Your browser doesn't support javascript.
loading
Biosafety of non-surface modified carbon nanocapsules as a potential alternative to carbon nanotubes for drug delivery purposes.
Tang, Alan C L; Hwang, Gan-Lin; Tsai, Shih-Jung; Chang, Min-Yao; Tang, Zack C W; Tsai, Meng-Da; Luo, Chwan-Yao; Hoffman, Allan S; Hsieh, Patrick C H.
Afiliación
  • Tang AC; Institute of Clinical Medicine, National Cheng Kung University & Hospital, Tainan, Taiwan.
PLoS One ; 7(3): e32893, 2012.
Article en En | MEDLINE | ID: mdl-22457723
BACKGROUND: Carbon nanotubes (CNTs) have found wide success in circuitry, photovoltaics, and other applications. In contrast, several hurdles exist in using CNTs towards applications in drug delivery. Raw, non-modified CNTs are widely known for their toxicity. As such, many have attempted to reduce CNT toxicity for intravenous drug delivery purposes by post-process surface modification. Alternatively, a novel sphere-like carbon nanocapsule (CNC) developed by the arc-discharge method holds similar electric and thermal conductivities, as well as high strength. This study investigated the systemic toxicity and biocompatibility of different non-surface modified carbon nanomaterials in mice, including multi-walled carbon nanotubes (MWCNTs), single-walled carbon nanotubes (SWCNTs), carbon nanocapsules (CNCs), and C 60 fullerene (C 60). The retention of the nanomaterials and systemic effects after intravenous injections were studied. METHODOLOGY AND PRINCIPAL FINDINGS: MWCNTs, SWCNTs, CNCs, and C 60 were injected intravenously into FVB mice and then sacrificed for tissue section examination. Inflammatory cytokine levels were evaluated with ELISA. Mice receiving injection of MWCNTs or SWCNTs at 50 µg/g b.w. died while C 60 injected group survived at a 50% rate. Surprisingly, mortality rate of mice injected with CNCs was only at 10%. Tissue sections revealed that most carbon nanomaterials retained in the lung. Furthermore, serum and lung-tissue cytokine levels did not reveal any inflammatory response compared to those in mice receiving normal saline injection. CONCLUSION: Carbon nanocapsules are more biocompatible than other carbon nanomaterials and are more suitable for intravenous drug delivery. These results indicate potential biomedical use of non-surface modified carbon allotrope. Additionally, functionalization of the carbon nanocapsules could further enhance dispersion and biocompatibility for intravenous injection.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 15_ODS3_global_health_risks Problema de salud: 15_riscos_biologicos Asunto principal: Carbono / Sistemas de Liberación de Medicamentos / Nanotubos de Carbono / Nanocápsulas Límite: Animals Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2012 Tipo del documento: Article País de afiliación: Taiwán

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 15_ODS3_global_health_risks Problema de salud: 15_riscos_biologicos Asunto principal: Carbono / Sistemas de Liberación de Medicamentos / Nanotubos de Carbono / Nanocápsulas Límite: Animals Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2012 Tipo del documento: Article País de afiliación: Taiwán
...