Your browser doesn't support javascript.
loading
Influence of lattice dynamics on charge transport in the dianthra[2,3-b:2',3'-f]-thieno[3,2-b]thiophene organic crystals from a theoretical study.
Nan, Guangjun; Li, Zesheng.
Afiliación
  • Nan G; Institute of Theoretical and Simulational Chemistry, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, 150080 Harbin, People's Republic of China. gjnan@hit.edu.cn
Phys Chem Chem Phys ; 14(26): 9451-9, 2012 Jul 14.
Article en En | MEDLINE | ID: mdl-22648093
ABSTRACT
The influence of lattice dynamics on carrier mobility has received much attention in organic crystalline semiconductors, because the molecular components are held together by weak interactions and the transfer integrals between neighboring molecular orbitals are extremely sensitive to small nuclear displacements. Recently, it has been shown that the dynamic disorder has little effect on hole mobility in the ab plane of pentacene, but a reasonable explanation is absent for such a puzzle. To better understand the effect of lattice vibrations on carrier transport, a further study is required for other organic materials. In this work, a mixed molecular dynamic and quantum-chemical methodology is used to assess the effect of nuclear dynamics on hole mobility in the dianthra[2,3-b2',3'-f]-thieno[3,2-b]thiophene (DATT) crystals which exhibit high air stability with the hole mobility as large as that in rubrene-based devices. It is found that the lattice vibrations lead to an increasing encumbrance for hole transport in the ab plane of the DATT crystals as the temperature increases. By comparing the crystal structures of DATT and pentacene, the reduced hole mobility in DATT is attributed to the unsymmetric arrays of nearest-neighboring molecular dimers in the ab plane, because the electronic coupling exhibits unbalanced thermal fluctuations for the nearest-neighboring dimers which then induces a stronger oscillation for carriers along the directions with asymmetric packing. To further relate the dynamic disorder with hole transport, the variations of anisotropic mobilities are also analyzed. As a result, the negligible effect of lattice dynamics on the hole mobility in pentacene is explained by the centrosymmetric molecular packing of the nearest-neighboring molecular pairs in the ab plane.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2012 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Asunto de la revista: BIOFISICA / QUIMICA Año: 2012 Tipo del documento: Article
...