities. Here, we introduce OptCom, a comprehensive flux balance analysis framework for microbial communities, which relies on a multi-level and multi-objective optimization formulation to properly describe trade-offs between individual vs. community level fitness criteria. In contrast to earlier approaches that rely on a single objective function, here, we consider species-level fitness criteria for the inner problems while relying on community-level objective maximization for the outer problem. OptCom is general enough to capture any type of interactions (positive, negative or combinations thereof) and is capable of accommodating any number of microbial species (or guilds) involved. We applied OptCom to quantify the syntrophic association in a well-characterized two-species microbial system, assess the level of sub-optimal growth in phototrophic microbial mats, and elucidate the extent and direction of inter-species metabolite and electron transfer in a model microbial community. We also used OptCom to examine addition of a new member to an existing community. Our study demonstrates the importance of trade-offs between species- and community-level fitness driving forces and lays the foundation for metabolic-driven analysis of various types of interactions in multi-species microbial systems using genome-scale metabolic models.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Biomasa / Fenómenos Fisiológicos Bacterianos / Redes y Vías Metabólicas / Interacciones Microbianas / Modelos Biológicos Tipo de estudio: Prognostic_studies Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2012 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Biomasa / Fenómenos Fisiológicos Bacterianos / Redes y Vías Metabólicas / Interacciones Microbianas / Modelos Biológicos Tipo de estudio: Prognostic_studies Idioma: En Revista: PLoS Comput Biol Asunto de la revista: BIOLOGIA / INFORMATICA MEDICA Año: 2012 Tipo del documento: Article País de afiliación: Estados Unidos
...