Using support vector machines with multiple indices of diffusion for automated classification of mild cognitive impairment.
PLoS One
; 7(2): e32441, 2012.
Article
en En
| MEDLINE
| ID: mdl-22384251
Few studies have looked at the potential of using diffusion tensor imaging (DTI) in conjunction with machine learning algorithms in order to automate the classification of healthy older subjects and subjects with mild cognitive impairment (MCI). Here we apply DTI to 40 healthy older subjects and 33 MCI subjects in order to derive values for multiple indices of diffusion within the white matter voxels of each subject. DTI measures were then used together with support vector machines (SVMs) to classify control and MCI subjects. Greater than 90% sensitivity and specificity was achieved using this method, demonstrating the potential of a joint DTI and SVM pipeline for fast, objective classification of healthy older and MCI subjects. Such tools may be useful for large scale drug trials in Alzheimer's disease where the early identification of subjects with MCI is critical.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Procesamiento de Señales Asistido por Computador
/
Diagnóstico por Computador
/
Trastornos del Conocimiento
/
Imagen de Difusión Tensora
/
Disfunción Cognitiva
Tipo de estudio:
Diagnostic_studies
/
Prognostic_studies
Límite:
Aged
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
PLoS One
Asunto de la revista:
CIENCIA
/
MEDICINA
Año:
2012
Tipo del documento:
Article
País de afiliación:
Alemania